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Abstract
During early neural development, changes in signalling inform the expression of transcription factors that in turn instruct 
changes in cell identity. At the same time, switches in adhesion molecule expression result in cellular rearrangements that 
define the morphology of the emerging neural tube. It is becoming increasingly clear that these two processes influence 
each other; adhesion molecules do not simply operate downstream of or in parallel with changes in cell identity but rather 
actively feed into cell fate decisions. Why are differentiation and adhesion so tightly linked? It is now over 60 years since 
Conrad Waddington noted the remarkable "Constancy of the Wild Type” (Waddington in Nature 183: 1654–1655, 1959) yet 
we still do not fully understand the mechanisms that make development so reproducible. Conversely, we do not understand 
why directed differentiation of cells in a dish is sometimes unpredictable and difficult to control. It has long been suggested 
that cells make decisions as ’local cooperatives’ rather than as individuals (Gurdon in Nature 336: 772–774, 1988; Lander in 
Cell 144: 955–969, 2011). Given that the cadherin family of adhesion molecules can simultaneously influence morphogenesis 
and signalling, it is tempting to speculate that they may help coordinate cell fate decisions between neighbouring cells in the 
embryo to ensure fidelity of patterning, and that the uncoupling of these processes in a culture dish might underlie some of the 
problems with controlling cell fate decisions ex-vivo. Here we review the expression and function of cadherins during early 
neural development and discuss how and why they might modulate signalling and differentiation as neural tissues are formed.
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A brief introduction to the cadherin 
superfamily

In the late 1970s, Masatoshi Takeichi proposed that cell–cell 
adhesion in Chinese hamster cells was mediated by two 
processes: one calcium-independent and the other calcium-
dependent. The activity of the calcium-dependent process 
correlated with the presence of a 150 kDa molecule [4]. Sev-
eral groups independently found that inhibition of the activ-
ity of this molecule with antisera and antibodies resulted 

in the inhibition of calcium-dependent adhesion, with evi-
dent changes in the morphology of antiserum/antibody-
treated cells and embryos, and in the ability of these cells to 
reaggregate following disaggregation [5–13]. The identified 
glycoprotein was thus named “cadherin” (now E-cadherin, 
Cdh1) after the process of calcium-dependent adhesion it 
was found to mediate [12]. Similar experimental strategies 
were used to identify close family members N-cadherin 
(Cdh2) [14–16] and P-cadherin (Cdh3) [17].

The cadherin superfamily of proteins comprises more 
than 100 members in humans [18], with roles in several 
physiological processes including signalling, mecha-
notransduction, self-recognition and tumour suppression 
[19–22]. Proteins of this superfamily share an extracellular 
cadherin (CA) domain of approximately 110 amino acids 
in size (Interpro IPR039808). The CA domain is formed 
by seven β-sheets which arrange to form an Ig domain-like 
β-sandwich (Fig. 1a). It is found in tandem repeats and medi-
ates both calcium binding and interaction with other cad-
herin molecules (Fig. 1b, c) [23].
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The number of CA repeats and the composition of the 
remainder of the molecule vary greatly between different 
superfamily members and across species, and can be used 
to classify cadherin molecules into subfamilies. The fol-
lowing is a list of the main cadherin subfamilies and their 
properties, as comprehensively reviewed in [18, 20, 24–28] 
(Fig. 2).

Type-I or “classical” cadherins are located at adherens 
junctions, and are characterised by five extracellular CA 
(abbreviated to EC) domains, a transmembrane region, 
and an intracellular classical cadherin cytoplasmic domain 
(CCD, Interpro IPR000233), which binds armadillo fam-
ily proteins β-catenin (Ctnnb1) and p120ctn (Ctnnd1). The 
interaction with β-catenin links cadherins to α-catenin and 
the actin cytoskeleton, whereas p120ctn is involved in cad-
herin turnover. Trans-interactions with other cadherins are 
mediated by conserved residues: a Trp in position 2 interacts 
with a hydrophobic pocket on the opposite N-terminal EC 
domain, which contains the conserved His-Ala-Val (HAV) 
motif [18, 26, 28, 29].

Type-II or “atypical” cadherins are structurally similar to 
type-I cadherins, but lack the HAV motif and have two Trp 
residues mediating trans-interactions (Trp2, Trp4) [24–26].

Desmosomal cadherins (desmogleins and desmocollins) 
are located at desmosomes. They have five EC domains, 
a transmembrane domain, and an intracellular CCD that 
interacts with armadillo family members plakoglobin and 
plakophilin, which link the cadherins to intermediate fila-
ments via the protein desmoplakin [25, 26].

Type-III cadherins are not found in mammals other than 
the platypus. They have a variable number of EC domains 
followed by a conserved primitive classic cadherin domain 
(PCCD), composed of a “non-chordate” domain (NC), a 
cysteine-rich EGF-like (CE) and a LAG (laminin globular/
LamG) domain. They have a transmembrane region and a 
CCD. Their EC1 domains lack conserved Trp residues but 
share a conserved Tyr in position 5 that may mediate trans-
interactions [18, 24, 25].

Type-IV cadherins are found in arthropods and comprise 
seven EC domains followed by LAG and CE domains, a 
transmembrane region and a CCD [18, 25].

The Flamingo/CELSR (cadherin EGF LAG seven-pass 
G-type receptor) subfamily members have an extracellular 
region composed of nine EC domains followed by several 
LAG and CE domains, a laminin-type EGF-like domain, 
a hormone receptor domain and a GPS (GPCR proteolytic 
site) motif. This structure is reminiscent of the extracellu-
lar region of type-III cadherins, with which they also share 
the Tyr5 residue in EC1. They are highly unusual cadherins 
in that they have a 7-pass transmembrane (7TM) domain, 
which is why these cadherins are also referred to as the 7TM 
subfamily [18, 24, 25, 28].

The FAT, FAT-like and Dachsous group comprises pro-
teins with large extracellular domains of up to 34 EC repeats, 
followed by LAG and CE domains for FAT and FAT-like 
cadherins, a transmembrane domain and a conserved C-ter-
minal domain [18, 25].

Protocadherins are a large cadherin subfamily. They are 
subdivided into non-clustered protocadherins (NC-Pcdh) and 
clustered protocadherins (C-Pcdh). In human and mouse, 
C-Pcdh genes are transcribed from three adjacent gene clus-
ters (Pcdh α, β and γ), with alternative splicing generating 
over 50 proteins with different N-termini and constant α, 
β and γ C-termini. The extracellular domains of both NC- 
and C-Pcdh contain 6/7 EC repeats with sequence similarity 
to the FAT/Dachsous group. They lack a conserved Trp2 
residue, and are reported to interact in trans by means of 
anti-parallel interfacing of several EC domains. They share 
a transmembrane domain and conserved intracellular motifs. 
They are expressed in the mammalian brain, where they act 
as a cell-surface neuronal barcode to avoid self-synapsing 
[18, 20, 24, 27].

An evolutionary perspective

Cadherins have classically been described as molecules 
that regulate calcium-dependent cell adhesion in metazoans 
[30–33]. However, cadherins containing EC domains, EGF-
like domains and a single pass transmembrane domain have 
been identified in the genome of the unicellular filasterean 
Capsaspora owczarzaki and of several choanoflagellates, 

Fig. 1   Structure of the cadherin domains of mouse Cdh1. a Two cad-
herin domains from mouse E-cadherin (EC2, EC3), forming seven-
stranded β-sandwiches. Binding of three calcium ions (displayed 
in emerald green) is mediated at the aspartate and glutamate-rich 
interface of the two domains. Further calcium ions are visible at the 
interface of these domains with neighbouring cadherin domains. b–c 
Trans-interaction between two E-cadherin ectodomains (EC1-5 for 
green chain, EC1-4 for orange chain). A conserved residue (Trp2) 
in EC1 interacts with a hydrophobic pocket on the opposite EC1 
domain. Crystal structure from [23] (PDB: 3Q2V) visualised with 
Mol*
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implying cadherins are a shared feature of Filozoa [34, 35]. 
A classical-like cadherin similar to Type-IV superfamily 
members, containing both EC repeats and a CCD was iden-
tified in the sponge Oscarella carmela, suggesting that inter-
action with armadillo family proteins evolved in an ancestral 
metazoan [35, 36].

Pinpointing the evolutionary origin of cadherins, how-
ever, is not straightforward: proteins containing cadherin 
and cadherin-like domains have also been identified in 
bacteria and archaea [37–41]. The InterPro protein family 
database has over 60,000 combined entries for “Cadherin” 
(IPR039808, CA) and “Cadherin-like” (IPR002126, CDHL) 
domains. 90.8% of entries are specific to Eumetazoa, 8.6% 
to Eubacteria, 0.1% to Archaea, with the remainder spread 
amongst other eukaryotic clades (Fig. 3a).

The crystal structure of a Staphylococcus aureus protein 
containing CDHL domains [42] reveals that CA/CDHL 
domains have remained broadly structurally conserved 
throughout evolution, with calcium atoms bound at the 
interface of two Ig domain-like β-sandwiches (Fig. 3b). 
Variations in amino acid composition and in rotation angle 

between adjacent CA/CDHL domains may account for dif-
ferences in the number of calcium ions bound at the interface 
of these domains (three for mammalian cadherins, one for 
S. aureus SraP).

Despite their presence in bacteria, archaea and Filozoa, 
CA/CDHL domain-containing proteins are not ubiquitous 
throughout eukaryotes. Aside from Filozoa, they are found 
almost exclusively in SAR, a large group of diverse species 
which diverged from Filozoa early in eukaryotic evolution 
(Fig. 3a). Two CDHL InterPro entries are recorded for the 
apusomonadid Thecamonas trahens [36], and one CA entry 
for plants (the green alga Tetradesmus obliquus). The T. 
obliquus entry is unreviewed, so it is unclear whether this 
protein truly contains CA domains.

This seemingly desultory phylogenetic distribution of 
CA/CDHL domain-containing proteins may be explained 
by horizontal gene transfer events. Ancient Filozoa were 
likely to be bacterivorous [49]. Similarly, T. trahens feeds 
on bacteria and on other flagellates [50]. These organisms 
could have therefore incorporated prokaryotic CA/CDHL-
encoding DNA into their genomes. King and colleagues [35] 

Fig. 2   Cadherin subfamilies 
and representative members. 
Representative members of 
the eight cadherin subfami-
lies described in the text. The 
plasma membrane is illustrated 
as two parallel horizontal 
lines. Mm Mus musculus, 
Dm Drosophila melanogaster, 
CA cadherin domain, TM 
transmembrane domain, CCD 
cadherin cytoplasmic domain, 
NC non-chordate domain, CE 
cysteine-rich EGF-like domain, 
LAG laminin globular domain, 
LEGF laminin-type EGF-like 
domain, HR hormone receptor 
motif, GPS GPCR proteolytic 
site, white: other regions
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suggest this is how bacterial cohesin domains may have been 
acquired in the choanoflagellate and Porifera coherin sub-
family of cadherins.

The reverse process is also conceivable, with commen-
sal, parasitic or pathogenic prokaryotic and SAR species 
potentially acquiring CA/CDHL domains from Filozoa. 
Proteins containing these domains could in turn support 
interaction with host cell surfaces, as suggested by Gachon 
and colleagues for the nonagonal family of SAR cadher-
ins [51]. There are several examples of pathogenic and 
parasitic prokaryotic and SAR species with CA/CDHL 
domains (e.g., Pythium insidiosum, S. aureus, Vibrio chol-
erae) [39, 42, 51], but many prokaryotes and SAR spe-
cies which are non-symbiotic and non-pathogenic to Filo-
zoa also contain CA/CDHL domains (e.g., Aureococcus 

anophagefferens, Methanococcoides burtonii, Rhodopirel-
lula baltica) [41, 51, 52].

Despite the uncertainty underlying the evolutionary 
origin of the cadherin domain, its ability to bind calcium 
appears to remain a defining feature throughout the tree 
of life [37, 40, 42, 53]. Aside from regulating adhesion in 
Metazoa and in some prokaryotes [33, 40], it has been sug-
gested that non-metazoan proteins containing CA/CDHL 
domains may regulate cell–cell interactions in feeding 
processes, pathogen-host interaction and cell aggregation 
events. When considering the role of cadherins during 
neural development, we should bear in mind that they may 
have acquired multiple functions over evolutionary time 
and may be acting as more than just adhesion molecules.

Fig. 3   Phylogeny and structure of cadherin and cadherin-like 
domains. a Number of InterPro database entries for “Cadherin” and 
“Cadherin-like” protein domains, sorted taxonomically. Phylogenetic 
relationships of the described clades are based on [43–45]. Inter-
Pro data retrieved in May 2020. b Structural comparison of two CA 
domains of human CDH1 with two CDHL domains of mouse Cdh23 

and Staphylococcus aureus SraP. Calcium ions are displayed as wire-
frame structures. Crystal structures from [46] (PDB: 3MVS), [47] 
(PDB: 2O72), [42] (PDB: 4M03), visualised with Swiss-PdbViewer 
[48] and aligned with the CA/CDHL domains on the right of the 
image in similar orientation
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Early neural development

During early embryonic development, the fertilized egg 
undergoes several rounds of cell division, lineage segrega-
tion, symmetry breaking, and axis specification, generating 
the pluripotent epiblast and culminating in gastrulation and 
the formation of three germ layers that will go on to generate 
all embryonic tissues. These processes have been extensively 
reviewed elsewhere [54, 55], and here we will focus on sub-
sequent neural development.

Neurulation

From gastrulation onwards, cells of the anterior epiblast that 
do not ingress through the primitive streak go on to form 
ectodermal tissues, giving rise to neurectoderm, which gen-
erates the nervous system, and surface ectoderm [56, 57]. 
Neurulation refers to the process of generating the neural 
tube, a tubular epithelial structure, out of the flat epithelial 
sheet of the neural ectoderm (Fig. 4). While anatomical dif-
ferences exist between various species, modes of neurulation 
are generally conserved across amniotes, Xenopus, zebrafish 
and Amphioxus (reviewed in [58]).

Neurulation begins with the formation of the neural plate, 
which initially consists of a layer of neuroepithelial cells. As 
development progresses, these cells multiply, causing the 
neuroepithelium to thicken and stratify [59, 60]. The neural 
plate is flanked by a population of cells called the neural 
plate border, which distinguishes the neural plate from the 
rest of the ectoderm. The neural plate border will go on to 
form the neural crest, giving rise to the peripheral nervous 
system as well as several non-neural cell types including 
melanocytes, smooth muscle cells and, in the anterior, bone 
and cartilage [61]. Ectodermal tissues lying outside the neu-
ral plate and neural plate border will give rise to epidermis.

As the neural plate increases in size, it begins to fold, ini-
tiating the formation of the neural tube. Ventral to the neural 

plate lies the notochord, a mesoderm-derived embryonic 
tissue that serves as the precursor to the nucleus pulposus 
within the vertebral column. The neural plate forms a single 
ventral hingepoint directly above the notochord. Meanwhile, 
two dorsal hinge points are formed at the neural crest, form-
ing a central ‘valley’ called the neural groove. The neural 
crest hinge points then converge towards each other, bringing 
the contralateral dorsal ends of the neural groove together, 
allowing them to fuse to form a closed tube. The closure 
of the neural tube detaches the neural ectoderm from the 
epidermis, which now dorsally overlies the neural crest and 
the nascent neural tube. Depending on the organism and the 
location along the anterior–posterior axis, the neural crest 
cells undergo an epithelial to mesenchymal transition (EMT) 
and migrate dorsally from either the converging neural folds 
or from the roof of the nascent neural tube [59, 60].

The potencies of the epiblast regions that give rise to 
neurectoderm have been investigated using explant cul-
ture studies. In gastrulating mouse embryos at E6.5, the 
anterior epiblast can give rise to all three germ layers [62, 
63]. Within half a day however, cells in this region become 
restricted to ectoderm but retain potency to become either 
epidermal or neural lineages, determined by either the pres-
ence or absence of bone morphogenetic protein 4 (BMP4), 
respectively [64, 65]. At E7.5, the positional identity within 
the ectoderm defines cellular potency: the proximal region 
of the ectoderm is restricted to a surface ectodermal fate, 
while more distal regions of the anterior neurectoderm will 
give rise to the central nervous system [65–67].

Neuroepithelial precursor cells can be derived by directed 
differentiation from mouse embryonic stem cells (ESCs) 
[68], human ESCs [69, 70], and induced pluripotent stem 
cells (iPSCs) [71] by culture in basal medium with no exog-
enous growth factors [72]. Transcription factors that drive 
the formation of the anterior neuroectoderm include Sox2 
[73, 74], Zfp521 [75], Pou3f1/Oct6 [76], Sip1[77], FoxD4 
[78], and the homodimerised form of E2A [79].

Fig. 4   Generalised morphological events of neurulation leading to 
neural tube closure. Transverse view. Neurulation begins in the flat 
neural plate, which generates lineages of the central nervous system. 
It is flanked on either side by the neural plate border and non-neural 
ectoderm. As neurulation progresses, the neural plate thickens, strati-
fies and begins to fold, while a ventral hinge point is formed at the 

notochord, a mesodermal tissue. The neural plate borders elevate, 
becoming the neural crest. As the neural tube fuses dorsally, neural 
crest cells migrate out of it, going on to form lineages of the periph-
eral nervous system. Closure of the nascent neural tube disconnects it 
from the overlying epidermis
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Signalling pathways controlling anterior neural 
specification

In vivo, neural fate specification depends on the inhibition 
of anti-neural signals BMP, Nodal, and WNT (reviewed in 
[80]). This has led researchers to propose a “neural default 
model”, which argues that pluripotent cells adopt a neuroe-
ctodermal fate unless specified otherwise. This is supported 
by the observations that early postimplantation embryos 
lacking Nodal [81] or BMP signalling [82] undergo prema-
ture and ectopic neural specification.

Pluripotent cells in culture, like their in vivo counterparts, 
progress to a neural identity when deprived of signalling 
inputs from the BMP [70, 83], Nodal [70], and Wnt [84, 
85] pathways. Experiments using inhibitors of the fibro-
blast growth factor (FGF) pathway led to the proposal that 
autocrine FGF may be required for the acquisition of neural 
identity by mouse embryonic stem cells in culture [68], in 
keeping with findings in chick embryos [86, 87]. Later stud-
ies clarified that FGF can facilitate exit from naive pluri-
potency and subsequent induction and/or maintenance of 
formative [88] and primed [89–92] pluripotent states repre-
sentative of post-implantation epiblast, but FGF must then 
be suppressed in order for primed pluripotent cells to effi-
ciently acquire a neural identity [89, 93, 94]. Furthermore, 
embryos lacking BMP signalling default to a neural identity 
even when exposed to inhibitors of FGF signalling soon after 
implantation [82]. FGF signalling therefore appears to play 
a part in the exit from naive pluripotency and maintenance 
of the primed pluripotent state, but is then dispensable for 
neural specification. Additional factors, for example Notch 
signalling, can come into play to help coordinate the timing 
of neural fate specification between neighbouring cells pos-
sibly by dampening anti-neural signalling pathways [95], 
and unknown signals from adjacent tissues can refine the 
position of the neural plate boundary [96, 97].

In summary, the transition of primed pluripotent cells 
into anterior neuroectoderm is facilitated by inhibiting BMP, 
Nodal, Wnt, and FGF signalling pathways, while poorly 
understood local cell interactions signals seem to tune the 
response to these signals to refine the timing and position of 
neural fate specification.

Neuro‑mesodermal progenitors

In 2009, a single-cell clonal analysis of the mouse embryo 
revealed a distinct population of cells arising during early 
gastrulation that could give rise to both neural and meso-
dermal lineages [98]. These neuro-mesodermal progenitors 
(NMPs) are a transient population of cells that emerges 
in the mouse at head-fold stage (around E7.5) and per-
sists until E13.5 [99, 100], long after other organ systems 
become specified. They largely drive the elongation of the 

anteroposterior axis during development and give rise to the 
neural tube and paraxial mesoderm [98].

In several vertebrates, including mouse, chick, and 
zebrafish, NMPs can be identified by the co-expression of 
the transcription factors T (Brachyury) and Sox2 [100–103]. 
Cells that subsequently differentiate into neural lineages 
downregulate T but maintain Sox2 expression [104–106], 
while those committing to mesoderm downregulate Sox2 
and upregulate Msgn1 and Tbx6 [99, 107]. T and Sox2 play 
antagonistic roles in NMP lineage specification, with T 
being essential for NMP maintenance and promoting meso-
dermal fate, while Sox2 promotes neural fate acquisition. 
Tbx6 steers cells towards a paraxial mesoderm fate [108].

The induction, maintenance and differentiation of NMPs 
is governed by WNT and FGF signalling, and embryonic 
regions containing NMPs express ligands for both of these 
pathways [109–112]. In the absence of components of the 
WNT or FGF signalling cascades, the embryo becomes 
truncated and ectopic neural tissue forms in place of pos-
terior paraxial mesoderm, demonstrating that both of these 
signalling inputs are required for mesoderm specification 
and axis elongation, but are dispensable for neural commit-
ment [100, 109, 112–115]. For a more detailed review of 
signalling events during specification and differentiation of 
neuromesodermal progenitors, see [105].

Cadherin expression patterns in neural 
development

Changes in cell identity are frequently accompanied by 
switches in expression of cadherins. For example, a switch 
from E-cadherin to N-cadherin is associated with the EMTs 
that accompany the formation of mesoderm or neural crest 
and with the dysregulation of tissue structure in tumori-
genesis [116]. The emergence of the neural plate from the 
epiblast is not a classical EMT event but does bear a subset 
of EMT hallmarks, including loss of E-cadherin, gain of 
N-cadherin and upregulation of vimentin [117, 118]. Here 
we summarise changes in cadherin expression in the early 
stages of vertebrate development.

E‑cadherin and N‑cadherin

E-cadherin is the predominant cadherin expressed in pluri-
potent cells immediately prior to neural specification. In 
mice, it is present in the unfertilized egg as both mRNA and 
protein [5, 119]. At early stages of development, there is 
additionally significant maternal contribution of the protein 
to facilitate blastomere adhesion and embryonic compaction 
[120, 121]. E-cadherin knockout results in embryonic lethal-
ity at the morula stage (E2.5 in mouse) due to defects in mor-
ula compaction and a failure to segregate the trophectoderm 
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and inner cell mass [121–126]. In the chick, E-cadherin is 
widely expressed in the epiblast of the early conceptus [61, 
127]. In Xenopus, the protein first becomes expressed in 
ectoderm following the blastula stage [128–130].

At gastrulation, the mesodermal cells ingressing through 
the primitive streak are the first to lose E-cadherin expres-
sion as they begin to undergo EMT [131–133]. Strong 
E-cadherin expression is maintained in the anterior neurec-
toderm and neural plate until the later stages of neurulation. 
Early studies of the avian embryo indicated a lack of E-cad-
herin in the neural tube at HH10 [127, 134], though more 
recent studies have shown that the protein remains expressed 
at this stage, albeit at lower levels than in the overlying ecto-
derm [61, 135].

As pluripotent cells transit to a neural fate, they also 
upregulate N-cadherin. In mice, N-cadherin can first be 
observed in the neural plate at E7.5 [136], and by E8.5, it 
is widely expressed in the neural tube [137]. In the avian 
embryo, the earliest expression of N-cadherin in the ecto-
derm is in the neural plate at HH7, and expression persists 
in the neural plate and the closed neural tube [16, 127, 135].

The expression patterns of E- an N-cadherin in the neu-
ral crest appear more dynamic. In the mouse embryo, as 
neural crest cells delaminate they undergo EMT, downregu-
lating E-cadherin and upregulating N-cadherin in its place, 
to acquire a migratory phenotype [61, 135]. In the chick 
embryo, E-cadherin expression is maintained in the neural 
crest, while the downregulation of N-cadherin is required for 
the delamination of cells in this structure [61, 135]. How-
ever, this functional patterning appears species-dependent, 
as it differs from that observed in Xenopus [138] or zebrafish 
[139].

In Xenopus, ectoderm is specified into dorsal neural ecto-
derm at the end of gastrulation, and this is where N-cadherin 
is first expressed, concomitantly with the downregulation of 
E-cadherin. The non-neural ectoderm, fated for epidermis, 
retains E-cadherin expression [130].

E- to N-cadherin switching has also been observed dur-
ing the maturation of neuromesodermal progenitors. During 
axial elongation in the mouse embryo, NMPs mature while 
maintaining bipotency to generate both neural and mesoder-
mal daughter tissues in the posterior regions of the trunk. 
This maturation is accompanied by a switch from epithelial 
to mesenchymal gene expression similar to a partial EMT, 
including a switch from E- to N-cadherin expression [140].

Other cadherin family members

In mice, P-cadherin (Cdh3) is first detected in the E4.0 
trophectoderm but not in any embryonic tissues until later 
in development [141, 142]; it is not expressed in the neu-
ral ectoderm, but is instead found in non-neural ectoderm 
and other tissues [143]. In the chick, however, it has been 

suggested that P-cadherin is the predominantly expressed 
cadherin in the epiblast, reminiscent of E-cadherin expres-
sion in the early mouse embryo. This raises the possibility 
of an evolutionary exchange of E-cadherin for P-cadherin 
between mammals and birds, similar to the functional dif-
ferences between the transcription factors Snail and Slug 
between the two species in EMT-like morphological events 
in early development [144, 145].

In the chick, K-cadherin (Cadherin-6B) is first expressed 
in the neural plate border at HH6, and subsequently plays a 
critical role in the specification and delamination of the neu-
ral crest [61]. In mice, K-cadherin (Cdh6) becomes detect-
able from E7.5 in neuroepithelial cells in the prospective 
hindbrain region, with expression in the forebrain by E8.0. 
At E8.5, K-cadherin is downregulated in the neural plate and 
neural tube, with expression persisting in the neural crest 
and in a band of the hindbrain at the level of rhombomere 6 
(r6), and in the migrating neural crest cells emerging from 
r6; these neural crest cells go on to contribute to the periph-
eral nervous system. At E12.5, K-cadherin is found in the 
developing brain (expressed in a complementary pattern 
with R-cadherin) and in the spinal cord [146, 147]. Inoue 
et al. [146] suggest that K-cadherin facilitates cell sorting 
through differential adhesion of specific neural structures. 
Similarly, in zebrafish, combinatorial codes of cdh2, cdh11, 
and pcdh19 define different dorsoventral domains in the 
developing spinal cord and help to confer robust pattern-
ing by preventing the intermingling of cells from adjacent 
domains [148].

In mice, R-cadherin (Cdh4) is present in the neurecto-
derm of the developing midbrain at E8.5 [149]. Later, at 
E12.5, this cadherin is found in the lateral cortex of the brain 
in a complementary pattern with K-cadherin [146, 147]. In 
the chick, it is also detected in the neuroepithelium of the 
forebrain at E5 during later neural patterning [150].

Expression of cadherins 5 (VE-cadherin), 8, 9 (T1-cad-
herin), and 10 (T2-cadherin) has not been reported in the 
early mouse embryo [143], while cadherin 11 (OB-cadherin) 
is detectable in small amounts in the roof plate of the mouse 
neural tube [136]. Low levels of cadherin 7 transcript have 
been reported in the mouse neural tube at E8.5 [151]. In the 
chick, CDH4, 7, 8, 9, 11, 12 18 and 20 are expressed at later 
stages of neural patterning but not during early neurulation 
[152].

In Xenopus, C-cadherin (also called EP-cadherin) is the 
primary cadherin expressed from fertilized oocyte stage 
through to gastrula stages [130, 153, 154], and is critical for 
cell adhesion in the blastula [155]. C-cadherin continues 
to be expressed throughout neurulation in both neural and 
non-neural tissues [130]. U-cadherin is also expressed in all 
Xenopus cells during early development up to late neurula 
stage [156].
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Neural developmental phenotypes 
of cadherins

Cadherins play important roles at multiple stages of brain 
development [157, 158], spinal cord neurogenesis [159, 
160], and neural crest formation [61] (reviewed in [161]). 
Classical cadherins regulate the migration of different neu-
ronal subtypes to the correct cortical layers in the develop-
ing brain (reviewed in [162]) and help position motor neu-
rons within the hindbrain [163] and ocular system [164]. 
In addition, cadherins are located at synapses [165] where 
they regulate both synaptic formation [166–168] and matu-
ration [167]. Cadherins can facilitate contact inhibition of 
cell proliferation in some contexts [168] although it is not 
known whether this occurs during neural development. It 
is, however, clear that cadherins influence proliferation in 
the nervous system through other mechanisms, for exam-
ple as a consequence of their ability to modulate the activ-
ity of various signalling pathways [169]. In this review, we 
focus on the roles of cadherins during early stages of neural 
development.

In mice, knockout of E-cadherin results in embryonic 
lethality due to a failure in compaction of the morula and 
formation of trophectoderm [124, 170]. This phenotype has 
been attributed to the loss of adhesion and signalling func-
tions of E-cadherin during the earliest stages of embryo-
genesis. Epiblast-specific replacement of E-cadherin with 
N-cadherin in mice leads to embryonic death at E8.5 due to 
improper growth and degeneration of the epiblast. Gastrula-
tion is initiated in these embryos and all germ layers main-
tain their differentiation capacity, but mesoderm formation is 
compromised due to impaired BMP signalling [171]. These 
findings again implicate a specific role for E-cadherin in 
modulating signalling during embryonic development that 
may be independent of adhesion.

N-cadherin knockout is embryonic lethal in mice at 
around E10 due to heart defects; embryos also have mal-
formed somites and a “wavy” neural tube, defects which 
appear to be caused by impaired cell–cell adhesion [137]. 
Work in ascidian embryos suggests that N-cadherin facili-
tates the directed forces that drive neural tube closure [172]. 
However, N-cadherin-null cells can form neural rosettes and 
adopt a neural tube-like organisation in teratoma assays, sug-
gesting that the protein is not essential for the formation of 
simple neural structures. Cells lacking both N-cadherin and 
P-cadherin can give rise to rosettes but not neural tube-like 
structures, suggesting a certain level of functional redun-
dancy between these two cadherins in the mouse, since 
embryos with knockout of P-cadherin alone are viable and 
have normal neural organisation [173, 174].

In Xenopus, depletion of N-cadherin in the neural 
plate results in abnormal invagination of the plate during 

neurulation (similar to spina bifida), caused by failure in 
actin assembly resulting in insufficient forces to direct fold-
ing of the neural plate [130]. While some bending in the neu-
ral plate can be observed in these embryos, the force for this 
bending is supplied exclusively by pushing forces from the 
non-neural ectoderm. Depletion of E-cadherin in the same 
structure in Xenopus embryos causes impaired spreading 
of the non-neural ectoderm and results in failure of neural 
fold closure, likely due to defects in E-cadherin-dependent 
cortical actin assembly and resulting in impaired movement 
of epidermal cells [130]. Neither of these phenotypes can 
be rescued by overexpressing the other cadherin, highlight-
ing cadherin-specific roles in mechanical function during 
neurulation. In zebrafish, deletion of N-cadherin gives rise 
to a characteristic T-shaped neural tube due to a defect in 
convergent cell movements during neurulation [175, 176].

Overexpression of E-cadherin or N-cadherin in xenopus 
embryos results in failure to form the neural plate, with 
embryos instead developing large cysts. At later stages, 
these embryos do not develop a visible anteroposterior or 
dorsal–ventral axis. The same phenotype is seen upon deple-
tion of β-catenin, and appears to involve a failure of neural 
and dorsal mesodermal differentiation [155].

In cultured neural stem cells (NSCs), overexpression of 
E-cadherin causes a downregulation of N-cadherin, and con-
versely, RNAi-mediated knockdown of E-cadherin causes 
N-cadherin to be upregulated, suggesting that these two 
cadherins may repress each other’s expression. The same 
study found that overexpression of E-cadherin inhibits the 
migration of NSCs; effects on differentiation were not exam-
ined [177].

It is clear that cadherins are crucial for early neural devel-
opment to proceed correctly, raising the questions of whether 
this requirement for cadherins is explained predominantly by 
their ability to modulate cell–cell adhesion to drive morpho-
logical changes [60], or whether they may also perform other 
functions that directly influence the differentiation process.

Cadherins modulate neural differentiation

There is plentiful evidence that cadherins can protect or pro-
mote pluripotency in a number of contexts [178–185]. Here 
we will review the evidence that cadherins are also able to 
regulate the transition from pluripotency to neural identity.

Downregulation of E-cadherin is tightly correlated with 
a transition from pluripotency to neural identity in culture 
[186]. This timely loss of E-cadherin seems to be a limiting 
factor for cells to enter the neural lineage: experimental sup-
pression of this adhesion molecule results in faster and more 
uniform neural differentiation [186].

What regulates the changes in cadherin expression 
that enable efficient differentiation? As discussed above, 
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inhibition of BMP signalling is a key event that triggers 
neural differentiation [79, 82, 83, 87]. BMP also maintains 
high levels of E-cadherin in pluripotent cells [186]. The abil-
ity of BMP to maintain high E-cadherin seems to explain its 
ability to block neural differentiation; experimental suppres-
sion of E-cadherin is sufficient to overcome the inhibitory 
effects of BMP on neural differentiation if no other anti-
neural signals are present, and if BMP levels remain below 
a particular threshold [186]. So, in situations where BMP 
levels are not too high, E-cadherin is the primary mediator 
of its anti-neural effects.

Higher doses of BMP do, however, have the additional 
ability to impose a posterior identity that favours mesoder-
mal rather than neural priming of pluripotent cells. This 
second anti-neural effect of BMP seems to be independent 
of E-cadherin. This might explain why downregulation of 
E-cadherin does not result in neural differentiation in the 
posterior of the embryo, where several BMP family mem-
bers (together with other anti-neural signals) are expressed 
at high levels [54].

It seems likely that gain of N-cadherin also influences the 
acquisition or stability of neural identity. Forcing prema-
ture N-cadherin expression can enhance neural differentia-
tion in culture even in situations where E-cadherin initially 
remains present [187]. Manipulations of N-cadherin have 
also been used to demonstrate that cadherins can influence 
differentiation independently of any changes in adhesion. 
For example, N-cadherin can fully rescue the adhesion phe-
notype of E-cadherin mutant pre-implantation embryos, but 
does not rescue all defects in signalling and differentiation 
phenotypes [122, 187]. Similarly, premature activation of 
N-cadherin can result in pro-neural phenotypes in culture 
without any apparent effect on the spatial organisation or 
cohesion of cells [187].

These findings confirm that both E- and N-cadherin 
may contribute to the efficiency of neural differentiation. 
What might be the mechanisms by which cadherins influ-
ence cell fate? Developmental transitions are sensitive to 
changes in the forces that cells impose on their neighbours 
[188, 189] and by movements of cell populations relative to 
each other [190]. Both of these processes could be modu-
lated by changes in cadherin expression. The work discussed 
above [122, 187] does, however, hint that at least part of the 
mechanism by which cadherins control differentiation may 
not be explained only by changes in the cell–cell adhesion. 
This might instead be explained by the ability of cadherins 
to directly interact with components of signalling pathways.

Cadherins modulate signalling

Cadherins do more than just stick cells together, some-
thing that should perhaps not come as a surprise given that 
cadherins first appeared in unicellular organisms. As mul-
ticellular organisms evolved, it seems that cadherins may 
have acquired a diverse range of functions. For example, it 
is now well established that cadherins can bind to various 
components of signal transduction pathways to modulate 
signal responsiveness. This could provide an opportunity 
for cells to coordinate changes in morphology (influenced 
by changes in adhesion) with changes in cell identity (influ-
enced by changes in signalling pathway activity). There have 
been a number of excellent reviews [161, 191, 192] covering 
ways in which cadherins can modulate signalling pathways. 
Here we outline a few examples that may be of particular 
relevance to early neural development.

Perhaps the most obvious candidate mechanistic link 
between cadherins and neural differentiation is the Wnt sig-
nalling pathway. Wnt signalling has multiple stage-specific 
effects on development of the nervous system, but its earliest 
effects seem to be anti-neural; Wnt activity needs to be sup-
pressed if either pluripotent or neuromesodermal progenitor 
cells are to transit to a neural identity [84, 85, 100, 109, 112]. 
β-catenin is a component of adherens junctions and also a 
component of the Wnt signal transduction pathway, and so 
provides one possible mechanistic link between cadherins 
and Wnt signalling. In at least some contexts [155, 193] cad-
herins can titrate the amount of β-catenin that is available for 
mediating Wnt signalling, effectively acting as a ‘dampener’ 
of the Wnt response. Moreover, it has been suggested that 
E-cadherin does not merely dampen Wnt activity but can 
also prime it for future activation [194], for example during 
mesoderm formation from pluripotent human cells [195]. 
A positive influence of E-cadherin on Wnt responsiveness 
is in keeping with the observation that loss of E-cadherin 
can decrease rather than increase Wnt responsiveness in a 
mammary epithelial cell line [196].

These findings raise the possibility that the switch from 
E- to N-cadherin may result in a switch in Wnt responsive-
ness. In support of this idea, E-cadherin and N-cadherin dif-
fer in their ability to influence Wnt activity during mesoderm 
formation in drosophila: E-cadherin, but not N-cadherin, can 
effectively suppress Wnt activity. Importantly, particular 
point mutations in E-cadherin can abolish effects on Wnt 
activity without affecting cell adhesion [197]. It therefore 
seems likely that the switch from E- to N-cadherin during 
neural differentiation might modulate receptiveness to Wnt 
independently from effects on cell adhesion.

When pluripotent cells are forced to experience a pre-
mature cadherin switch by replacing the coding sequence 
for E-cadherin with that for N-cadherin in mouse ES cells 



4444	 K. Punovuori et al.

1 3

[123, 171, 187], this results in a strong reduction in β-catenin 
levels accompanied by an increase in the efficiency of neu-
ral differentiation. Furthermore, this forced cadherin switch 
enables cells to resist the anti-neural effects of exogenous 
Wnt. Surprisingly, however, this apparent “Wnt resistance” 
seems to operate via an indirect mechanism, because the 
transcriptional response to Wnt remained intact in cells that 
had undergone an enforced cadherin switch. Therefore, dur-
ing neural differentiation of pluripotent cells in culture, the 
ability of cadherins to influence neural differentiation does 
not seem to be explained by their ability to modulate tran-
scriptional activity via Wnt signalling. What other signal-
ling pathways might be regulated by cadherins during early 
neural development? One promising candidate is the FGF 
signalling pathway.

There are a number of ways in which cadherins modu-
late FGF activity. FGF receptors (FGFRs) interact with 
N-cadherin, for example during neurite outgrowth, and 
may even mediate ligand-independent activation [52]. Sim-
ilarly, N-cadherin can bind FGF receptors and potentiate 
FGF activity in breast cancer cell lines [198]. Perhaps most 
strikingly, mice engineered to express N-cadherin in place of 
E-cadherin in mammary epithelia exhibit constitutive FGF 
activity and pre-malignant growth [199].

FGF can sustain primed pluripotency [90, 91] and sup-
press neural differentiation of epiblast cells [89, 94], at least 
in culture. N-cadherin has been reported to sustain FGF 
responsiveness to maintain pluripotency in EpiSCs [185], 
although the in vivo relevance of this is unclear given that 
N-cadherin is not readily detectable in the epiblast [187]. 
N-cadherin is, however, readily detectable at the onset of 
neural differentiation in culture and, as discussed above, is 
able to enhance the efficiency of the differentiation process. 
By measuring the activity of a panel of signalling pathways, 
Punovuori et al. [187] found that N-cadherin dampens the 
activity of pathways downstream of FGF receptors during 
early neural differentiation. Restoring FGF activity can 
reverse the pro-neural effects of N-cadherin. It seems there-
fore that N-cadherin has context-specific effects on FGF 
signalling, and in the context of neural differentiation it acts 

to dampen FGF activity and consequently enhances the tran-
sition from pluripotency to a stable neural identity (Fig. 5).

Much remains to be explored about the links between 
signalling pathways and neural development. For example, 
E-cadherin binds insulin-like growth factor 1 (IGF1) recep-
tor and this interaction is critical for survival of cells in the 
preimplantation embryo [122]. IGF is also important for sur-
vival of neural progenitor cells, so it would be interesting 
to explore whether cadherins also influence IGF activity in 
the nervous system. In endothelial cells, VE-cadherin can 
bind and stabilise BMP receptors [200], making it tempting 
to speculate that other cadherins expressed before and dur-
ing neural specification may also influence BMP signalling.

In summary, it seems clear that effects of cadherins on 
signalling are diverse and context specific. In the context 
of neural differentiation one might speculate that cadherins 
act as ‘dampeners’ of multiple signalling pathways and so 
help shield cells from anti-neural influences. Furthermore, 
a loosening of cell–cell contacts caused by changes in cad-
herin expression may interfere with juxtacrine signalling 
from surface-bound ligands, for example through the Notch 
receptor. It would be interesting to explore these ideas in 
future work.

Perspectives

Why might it be useful for the cells of the embryo to use 
cadherins to help inform their differentiation decisions dur-
ing early neural development? Neural tissue forms within an 
embryo that is growing and changing shape rapidly. Signal-
ling molecules appear and disappear from different regions 
of the embryo over a short space of time as they are used 
and then re-used for successive differentiation decisions. In 
this constantly changing environment, it might be difficult to 
ensure that there are never any ectopic residual or premature 
signals that might disrupt neural specification.

Cadherin switching can dampen signal responsiveness. 
We propose that the embryo exploits this property of cad-
herins in a ‘belt and braces’ approach to guard against any 

Fig. 5   E-cadherin is exchanged for N-cadherin as the pluripotent epi-
blast forms neuroectoderm or mesoderm. E-cadherin in the epiblast 
may prime cells for future activation of Wnt [189, 197]. N-cadherin 
in the neuroectoderm dampens low levels of FGF that would other-

wise have anti-neural activity [189]. It remains an open question 
whether the high levels of FGF or other differences in context in the 
emerging mesoderm override the FGF-dampening effects of N-cad-
herin
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ectopic signals that might otherwise mislead cells into the 
‘wrong’ fate. One important open question is whether cad-
herins influence differentiation only cell-autonomously or 
whether they can also share this information with neigh-
bouring cells, and so help coordinate neural differentiation 
across a local neighbourhood, perhaps propagating informa-
tion from cell to cell as has been described during mesoderm 
formation [201].

Given that cadherins first appeared in unicellular organ-
isms, they will have had ample time to acquire multiple 
functions, and therefore would be well placed to coordinate 
multiple events during the development of multicellular 
organisms. In this review, we have focused on the ability of 
cadherins to coordinate changes in adhesion with changes in 
signal response, but it remains possible that cadherins influ-
ence and coordinate other biological processes. It would be 
interesting to explore these ideas and test their relevance to 
neural development.

Can our understanding of cadherins in early neural devel-
opment help us to gain better control over differentiation of 
cells in culture? For reasons still unknown, the timing of 
cadherin switching relative to neural specification becomes 
partially dysregulated in cultured cells; in the embryo, 
N-cadherin only becomes readily detectable in cells that 
have already switched on early neural marker Sox1, whereas 
in culture N-cadherin can be found in cells that retain pluri-
potency markers and lack neural markers [187]. Does this 
variability in cadherins explain variability in the differentia-
tion response? There is some evidence that this is indeed the 
case: forcing a more uniform cadherin switch does seem to 
impose a more homogenous differentiation response, at least 
in monolayer culture [186, 187]. It would be interesting to 
explore whether manipulation of cadherins can also give 
better control over differentiation of cells in 3D or orga-
noid culture in which cells have a more in vivo-like spatial 
organisation.

Our understanding of differentiation is gradually shifting 
from a view dominated primarily by signalling pathways, 
transcription factors, and chromatin structure to a broader 
understanding incorporating information from adhesion and 
morphology. As John Gurdon wrote, “most aspects of ani-
mal development seem to proceed by the cooperation of sev-
eral contributory processes, no one of which is individually 
indispensable" [2]. Cadherins are unlikely to be essential 
instructors of neural differentiation decisions, but do seem 
likely to improve coordination of cell decisions across fields 
of cells, thus contributing to the fidelity of patterning in 
the early embryo. Cells, it seems, do better when they stick 
together.
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