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This paper focuses on the development of intelligent controllers for use in a process of enzyme recovery from pineapple rind.
The proteolytic enzyme bromelain (EC 3.4.22.4) is precipitated with alcohol at low temperature in a fed-batch jacketed tank.
Temperature control is crucial to avoid irreversible protein denaturation. Fuzzy or neural controllers offer a way of implementing
solutions that cover dynamic and nonlinear processes. The design methodology and a comparative study on the performance of
fuzzy-PI, neurofuzzy, and neural network intelligent controllers are presented. To tune the fuzzy PI Mamdani controller, various
universes of discourse, rule bases, and membership function support sets were tested. A neurofuzzy inference system (ANFIS),
based on Takagi-Sugeno rules, and a model predictive controller, based on neural modeling, were developed and tested as well.
Using a Fieldbus network architecture, a coolant variable speed pump was driven by the controllers. The experimental results show
the effectiveness of fuzzy controllers in comparison to the neural predictive control. The fuzzy PI controller exhibited a reduced
error parameter (ITAE), lower power consumption, and better recovery of enzyme activity.

1. Introduction

The present study is concerned with the design and experi-
mental testing of intelligent control systems for temperature
control in the precipitation plant of bromelain enzyme
recovery. This biotechnological process may be considered
the first step in the downstream processing of the protein.
It is motivated by the high commercial value of this enzyme,
the increasing demand for bromelain in pharmaceutical and
industrial applications [1, 2], and the fact that bromelain
can be recovered from kitchen waste (pineapple stem and
rind).

The aim of the precipitation process is to achieve
separation of solutes by conversion to solids. Precipitants can
be chosen which do not denature the biological product, and
the precipitate is often more stable than the dissolved form.
Although precipitation is a simple operation, in the recovery
of bromelain from pineapple, temperature control is crucial
to avoid irreversible protein denaturation and hence improve
the precipitation yield and the enzyme activity of the product
[3].

Despite that automation and process control can signif-
icantly influence the yield and final quality of bioproducts,
there are few experimental studies on the application of
automatic controllers in the bioprocesses. Most works focus
on results obtained from computational simulations, which
indeed do not represent these processes in all their com-
plexity. The transient behavior and nonlinearities of these
processes make the design of classical control dependent on
trial-and-error methodology, showing limited performance.
On the other hand, intelligent controllers based on fuzzy
logic and neural networks can be applied successfully to both
linear and nonlinear systems. The main advantage of intelli-
gent controllers is that modeling, based on first principles, is
not required. Implementation of these controllers in small-
scale pilot plants is essential to evaluate their potential value.

The wide range of existing fuzzy control applications
indicates that this technique is gaining considerable impor-
tance in the control of complex processes and represents a
promising approach to solving industrial control problems
[4–9]. Some successful fuzzy logic experimental applications
in biotechnological processes are reported in the literature by
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Steyer et al. [10], Martı́nez et al. [11], Sousa and Almeida
[12], Babuska et al. [13], Horiuchi and Kishimoto [14],
Traoré et al. [15], and Fileti et al. [16]. The computational
simulation of a semibatch reactor stationed at a pharma-
ceutical company was used by Dovžan and Škrjanc [17] for
testing a predictive functional control based on an adaptive
fuzzy model. The goal was to control the temperature of
the ingredients stirred in the reactor’s core, so that they
synthesize optimally into the final product. In order to
achieve this, the temperature had to follow, as accurately
as possible, the prescribed reference trajectory, with as low
overshoot as possible.

Castañeda-Miranda et al. [18] developed a greenhouse
intelligent climate control system that uses a fuzzy controller,
based on a field programmable with a great potential
for use in agricultural technology development due to
its characteristics to produce fast prototypes of complex
hardware designs with an effective production cost.

Lopes et al. [19] implemented an adaptive neurofuzzy
inference mechanism (ANFIS) in a system of coupled tanks
to simulate a production unit that used the level of the tanks
for production and concentration control (process specifica-
tions). This inference system was proved efficient in aiding
and replacing human workers for establishing relationships
between process specifications and controlled variables (lev-
els). Pires and Nascimento Júnior [20] simulated a control
system of a robotic arm using a neurofuzzy system as a
feedforward controller. The proposed control scheme was
suitable to the robotic arm adjustment, obtaining a trajectory
very close to the reference.

Hussain [21] selected in his review twenty four works
concerning online application of neural networks. Many of
them showed a better performance of the neural controller
over the conventional one. Other studies proved the effec-
tiveness of neural networks in modeling nonlinear processes,
such as fermentation and polymerization processes [22, 23].

In this context, this paper describes the design method-
ology and a comparative study on the performance of fuzzy,
neurofuzzy, and neural network intelligent controllers. They
were implemented in order to maintain the temperature of
the bromelain precipitation process from aqueous extract
of pineapple wastes. The digital control was carried out by
means of a Foundation Fieldbus communication system. To
assess the performance of the digital controllers, the follow-
ing parameters were used: overshoot, ITAE (integral of Time
multiplied by Absolute Error), response time, enzymatic
activity of the product and electric power consumption of the
cooling system. The novelty of this paper is that, currently,
there are no experimental studies about automation and
process control in the production of bromelain, despite
the growing number of scientific papers related to this
enzyme.

2. Material and Methods

2.1. Precipitation Plant Description. Digital controllers were
developed, implemented in the computer, and experimen-
tally tested in a pilot plant of the precipitation process,
outlined in Figure 1, located in the Automation and Process

Control Laboratory at the School of Chemical Engineering, at
the University of Campinas (UNICAMP).

In Figure 2, it could be seen that the experimental system
consisted of a stainless steel stirred tank with nominal capac-
ity of 1000 mL (no. 1); a storage tank of the precipitating
agent (ethanol 99.5 GL); a variable speed pump (1000 L/h
maximum capacity), to enable the flow of the cooling fluid
(50% v/v water/propylene glycol solution) through the tank
jacket; a micropump that continuously fed the ethanol into
the precipitation tank; four Pt-100 resistance thermometer
detectors (no. 2)—TE 301, TE 302, TE 303, and TE 304
represented in Figure 1—to monitor the temperature in the
precipitation tank, ethanol storage, the coolant outlet and
inlet, respectively; two temperature transmitters (TT 302
device, Smar) (no. 3), with digital output signal, connected
to the Pt100; a Fieldbus-current converter (no. 4) (FI302
device, Smar), coupled to a frequency converter; a level
transmitter (no. 5)—LT 301, in Figure 1—which consists of
a differential pressure transmitter (LD 302 device, Smar); a
current-Fieldbus converter (no. 6) (IF302 device, Smar) to
transmit signal of the power consumed by the coolant pump;
a peristaltic pump (Masterflex Pump) for continuous feeding
of ethanol in the precipitation tank (no. 7); a mechanical
stirrer (no. 8). An electrical control panel (Figure 2(b))
was built, where it can be observed (a) the frequency
converter (Danfoss VLT 2800), that drives the coolant pump
speed (manipulated variable) (b) an electrical source for
powering the field devices, (c) circuit breakers, and (d)
fuses and (e) connectors, to allow corrective maintenance of
equipments.

2.2. Operating Conditions of the Pilot Plant. The stem and
rind of “Pérola” pineapples were ground and mixed to a
uniform suspension in distilled water, at a dilution rate of
1 : 1 v/v. Solids were filtered from the mixture through a
0.45 μm paper filter. The filtrate, called pineapple extract,
contained the bromelain enzyme. Aliquots of 150 mL of
pineapple extract were frozen at −18◦C [24] until they were
defrosted and individually used in the experiments.

Samples of 150 mL of pineapple aqueous extract were
fed into the tank. A micropump was employed to feed the
ethanol into the tank continuously at room temperature
(approximately 23◦C), at a fixed rate of 2.16 L/h, until the
liquid volume reached 750 mL, corresponding to a 1 : 4 v/v
ratio between extract and ethanol—the optimal condition
for protein precipitation [24]. In order to avoid protein
denaturation, the coolant flow rate was manipulated by
means of a variable-speed pump, to maintain the tempera-
ture constant into the tank.

A design of experiments was proposed to find the
nominal conditions for the following process variables: the
ethanol micropump flow rate, the coolant pump flow rate
(manipulated variable), and the coolant inlet temperature.
Those nominal conditions were determined by maximizing
the temperature deviation from set point and minimizing
the rise time of temperature, which turns the process a
challenging problem of control. The best values found were,
respectively, 2.16 L/h, 374 L/h, and 0◦C. The stirring rate was
kept constant (150 rpm) during tests. The batch operation
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took about 17 minutes (time of contact between solvent and
proteins).

2.3. Characterization of Bromelain. The temperature control
has great influence on the final quality of the recovered
bromelain enzyme (EC 3.4.22.4). Therefore, the determina-
tion of enzymatic activity was used as an important index
of performance to compare the efficiency of the automatic
controllers tested in this work.

The activity assay was based on the biuret colorimetric
method. Under alkaline conditions, substances containing
two or more peptide bonds form a purple complex with
the copper salts in the reagent. The intensity of the color
produced in the biuret reaction is proportional to the
number of peptide bonds participating in the reaction. In
this method, a unit (U) of enzyme activity is defined as the
amount of enzyme able to change the absorbance reading at
540 nm by one unit in 10min, at 37◦C. The specific enzymatic
activity, AE (U/g), is the relationship between the number of
units of enzyme activity (U/mL) and the amount of protein
(g/mL) in the sample.

2.4. The Digital Control System. In order to provide commu-
nication between the process and the local area network, a
Fieldbus interface was used. An OPC server was responsible
for providing the control program (OPCclient) with current
values of measured variables and for communicating the
control action to the frequency converter.

The digital control was carried out through a Foundation
Fieldbus communication system, as shown in Figure 3.

The field devices composing the Fieldbus network, used
to monitor and control the precipitation tank, were as
follows

(i) Distributed Fieldbus interface (DFI302 device,
Smar): it is manager of communication which
controls the actions related to the Fieldbus system.
It performs most functions required by the control
system and connects the network of field devices to
an Ethernet network.

(ii) Current-Fieldbus converter (IF302): its allows the
interconnection of instruments with analogue output
4 to 20 mA to a Foundation Fieldbus network. It has
three independent channels.

(iii) Fieldbus-current converter (FI302): it converts digital
signals to analogue signals (4–20 mA). This device
was connected to the frequency converter, taking
information from the controller and changing the
flow of coolant.

(iv) Temperature transmitters (TT302): these devices
have two channels that transform analog signals from
temperature detectors to Fieldbus protocol.

The Software SYSCON 7.0 was used to configure Field-
bus network devices. This software allowed to make changes,
maintenance, and operations on line. The main functional
blocks of SYSCON software—resource, transducer, display,
analog input, analog output, and signal characterizer—have

been properly configured to achieve the desired functionality
of each device. The software INDUSOFT Web Studio 6.1 was
used for system management and data acquisition.

2.5. Controller Design

2.5.1. Fuzzy PI Controller. This work was based on fuzzy
logic concepts, wherein the knowledge accumulated by the
process specialist was translated in a qualitative manner into
a set of linguistic rules. To create a knowledge expert on the
process, necessary for the development of fuzzy controller,
experimental tests were performed to observe the behavior
of the system.

In order to obtain a process reaction curve, a pseu-
dosteady state condition was experimentally simulated by
adding and withdrawing pineapple extract at the same
rate (input and output) in the precipitation tank, without
ethanol feeding. When the initial bulk temperature was
close to the set point, ethanol began to be added at a
fixed rate. At this exact moment, a disturbance of 30% of
the maximum propylene-glycol pump capacity was applied.
In this experiment, the pineapple extract was diluted with
ethanol (1 : 1), in order to maintain the same precipitation
conditions as during initial stages of the batch process. The
system was monitored until the bulk temperature reached a
new steady state.

The influence of the variation of the tank volume on
the precipitation process was evaluated. Samples containing
extract and ethanol in different proportions (from 1 : 1 to
1 : 3 v/v) were used in the pseudosteady state operation.
Positive and negative disturbances were then applied (±30%)
to the initial conditions of the speed of the coolant pump
(manipulated variable). As in the fed-batch operation, a
proportion of 1 : 1 corresponded to 300 mL, of 1 : 2 to 450 mL
and of 1 : 3 to 600 mL. The process reaction curves obtained
from this step contributed to the development of the Fuzzy
controller.

The error (ε) and the change of error (Δε) of bulk
temperature, given by (1) and (2), respectively, were used as
input linguistic variables. The speed variation of the coolant
pump (ΔU), given by (3), was used as the output linguistic
variable, resulting in a fuzzy PI incremental controller type.
The structure of this controller is shown in Figure 4 and it
was implemented using the Fuzzy Toolbox of the MATLAB
7.0.1 computer package.

The linguistic variables were defined by

ε(t) = Y(t)− YSP(t), (1)

Δε(t) = ε(t)− ε(t − Δt), (2)

ΔU(t) = U(t)−U(t − Δt). (3)

The rule base was composed of typical Mamdani-type
rules for the inference engine in the fuzzy PI controller,
employing the model proposed by Li and Gatland [25]
and Li [26]. The original 49 rule proposals, from seven
triangular membership functions (MF) for each variable, are
presented in Table 1. The triangular membership functions
were used in the fuzzification procedure because of their wide
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Figure 1: Fed-batch precipitation system flowchart.

application in the literature and ease of implementation.
This procedure comprises the process of transforming crisp
values into grades of membership for linguistic terms of
fuzzy sets. The linguistic expressions for the magnitudes of
the linguistic variables contain the following seven adjectives:
negative large (NL), negative medium (NM), negative small
(NS), zero (ZR), positive small (PS), positive medium (PM),
and positive large (PL).

Using the rule base of Table 1 and the triangular member-
ship functions for the three linguistic variables, several rules
are activated simultaneously, showing different membership
degrees, or areas, for the output. In order to find a unique
crisp value for the fuzzy PI output (ΔU), a defuzzification
method was used based on the determination of the center
of gravity of the combined areas:

u∗ =
∑N

i=1 uiμOUT(ui)
∑N

i=1 μOUT(ui)
, (4)

where, μOUT(ui) is the membership function area resulting
from fuzzy PI inference operation min (i.e., among the dif-
ferent areas obtained for ΔU calculation from simultaneous
rules, the smallest one is chosen), ui is the center of area of

each output membership function area, and u∗ is the center
of area below the combined output membership function
areas found from the intersection operator application.
Indeed, u∗ gives the controller action to be implemented in
the process (ΔU).

2.5.2. Neurofuzzy Controller. The database obtained from
the application of Mamdani-type fuzzy PI structure
(Section 2.5.1) was used for training, validation and tests of
the neurofuzzy inference system (ANFIS). For the training
set, the odd samples were used, for the validation the even
samples, and for the tests, all the data. The ANFIS Toolbox of
MATLAB software was used. Using the anfisedit command,
the training and validation database were loaded, the Takagi-
Sugeno fuzzy inference system (FIS) was created, and the
training procedure was performed with 100 epochs. Follow-
ing this training procedure, the ANFIS output was compared
to the test outputs to check the controller performance.

The flowchart for designing the neurofuzzy controller is
provided in Figure 5. Using Simulink/MATLAB and OLE for
process control protocol (OPC), the controller was imple-
mented online. The Simulink diagram of the neurofuzzy
control system is provided in Figure 6.
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Table 1: Original rule base of the fuzzy PI controller.

Error (ε)
Change of error (Δε)

NL NM NS ZR PS PM PL

PL ZR PS PM PL PL PL PL

PM NS ZR PS PM PL PL PL

PS NM NS ZR PS PM PL PL

ZR NL NM NS ZR PS PM PL

PS NL NL NM NS ZR PS PM

NM NL NL NL NM NS ZR PS

NL NL NL NL NL NM NS ZR



6 Enzyme Research

rule base
Process

Y(t)
ε

+

−
Δε

YSP ΔUPIFuzzy PI

Figure 4: Structure of fuzzy PI control.

ANFIS
training/
checking

ANFIS
test

Variable
prediction ok?

Yes

No

Control system
implementation

Performance
analysis

Fuzzy PI
Mamdani
database

Neurofuzzy ANFIS
model

implementation

Figure 5: Flow chart for designing the neurofuzzy controller.

2.5.3. Model Predictive Controller (MPC) Based on Artificial
Neural Networks (ANN). Firstly, the process was modeled
using the Neural Network Toolbox of MATLAB. In the input
layer, the operating variables, measured every sample time
k, were used. In the hidden layer, an activation function
was applied to twice the number of nodes of the input
layer. Another activation function was applied to the output
layer, which predicts the one-step-ahead controlled variable
(PVk+1).

Open-loop runs were used to train the multilayered
feedforward network, employing the Levenberg-Marquardt
algorithm (trainbr command in MATLAB). The open-loop
data set was obtained by gathering a wide range of values of
the input layer variables, including the whole network action
domain.

The process dynamic was initially observed from the
open-loop run with the manipulated variable at a fixed
point. From there, the step disturbances in the manipulated
variable, U , were planned so that the controlled variable
behavior could be monitored from several runs and this
database was employed to train the neural network. The
database was split in two sets: 75% and 25% for training
and tests, respectively. Furthermore, closed-loop runs with
a fuzzy PI controller were used for the tests as well, since
the neural model was expected to have good response
in closed-loop situations with the implementation of the
MPC optimizer for the process control. The neural model
performance was assessed through dispersion plots of the
testing runs (network output versus target vector), with a
suitable result being proved by a slope coefficient of the linear
fitting of the dispersion plots close to the unity and the linear
coefficient around zero. The flow chart for designing this
alternative control system is provided in Figure 7.

The optimized weights and biases of the trained network
were inserted in an electronic worksheet to reproduce the
algebraic equations of a neural model. The calculated output
generates a quadratic error (relative to the set point), which
was defined as the objective function to be minimized by the
solver (5). The solution was found from the quasi-Newton
method of generalized reduced gradient, available in Excel
software, by changing the manipulated variable value that
should be implemented in the plant (U). The MPC diagram
of the overall control system is provided in Figure 8:

min
U

(
PV(k+1) − PVsp

)2
(5)

subject to the following constraints:

U ≥ Umin, (6a)

U ≤ Umax, (6b)

|Usolver −Uk−1| ≤ maximum step allowed. (6c)

3. Results and Discussion

3.1. Determination of Set Point. To avoid denaturation of the
protein, the temperature set point was determined from the
literature and also from experimental testing of enzymatic
activity to examine the quality of the enzyme. The results
showed an activity of 0.8739 U/mL at 5◦C, 0.7478 U/mL at
10◦C and 0.7204 at 20◦C (Figure 9), which shows that at
lower temperatures the effect of denaturation is attenuated.
Those results were very close to those obtained by Cesar et
al. [24], which do not recommend setting the temperature
below 5◦C. Thus, the set point selected for the precipitation
temperature was 5◦C.
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3.2. Controller Design

3.2.1. Fuzzy PI Controller. According to the procedure
described in Section 2.5.1, the reaction curves were obtained
and are shown in Figure 10. The initial conditions of the tests
were kept in 40% of rotation of the pump and 5◦C for the
temperature inside the tank.

By observing the reaction curves (Figure 10), it was
clear that the absolute value of the process gain (Kp)
increased as tank volume rose up, for positive disturbances
(high speed of coolant pump). On the other hand, the
absolute gain decreased as the volume increased, for negative
disturbances (low speed). Thus, the temperature responses
to positive and negative disturbances, of the same intensity,
were asymmetrical. Table 2 summarizes the values of static
gain from the Figure 10.

Two main factors determine these transient and nonlin-
ear features of the process.

(i) Thermal exchange: at the beginning of the fed-
batch process the heat exchange is deficient, as a
consequence of the small heat transfer area. As the
volume rises up, this area grows and heat exchange
becomes more efficient. In the final condition of
volume of 600 mL (1 : 3 curve), when applying a
positive disturbance (high speed), there was a greater
decrease in temperature inside the tank.

(ii) Heat of dissolution of the alcohol: an effect that
increases the nonlinearity of the process is the heat
of dissolution of ethanol in aqueous solution. The
amount of heat released is greater at the beginning
of the process and this effect decreases continuously
during precipitation. In the condition of volume
of 600 mL (1 : 3 curve), the increase in temperature
caused by the dissolution of ethanol in the solution
was negligible.

Due to the transient behavior and nonlinearities, dis-
cussed above, the precipitation system is characterized by
having different sensitivities to the control actions, which
emphasizes the limitation of the use of conventional con-
trollers in this system. To minimize the consequences, the
procedure of tuning the fuzzy PI controller involved changes
in the universe of discourse, rule base, and support sets of
membership functions, based on the reaction curves analysis.

The original rules of Mamdani, shown in Table 1, were
modified based on tests performed experimentally to provide
better tuning of fuzzy PI controller. Adjustments are in bold
in Table 3 and explained in the text above.
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When the error was large positive (PL)—temperature
was above the set point—and the change of error was NL,
NM, or NS—the temperature was decreasing—there was not
a need for great action in the coolant pump, as suggested by
the original rules (Table 1). The heat exchange was becoming
more efficient due to the enlargement of the volume and
also due to the lower impact of dissolution of ethanol on
the solution. Thus, these three actions were modified to
NS, smoothing the control action that reached upper limit
without saturation.

When the temperature was slightly above the set point
(error PS) and still increasing Δε = PL, there was a need
for positive action on the pump speed. However, as the
error was still small, it was observed that a medium positive
action (PM) met the same goal as large action (PL), reducing
temperature oscillation around set point.

When the temperature was slightly below the set point
(error NS), and increasing rapidly (Δε = PL), it was
observed that a small positive (PS) increase in pump speed
would be enough to stop this temperature increase, since the
gain of the process was large at the final conditions of batch.
The rule medium positive (PM) originally suggested in
Table 1 could provide a significant reduction in temperature
and might cause undesirable oscillations. For the same
reasons as outlined above, when error was negative medium
(NM) and change of error was large positive (PL), the
rule was changed to ZR, because maintaining the coolant
flow rate showed to be sufficient to prevent any rise in
temperature.

The triangular membership functions, and their
corresponding labels of error (ε), change of error (Δε), and
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Figure 10: Reaction curves obtained from disturbances in the
manipulated variable.

Table 2: Static gains of the process, Kp, obtained from the reaction
curves.

Disturbances Positive Negative

Volume (mL) Kp (◦C/%) Kp (◦C/%)

300 1 : 1 −0.030 0.030

450 1 : 2 −0.047 0.020

600 1 : 3 −0.053 0.010

the incremental control action (ΔU), were presented in
Figure 11.

It may be noted in Figure 11 that the universe of
discourse of error has a narrow range (from −1 to 1), since it
was observed that the beginning of the process was the most
critical stage, demanding a fast response of the manipulated
variable, even for small errors (ε) in the controlled variable.
Thus, even for small variations in the controlled variable, an
intense response of the manipulated variable is produced.

Based on the analysis of the dynamic behavior of the
process, a wide range (from−20 to 13) was set for the output
variable (ΔU). In terms of absolute magnitudes, the lower
bound (−20) was greater than the upper bound (13), owing
to the need to reduce the pump speed more quickly when the
process reaches maximum error. In this region, lower coolant
flow rates were able to handle the temperature rise caused by
the release of heat of dissolution of the alcohol during the
precipitation process.

The control surface related to the fuzzy PI controller is
represented in Figure 12, where nonlinearities incorporated
in this control system are clearly observed.

3.2.2. Neurofuzzy Controller. The ANFIS controller design
consisted in finding a Takagi-Sugeno (TS) fuzzy structure,
which was able to describe an incremental fuzzy PI controller
action, by choosing as linguistic variables ε, Δε, and ΔU ((1),
(2), and (3)). The FIS file was made up of three triangular
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membership functions (ZR: approximately zero, PS: positive
small, and PL: positive large) for the error (ε), seven triangu-
lar membership functions (NL: negative large, NM: negative
medium, NS: negative small, ZR: approximately zero, PS:
positive small, PM: positive medium, and PL: positive
large) for the change of error (Δε), and twenty-one linear
functions for the pump speed variation (ΔU). Another FIS
file was created, for comparison of performances, with four
triangular membership functions for the error (ε) (including
PM: positive medium). The universes of discourses were
determined according to subjective knowledge of the process
and they were similar to that used in the fuzzy PI Mamdani
controller (Figure 11).

After the training procedure, the ANFIS controller out-
puts (FIS TS output) were tested with the samples obtained
from the fuzzy PI Mamdani structure (FIS output), which

allowed the observation of the high training performance.
In Figure 13, the FIS TS outputs are plotted versus the
test samples (index). It could be noted that the points are
coincident, even for the validation set that uses unseen data.

3.2.3. Model Predictive Controller. The operating variables
for the ANN input layer, measured every four seconds
(sample time), were chosen as follows: ethanol tempera-
ture (Talc,k), which exerts great influence in the precipi-
tation temperature—the higher the ethanol temperature,
the higher the overshoot obtained; coolant inlet (Tin,k) and
outlet (Tout,k) temperatures, which provide information on
the heat exchange in the tank jacket; coolant pump speed
(Uk), that is, the manipulated variable, so that its value will
determine the controlled variable response; the liquid level
(Lk), represented by the liquid volume, provides the ANN
with information on the run time, thus distinguishing equal
input vectors that correspond to different output vectors;
pump speed variation (ΔUk) that indicates to the ANN which
step disturbance in pump speed caused the given output;
bulk temperature (Tbulk,k), which works as a reference for
the ANN prediction of the one-step-ahead bulk temperature
(Tbulk,k+1), that was chosen as the output variable of the
ANN. In the hidden layer a hyperbolic tangent activation
function was applied to fourteen nodes.

Figure 14 shows the results for the open-loop and the
closed-loop offline tests of the neural model. These tests, with
unseen data, proved that the ANN successfully predicted the
tank temperature, as it can be seen by the agreement between
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Figure 13: Testing data from FIS TS output versus test samples of FIS output, using (a) three membership functions (ANFIS3MF) and (b)
four membership functions (ANFIS4MF).
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Figure 14: Dispersion plot of the network prediction output versus the target vector for (a) an open-loop run and (b) a closed-loop run.

Table 3: Modified rule base after tuning the fuzzy PI controller.

Error (ε)
Change-of-error (Δε)

NL NM NS ZR PS PM PL/%)

PL NS NS NS PL PL PL PL

PM NS ZR PS PM PL PL PL

PS NM NS ZR PS PM PL PM

ZR NL NM NS ZR PS PM PL

PS NL NL NM NS ZR PS PS

NM NL NL NL NM NS ZR ZR

NL NL NL NL NL NM NS ZR
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actual (target) and predicted values of temperature. Both lin-
ear fits presented slope coefficients close to the unity and lin-
ear coefficients around zero, approaching the diagonal line.

The optimized weights and biases of the trained network
were then inserted in an electronic worksheet to reproduce
the algebraic equations of the neural model. Simultaneously
to the experiment, the neural model was able to predict
on line the one-step-ahead bulk temperature. The results
showed that the ANN was capable of learning the inher-
ent nonlinearities and also successfully predicted the bulk
temperature, thus being considered suitable for the MPC
application.

3.3. Closed-loop Experimental Tests. The inlet ethanol flow
rate at room temperature, the volume, and the heat transfer
area variations were inherent disturbances, which drove the
process away from the set point. All experimental tests were
carried out under the same experimental conditions.

Figure 15 shows the temperature deviation under a well-
tuned fuzzy PI Mamdani controller. Final settings were
presented in Figure 11 and Table 3.

Since the neurofuzzy tests showed the effectiveness of the
training (Figure 13), the ANFIS controllers were applied in
the plant. The results obtained are shown in Figure 16.

In Figure 16, it can be noted a suitable performance
from both ANFIS controllers implementation, with three
and four membership functions. By adding one mem-
bership function, the overshoot and the rise time were
shortened.

The neural model coupled with the Microsoft Excel
solver was used as a MPC temperature controller, and the
experimental results are shown in Figure 17. The manipu-
lated variable, to be changed by the solver, was subject to the
following constraints (5): range of 0 (Umin) to 100%(Umax) of
speed variation; manipulated variable action was smoothed
by restricting its step value up to 35%. To prevent the
controlled variable from leaving the training operating range,
an additional constraint was added: the pump was turned off
when the bulk temperature reached 4.9◦C.

Figure 17 shows that the developed MPC controller was
able to maintain the controlled variable around set point
(5◦C), with small rise time. As discussed in Section 3.2, the
overshoot observed in the first 200 seconds is due to the low
liquid level in the tank, which caused the heat exchange area
to be at a minimum. The dissolution heat produced during
the ethanol addition can explain it as well.

Table 4 summarizes some important indexes in order to
compare the performance of the implemented controllers.
The best controller, in terms of overshoot and rise time, was
the fuzzy PI Mamdani one.

The early stage of ethanol addition is critical. In order
to keep the overshoot to a minimum, intense controller
response is required, causing pump saturation, which was
noted under all control strategies (Table 4). However, the
saturation effect was far less noticeable when the fuzzy PI
controller was used, favoring conservation of the equipment.

Some other quantitative and qualitative analysis on
the performance of the best implemented controller is
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Figure 15: Behavior of the controlled and manipulated variables
under fuzzy PI Mamdani control.
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Figure 16: Behavior of the controlled and manipulated variables
under neurofuzzy control.

summarized in Table 5. It could be observed very low power
consumption under fuzzy PI control.

The enzymatic activity analysis proved that fuzzy PI
control outperformed the other implemented controllers
because the final product (bromelain enzyme) showed
high activity. From Figure 15, it was observed the stable
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Table 4: Closed-loop performance parameters.

Controller Overshoot (◦C) Rise time (s) Pump saturation time
interval (s)

Respective Figure

Fuzzy PI 3.1 170 35 15

ANFIS3MF 3.7 210 160 16

ANFIS4MF 3.0 180 140 16

MPC 4.1 180 135 17
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Figure 17: Behavior of the controlled and manipulated variables
under MPC.

Table 5: Complementary analysis for fuzzy PI controller.

Parameters Open-loop Fuzzy PI

Response time (s) — 171

ITAE (×103) 950.5 56.6

Specific enzymatic activity (U/g) 0.32 1.80

Electric energy consumption (kWh) 42 3.6

maintenance of bulk temperature, resulting in high quality
of the product.

4. Conclusions

We have described the design and experimental testing
of intelligent control algorithms for temperature control
during the precipitation of bromelain with solvent. The
temperature was monitored and controlled in order to
minimize bromelain denaturation during the precipitation
process.

Tuning the controllers proved to be a difficult task in
this fed-batch nonlinear process. Fuzzy tuning was hindered

by the simultaneous multiple adjustments. Nevertheless, the
procedure based on the analysis of the process reaction
curves proved to be an attractive strategy to provide a suitable
nonlinear controller design for transient processes.

From the results, it was concluded that all proposed con-
trollers were suitable for the precipitation tank temperature
control. The fuzzy PI Mamdani controller showed better
global performance criteria: small ITAE, short response time
and pump saturation time, and higher enzyme activity in the
product. This fuzzy PI controller also presented lower power
consumption, providing a significant reduction of operating
costs. This high performance of the fuzzy PI controller can
be attributed to its ability to adapt to the nonlinearities.

The real-time data exchange between the softwares
MATLAB and Indusoft and also between the softwares and
the field devices showed to be reliable and fast through the
implemented Fieldbus architecture.

The developed controllers gathered the benefits of the
artificial intelligence in affording nonlinearities, making this
methodology a promising new way to face complex process
control problems, without spending efforts unnecessarily in
rigorous mathematical modeling.

Nomenclature

Kp: Static process gain
uss: Bias
ε: Temperature error
Δε: Change of error
ΔU(t): Change in control action
U(t): MV: control action
Y(t): PV: plant output
μ: μi: Membership function (activation level)
ITAE: Integral of the time-weighted absolute error

=
∫∞

0 t‖e(t)‖dt
Ysp: Set point
u∗: Defuzzified action value
min: Minimum operator
OPC: OLE for process control
i: Index of discrete points
N : Negative membership function
P: Positive membership function.
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