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Accurate medical Augmented Reality (AR) rendering requires two calibrations, a camera intrinsic matrix estimation and a hand-eye
transformation. We present a unified, practical, marker-less, real-time system to estimate both these transformations during surgery. For
camera calibration we perform calibrations at multiple distances from the endoscope, pre-operatively, to parametrize the camera intrinsic
matrix as a function of distance from the endoscope. Then, we retrieve the camera parameters intra-operatively by estimating the distance
of the surgical site from the endoscope in less than 1 s. Unlike in prior work, our method does not require the endoscope to be taken out
of the patient; for the hand-eye calibration, as opposed to conventional methods that require the identification of a marker, we make use of
a rendered tool-tip in 3D. As the surgeon moves the instrument and observes the offset between the actual and the rendered tool-tip, they
can select points of high visual error and manually bring the instrument tip to match the virtual rendered tool tip. To evaluate the hand-
eye calibration, 5 subjects carried out the hand-eye calibration procedure on a da Vinci robot. Average Target Registration Error of
approximately 7mm was achieved with just three data points.
1. Introduction: Augmented reality (AR) and mixed reality (MR)
are valuable technologies for medical applications. They can be
used to render the medical data directly onto the patient’s body
for surgical planning and decision making. MR/AR improves the
hand-eye coordination for the surgeon [1], but requires two calibra-
tion steps to take pre-operative medical data to the intra-operative
camera/endoscope feed. These steps are: camera calibration,
which determines the intrinsic camera calibration matrix, and a
hand-eye calibration, that is the transformation between the endo-
scope coordinate frame to the camera coordinate frame. The
hand-eye calibration requires camera calibration to locate points
in the camera coordinate system.
One of the most widely used camera calibration methods in com-

puter vision requires multiple images of a checkerboard pattern [2].
Such a method is not suitable for intra-operative use because insert-
ing an external calibration pattern inside a patient’s body has several
drawbacks: it takes a long time, it requires deploying a larger
pattern than the typical insertion hole, and requires bio-compatible
and sterilisable calibration template materials. Therefore, in the
past, multiple self-calibration methods have been proposed for
intra-operative use, where the intrinsic camera calibration para-
meters can be estimated by using feature correspondences in the
surgical scene [3, 4]. However, such methods cannot account for
the change in lens distortion. Therefore, Pratt et al. [5] presented
a calibration procedure where multiple pre-calibrations were per-
formed pre-operatively and various intrinsic camera calibration
parameters could be determined by using a single checkerboard
image. The various camera parameters were modelled as a function
of a single ‘focus position’. Unarguably much faster, such a cali-
bration procedure still requires the endoscope to be taken out of
the patient to capture the single calibration image. Additionally,
the step needs an additional bed-side assistant or a resident
doctor to perform the calibration. Moreover, during a surgery, sur-
geons move the endoscope and re-adjust the focus multiple times
to get the best view of the surgical scene. In such a scenario it is a
major disruption of surgical work-flow to take the endoscope out
of the patient every time the surgeon re-adjusts the focus. In fact,
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the inability of new procedures to integrate seamlessly in the
current existing surgical workflows is a major roadblock in trans-
lation of AR/MR surgical guidance systems to the operation
theatre [6].

Therefore, with the aim of developing a real-time, intra-operative,
marker-less camera calibration method, we adopted a similar
approach as Pratt et al. (2014) with many key differences. We
divided the calibration procedure into pre-operative and
intra-operative steps. In the pre-operative step, similar to Pratt et al.
(2014), we pre-calibrated the endoscope camera at multiple distances
from the endoscope. The various intrinsic camera parameters and
distortion coefficients were modelled as a function of the distance
from the endoscope. However, unlike the previous work, we used
a custom 3D printed camera calibration apparatus to eliminate
errors and to ensure repeatability of the procedure. Moreover, we
used a blur metric to isolate the most reliable focal plane from a
multitude of possibilities. Furthermore, in intra-operative setting,
we retrieved the entire camera calibration matrix without any
external calibration object. We achieved this by determining the
focal plane using the estimated distance between the endoscope
and the surgical instruments working on the anatomy of interest.
Unlike previous methods, our method can determine a reliable
camera calibration matrix inside a patient’s body without taking
the endoscope out.

The second required transformation is the hand-eye transform-
ation, which is sensitive to the change in focus. The existing
state-of-the-art methods in robotics cannot be applied to surgical
applications directly, as they require a calibration pattern [7, 8].
Therefore, finding a suitable hand-eye calibration method for min-
imally invasive surgical procedures is still a challenge and thus an
active area of research [9–11]. Although finding the rigid
body transformation between two coordinate systems requires just
three points, additional points are usually required to find a reliable
solution due to noise. This is a challenge, as selecting multiple
points intra-operatively can take up significant surgical time.
Therefore, many groups have proposed the hand-eye calibration
methods by using a fewer number of points [9, 10] or by optimising
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Fig. 1 Apparatus used for preparation of multiple-depth camera calibration
matrix
a Apparatus used to mount the platform to perform camera calibration at
various distances from the endoscope. The distance of the first level from
the endoscope is 25 mm and the distance between the subsequent levels is
10 mm
b CAD model of entire setup used for pre-operative camera calibration
procedure
c Camera calibration apparatus mounted on da Vinci endoscope

Fig. 2 Hand-eye calibration evaluation procedure
a 3D CAD model generated from a pre-operative MRI of a prostate of a real
patient. Eight additional beads were added while designing the phantom for
the purpose of the evaluation
b Procedure of selecting eight beads using da Vinci surgical instrument on
the surface of the phantom. The transformation between phantom mesh and
the robot, RTP , was estimated by using these eight corresponding beads
location
c, d Transformation RTP, to bring the mesh points to robot coordinate system
and hand-eye transformation, CLTE , to further bring these points to the
camera coordinate system
e Visual validation by rendering the triangulated phantom mesh on the
camera image using the estimated hand-eye transformation
the data collection process itself by minimising the predicted
target registration error (TRE) [11]. Thompson et al. (2016)
used an invariant point for hand-eye calibration. They placed a
cross-hair near the operating surface and captured the images
of the cross-hair by moving the laparoscope to fill the laparoscope’s
viewing volume. Then they estimated the hand-eye transformation
using Levenberg–Marquardt least squares optimiser by locating
the corresponding points in the laparoscope and the external
tracking system. Shao et al. (2017) proposed a similar method
where they used a invariant cross-hair as a marker. However, they
progressively added the data points for the hand-eye estimation.
The next step of the transformation estimation was initialised
with the estimation of the previous step. It is important to note
here that in both these cases, the calibration was performed
outside the patient’s body. Furthermore, before the hand-eye cali-
bration, previous methods need a camera calibration step using
a checkerboard calibration pattern. Thus, neither method can
be performed inside a patient’s body. Therefore, in this Letter,
we present the first method for hand-eye calibration that does
not require instrument tracking or intra-operative camera
calibration. Unlike previously presented methods, ours is entirely
compatible with surgical flow, and does not require additional
targets nor removing the endoscope from the patients. Our
method is iterative and gives a satisfactory visual accuracy with
just three points.

Similar to camera calibration, the hand-eye procedure was
divided into pre-operative and intra-operative stages. In the pre-
operative stage, off-site, a hand-eye transformation was estimated
by using a least square method [12]. Then, in the intra-operative
step, a gradient descent algorithm was used to find the optimal
rotation and translation. However, the data points were added
sequentially and with each addition the algorithm was run again.
In the first step the gradient descent was initialised with the
hand-eye estimation from the pre-operative step. In subsequent
steps, the initialisation was carried out with the estimation from
the previous gradient descent steps. After each hand-eye estimate,
the tool-tip was rendered on-screen to give immediate live visual
assessment of the hand-eye accuracy. In the subsequent steps,
only those points were collected where the visual error was high,
thus minimising the number of required points.

Thus, to reassert, the major contribution of this work is to present
a unified camera and hand-eye calibration method that neither
requires an additional calibration pattern intra-operatively nor
requires the endoscope to be taken out of the patient’s body. We
achieved this by collecting the rendered virtual tool positions
that differed significantly from the actual visible surgical tool in
the surgical scene. The method is real-time and estimated
the hand-eye transformation with the minimal number of points.
The camera intrinsic estimation can be performed inside a patient’s
body in <1 s. Unlike previous methods, our method does not
require an additional bed side assistant for the calibration
procedure. Thus, our method is practical for preserving the existing
intra-operative surgical workflow. The evaluation was carried
out by five subjects on a da Vinci surgical system. Furthermore,
a surgeon was enrolled in a feasibility study where a prostate
phantom was used to test the method, using a previously developed
AR magnetic resonance-transrectal ultrasound (MR-TRUS) fusion
system [13].

2. Materials and software: The system used for both the camera
and the hand-eye calibration was a Windows 7 computer, with
3.60 GHz Intel(R) Core i7. OpenGL version 4.5 and C++
programming language were used for the renderings. The stereo
video stream with graphics for the subject study was sent in
through the surgical console using the SDI input.

For performing pre-operative camera calibration, the MATLAB
stereo camera calibrator application was used. For evaluation,
a 3D prostate phantom was designed using the pre-operative
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magnetic resonance image (MRI) of a patient’s prostate (Figs. 1
and 2). The CAD model was designed in SolidWorks. For the cali-
bration procedures and to estimate validation points in the endo-
scope coordinate frame, we used da Vinci Si surgical API [14]
that gives the forward kinematics data from the robot. We used
da Vinci Si system for user evaluation.
3. Methods
3.1. Camera calibration
3.1.1 Camera calibration apparatus: In order to perform camera
calibration, a custom 3D-printed fixture was designed to hold a
checkerboard of known geometry in different poses relative to the
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da Vinci S endoscope. The fixture consists of an endoscope clamp
and a platform that can be placed exactly perpendicular to the endo-
scope’s axis at set distances. The clamp consists of a standard tube
clamp design which allows the fixture to be secured to the camera
without damage, as well as a stopper at the distal end to ensure con-
sistent placement of the fixture. This stopper was carefully designed
such that the stereoscopic cameras in the endoscope would not be
occluded. The fixture has slots for the platform at known distances,
starting at 25 mm with 10 mm increments up to 195 mm. This
fixture design ensures the degrees of freedom of the checkerboard
are limited to only rotation and translation in the plane perpendicu-
lar to the camera’s axis.

3.1.2 Preparation of multiple-depth camera calibration matrix:
To prepare multiple camera calibrations for interpolation, we per-
formed camera calibrations at various distances from the endo-
scope. To isolate the correct focal plane, i.e. the plane that is
perpendicular to the optic axis, we used our custom made camera
calibration apparatus that kept the calibration patterns perpendicular
to the endoscope. To get a reliable camera calibration matrix it is
essential to fill a significant proportion of the image with the
checkerboard. However, the size of the checkerboard square
decreases as the distance of the checkerboard from the endoscope
increases. Therefore, we used checker-boards of different square
sizes to carry out the calibrations at multiple depths. We empirically
determined by considering the pixels covered by each square that
the square size increases by ∼1 mm with each level of distance.
Therefore, for the distances of 65, 95, 125, 155 and 185 mm,
from the endoscope, we used checkerboards of square sizes 3, 5,
7, 9 and 11 mm, respectively. The range of distances was chosen
by analysing previously recorded videos of radical prostatectomy
procedures and estimating the distance of the endoscope from the
surgical instruments. An interval of 30 mm was chosen so that
there is no overlap between the subsequent calibrations when the
pattern is moved in different orientations, to capture the images.
Furthermore, to make the calibration readings consistent across
various distances from the endoscope, checkerboards of the same
thickness (1 mm) were used for various calibrations and for each
calibration 25–30 images were captured.
To estimate the focal plane at each distance, we used the simple

fact that the focused objects in real world are sharp and the blurred
objects are out of focus. Therefore, before each calibration, the
checkerboard pattern image in the endoscope was focused. To do
so, we changed the focus of the endoscope by using the foot
pedal in the da Vinci surgical console. However, determining the
camera focus solely based on human blur perception cannot
ensure a reliable repeatable focus value in subsequent steps of the
camera calibration procedure. The reasons for this are two-fold.
First, camera focus is a continuous value and, second, human
blur perception and sensitivity varies across individuals [15, 16].
Therefore, to curb the variability in focus value we used a variance
of the wavelet coefficients based blur measure [17]. It is a relative
blur measure and when the value is maximum the image is con-
sidered to be in focus. To further make results of blur metric
more consistent and background independent, we only considered
the area covered by the checkerboard to calculate the blur
measure. We placed the checkerboard in the centre of the platform
and manually selected the region covered by the checkerboard. To
reduce the computation time, the images were re-sized at this stage.
The focus was changed continuously and the focal plane was
selected based on its maximum blur value. This procedure took
<10 s. Automation can further reduce the procedural time. Here,
instead of manually selecting the checkerboard, the region
covered by the checkerboard can be estimated automatically. The
checkerboard region can be determined by an image threshold
step, followed by morphological operations. The above method
could be easily automated, starting by determining the edges of
the checkerboard.
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After selecting the focal plane we captured 25–30 images. Then,
the calibration was performed using the method described in [2]
using the MATLAB Stereo Camera Calibration toolbox. For each
depth level, five calibrations were performed, or 25 calibrations in
total (5 depth levels × 5 repetitions). To interpolate the parameters
of the camera intrinsic matrix at the in-between depth levels, a
fourth degree polynomial was fit to this data.

To evaluate the accuracy of the presented camera calibration pro-
cedure, we selected three focal planes, at distances of 85, 115 and
145 mm, and performed the camera calibration procedure using
the method described in [2]. Three calibrations were performed
for each distance. Thus, the validation dataset had, in total, nine
calibrations. Then the results of curve fitting were evaluated on
this validation dataset.

3.1.3 Intra-operative camera calibration retrieval: In the pre-
operative camera calibration step, different elements of intrinsic
camera calibration matrix were parameterised using the distance
from the endoscope. Given that the working distance from the endo-
scope is known during a surgery, we can retrieve the intrinsic
camera calibration matrix. To estimate the working distance we
make a reasonable assumption: where the surgical instruments are
visible in the scene, that is the region of interest for the surgeon
and that region should be focused. Thus, estimating the distance
of the surgical instruments from the endoscope should give us a
good estimation of the distance of focal plane. Therefore, in the
intra-operative camera calibration step, we calculated the distance
between the endoscope and the surgical instrument whose location
is streamed in real-time from the da Vinci surgical API. The proced-
ure took <1 s.

3.2. Hand-eye calibration: To estimate a rigid body transformation
(i.e. rotation and translation), between two coordinate systems,
we need just three corresponding points in both the coordinate
frames. However, given noise, to get a reliable hand-eye transform-
ation, more points are required using the currently available
methods [9–11]. This is a challenge, as selecting multiple points
during surgery can take crucial surgical time. Therefore, for seam-
less integration of any new calibration procedure in the existing sur-
gical work-flow, it is important to find the transformation with a
minimal number of points. With this goal, similar to the camera
calibration procedure, we divided the hand-eye calibration proced-
ure into pre-operative and intra-operative steps. Here we intend to
estimate the hand-eye transformation in the intra-operative step
using a minimal number of points, by ensuring a good estimation
of the transformation from the pre-operative step. Due to physical
constraints, the camera position does not change drastically with
respect to the endoscope position. Thus, using a good initialisation
from the pre-operative step, an iterative error minimisation
algorithm such as gradient descent, would find an accurate
hand-eye calibration with far fewer points compared to previous
methods.

In a pre-operative stage, ∼60 corresponding points were located
in the endoscope as well as the camera coordinate frame to find the
transformation between the two. For locating the points in the
camera coordinate frame, pixels corresponding to the surgical
instrument tip, in the left and right image pair, were manually
selected. Then, using stereo triangulation, the 3D world position
of the surgical tool tip was estimated, with respect to the left
camera frame. The corresponding position of the instrument tip in
the endoscope coordinate frame was obtained using the forward
kinematics data using the ISI surgical API of da Vinci surgical
robot. Then a least square method was used to estimate the
hand-eye transformation [12]. This step can be done before surgery.

In a separate intra-operative step, an iterative gradient descent
method was used. The method is similar to the one used in [18].
To calculate the sum of squared of residuals (SSR), Hersch et al.
(2012) used any one point pair, (xi, yi) at any given time, instead
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of using all the data points. Then the transformation was calculated
to minimise the SSR using the gradient descent algorithm.
However, our method differs from theirs by iteratively adding all
the subsequent selected point pairs instead of just a single current
point pair to calculate SSR. Thus, the procedure was started by
locating just a single point pair in camera and the endoscope coord-
inate frame. The SSR was calculated for this point pair. To assess
the accuracy of estimated hand-eye immediately, as feedback, the
tool-tip was rendered on top of the camera image as shown
in Fig. 3a. Then, in the subsequent step only those points were
collected where the visual error was high between the estimated
tool-tip and the actual tool-tip. To do this a ‘pause’ button was
pressed to stop the movement of the blue rendered tool-tip. Then
the user moved the surgical instrument to this poorly estimated
tool position with the intention to ‘touch’ it. To give the feedback
for ‘touching’ the rendered tool tip turned red, when the actual
tool-tip occluded the rendered blue-dot in both right and left
camera images. At this stage, the tool-tip position was recorded
in camera and the robot coordinate frames. Then the new SSR
was calculated by considering the current and the previous point.
This was repeated until a hand-eye calibration, with satisfactory
visual accuracy was obtained. This step, to collect data points
using rendered virtual points, is crucial and enables our method
to be implemented intra-operatively.

On average, just three points were sufficient for satisfactory
results. The first step, took ∼30 gradient descent iterations while
the subsequent steps took <6 iterations to reach the minima.

3.2.1 Depth cues conflict resolution and visual feedback: As
described in Section 3.2, data points were collected when the user
successfully ‘touched’ the virtually rendered tool-tip for which
the user was provided a feedback. Therefore, the accuracy of the
current calibration to some extent depends on the 3D depth percep-
tion of the rendered point to facilitate the accurate reaching.
Trivially rendered virtual point always render on top of the endo-
scope camera feed. The virtual point seems to be on top of the
surgical instrument, in the camera feed, regardless of the position
of the instrument in the real 3D world. This looks disturbing,
especially in 3D, as stereo disparity and occlusion cues impart con-
flicting depth information. Therefore, to resolve occlusion, we
created an occlusion mask for the instrument by thresholding the
hue channel in hue-saturation-value colour space. Then we used
this occlusion mask as alpha texture in OpenGL when rendering
the surgical scene on top of virtual point. Thereafter, when the
actual surgical tool occludes the virtual point, the occlusion can
easily be detected simultaneously, in the left and the right image
frames, to provide an instant visual feedback and the corresponding
data point can be collected.

3.2.2 Evaluation setup and validation data generation: Evaluation
of the presented method is a challenge as there does not exist any
Fig. 3 Procedure to collect data points, using virtually rendered dots, to
find hand-eye transformation
a Difference between the rendered surgical instrument-tip in blue and the
actual surgical instrument tip
b Procedure to take the actual surgical instrument tip to the incorrectly
rendered tool tip, to collect a data point for the subsequent gradient
descent step
c Immediate visual feedback where the rendered dot turned red, when the
user ‘touched’ the virtual point and the data point was collected
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gold standard method for intra-operative surgical applications.
Furthermore, due to the interactive nature of the proposed
method, inter-subject variability might affect the accuracy.
Therefore, five subjects were asked to perform the calibration pro-
cedure, twice. Thus, the evaluation was carried out on ten repeti-
tions of the calibration procedure.

For evaluation, a CAD model was generated from the pre-
operative MRI of a patient. Additionally, in the phantom design
eight visual marker beads were added. Then this model was 3D
printed and brought to da Vinci endoscope coordinate system
by manually locating these eight beads using da Vinci surgical
instrument. Since the locations of the beads were known in both
coordinate systems, a least square method was used to find the
transformation RTP. These points were then brought to the
robot endoscope coordinate frame according to the equation:
ETP =E TR ×R TP. Here,

ETR is the transformation from the robot
base to the robot endoscope, which was received from the da
Vinci surgical API. Then in a separate step, we manually selected
the pixels corresponding to the beads in the right and left image
pairs. These pixels were used to estimate the 3D position of the
beads using stereo triangulation with respect to the left camera.
These eight points in the camera coordinate system and the da
Vinci endoscope coordinate system were used to estimate the accur-
acy of hand-eye transformation using TRE and visual validation.

Finally, for the subject study, the phantom was placed on a table
and the position of the endoscope was adjusted such that in the
endoscope camera image, the phantom was oriented similarly to a
real prostate in radical prostatectomy procedure. A previously
recorded surgical video of the procedure was used as a reference.

3.3. Subjects and evaluation task: Since the evaluation can be
affected by the level of dexterity in handling da Vinci surgical
instruments, only the subjects who are comfortable using the da
Vinci system participated in the evaluation. The subjects were
graduate students who use da Vinci system as part of their
research regularly.

The calibration procedure was carried out on a clinical da Vinci
system. The subjects were seated at the surgeon’s console to
perform the procedure. In all of the reaching tasks, subjects used
da Vinci surgical instruments by handling the master side manipu-
lators as in a real minimally invasive (MIS) da Vinci robotic
surgery.

Three crosses were marked and numbered on the phantom.
Subjects were asked to reach the marked points in numerical
order. Throughout the task, the tracked surgical tool using a pre-
estimated hand-eye calibration was rendered as a blue dot. After
reaching one of the marked crosses the tool tip tracking was
paused, freezing the rendered tool tip in 3D space. Then, the
subject was instructed to move the surgical instrument to the
paused rendered blue dot. As soon as the subject ‘touched’
the blue virtual point the virtual point turned red. This gave an
instantaneous feedback to the subject. This was achieved by the
method described in the previous section. Then, using the iterative
approach, the new hand-eye calibration was estimated and updated.
With this updated hand-eye transformation the subject reached the
second marked cross on the phantom and the procedure was
repeated again. After collecting three points, the accuracy of the
calibration could also be estimated by observing the tracked tool
tip with the new hand-eye transformation. After each hand-eye
estimation procedure, the accuracy was estimated by calculating
the TRE on the previously described eight points and the results
were visually validated by overlaying the phantom mesh on the
endoscope camera image.

4. Results and evaluation
4.1. Camera calibration: The camera calibration re-projection error
for each calibration while building the focus retrieval matrix was
<0.8 pixels for the image size of 960× 540.
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 255–260
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Table 3 Comparison of relevant hand-eye calibration methods

1 Thompson et al.
(2016)

RMS projected error:
optical tracking – 1.95 mm
EM tracking – 0.85 mm

2 Shao et al. (2017) Min. forward error – 1.32 mm (after 8
iterations)

Min. backward error – 0.86 pixels
3 Chen et al. (2017) Uniform sampling:

TRE= 0.45 mm (n= 25)
Guided calibration:
TRE= 0.75 mm (n= 25)

4 Our method Min. TRE – 3.08 mm (n= 3)
The evaluation of curve fitting was performed on the validation
dataset as described in Section 3.1.2. The root mean square error
was calculated for each camera parameter. The results are shown
in Table 1 for focus (fx, fy), principle point (px, py) and radial distor-
tion coefficients, rad1 and rad2, for the right and the left stereo endo-
scopic camera. The focus and principle point are reported in pixel
units.
Throughout different camera calibrations, the translation and

rotation between left and right stereo cameras were observed to
be relatively constant. Mean translation, (Tx, Ty, Tz) was found to
be (−5.61+ 0.050mm, 0.10+ 0.026mm, −0.13+ 0.095mm).
Furthermore, the maximum Frobenius norm of rotation matrix
with identity matrix, for different calibrations came out to
be 0.022.
Fig. 4 Feasibility study to test AR system for radical prostatectomy
a Prostate phantom without AR view
b Prostate phantom with the AR view of MR-TRUS fusion system. The
prostate mesh was generated from the registered pre-operative MR to the
intra-operative TRUS. The MR slice could be selected with the surgical
instrument in real time to explore the MR volume intuitively. Tumours
4.2. Hand-eye calibration: In the pre-operative stage, the TRE for
hand-eye estimation, using the least-square estimation, came out
to be 4.70 mm. The intra-operative hand-eye accuracy was
estimated on the validation dataset described in Section 3.2.2
through the subject study. The average TRE for each subject is
shown in Table 2.
The overall mean TRE was 7.01 mm with the SD of 3.85. The

minimum TRE is 3.08 mm. For each subject the results were also
visually analysed by overlaying the triangulated mesh of the pros-
tate phantom on top of the prostate phantom endoscopic image
(Fig. 3). Furthermore, the accuracy was also assessed visually by
rendering the tool tip position on the camera image in real time.
Table 3 shows a comparison of our method with relevant existing
methods.
could be seen in red on the MR slice
4.3. Feasibility of an AR TRUS-MR fusion system for radical
prostatectomy procedure: To identify any unrealised issues with
our methods, during a real surgery, we designed a feasibility
study for da Vinci Si-assisted radical prostatectomy procedures
using an AR MR-TRUS fusion system on a prostate phantom.
The user was a surgeon, who routinely performs minimally
invasive radical prostatectomy procedures, using da Vinci system.
A Think Aloud Protocol was followed while the surgeon tried the
AR system. The study also showed the practicality of our
technique (Table 3).
First the registration of pre-operative MRI to TRUS of a prostate

phantom was performed using the method described in [19]
and then the USA was registered to the da Vinci coordinate
system using the method described in [20]. Finally, our
intra-operative camera and hand-eye calibrations were used to
render the triangulated mesh generated from registered MR on
top of the phantom. As shown in Fig. 4, the MR slice could be
Table 1 Results of the camera calibration evaluation

Parameters Left Right

1 fx 5.749 4.500
2 fx 5.999 4.680
3 px 2.207 3.691
4 py 0.530 0.225
5 rad1 0.013 0.010
6 rad2 0.044 0.013

Table 2 TRE for hand-eye for each subject

1 2 3 4 5

3.08 7.48 13.30 5.44 5.73
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selected with the surgical tool-tip to better manoeuvre the 3D MR
volume.

The surgeon’s feedback can be summarised as follows: (i) the
system was realistic and intuitive to use. The MR image looked
like it was in the prostate and not just projected on top; (ii) it was
easy to collect a few points for hand-eye calibration using the
da Vinci surgical robotics system. It can easily be done
intra-operatively and should not consume critical surgical time;
(iii) as the rendered point was 2D, depth perception was a
problem sometimes.

5. Discussion and conclusion: In this Letter, we presented a
marker-less, intra-operative camera and the hand-eye calibration
method. To the best of our knowledge, our proposed technique is
the first unified camera and hand-eye calibration method that
can be performed inside a patient’s body without taking the
endoscope out. Both the calibration procedures were divided
into a pre-operative and an intra-operative step. For the camera
calibration multiple calibrations were performed off-site and
different calibration parameters were parametrised as a function
of distance from the endoscope. Intra-operatively, the correct
calibration parameters were retrieved by determining the distance
of the surgical tool from the endoscope. Furthermore, for
hand-eye calibration, in a pre-operative stage, the hand-eye
transformation was estimated by using a least square estimation.
In the intra-operative stage, we optimised the number of data
points for the hand-eye estimation by sequentially adding only
those points where the visual error was high, from a previous
estimation step. A gradient descent algorithm was used where
the first step was initialised using the transformation from the
pre-operative stage. Using the estimated transformation, the
surgical instrument-tip was rendered on screen to give immediate
visual assessment of the transformation accuracy. In the
subsequent steps, only those points were collected where this
visual error was the highest. Thus, we obtained the optimal
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hand-eye transformation in as few as three points. After the first
step, the subsequent gradient descent steps converged in <6
iterations.

The intra-operative camera calibration retrieval step took <1 s.
This is crucial as camera calibration is a prerequisite for the
hand-eye transformation. For the hand-eye calibration, as the
result of the subject study with five subjects, the average TRE
was 7.01 mm. However, satisfactory visual accuracy was achieved
in each case. The result has SD of 3 mm. This relatively high vari-
ability can be due to the difference in depth perception among
different subjects. Some subjects reported that the rendered
virtual point, although looked 3D, was hard to assess for its depth
accurately. In future work, this problem can easily be handled by
rendering spheres instead of points and by using shading and
shadow depth cues to enhance the perception of depth.

We also evaluated the intra-operative feasibility of our methods
for minimally invasive radical prostatectomy. We presented an
AR MR-TRUS fusion system rendered on the endoscopic camera
feed, on a prostate phantom. The calibration procedures were
carried out by a surgeon, who performs radical prostatectomy pro-
cedures routinely. The surgeon gave comments that the procedure
was intuitive, easy to do and should be easy to perform during
surgery. However, as many other subjects in the subject study,
the surgeon found it slightly difficult to estimate the correct depth
of the rendered dot. As mentioned already, the problem should be
easy to solve by rendering spheres with shadow and other depth
cues. In the future, the system will be evaluated on a real surgery.
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