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Abstract

Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) is a well-

recognized complication with an ominous outcome.

Hypothesis: Bayesian networks (BNs) not only can reveal the complex interrelation-

ships between predictors and CSA-AKI, but predict the individual risk of CSA-AKI

occurrence.

Methods: During 2013 and 2015, we recruited 5533 eligible participants who under-

went cardiac surgery from a tertiary hospital in eastern China. Data on demographics,

clinical and laboratory information were prospectively recorded in the electronic

medical system and analyzed by gLASSO-logistic regression and BNs.

Results: The incidences of CSA-AKI and severe CSA-AKI were 37.5% and 11.1%. BNs

model revealed that gender, left ventricular ejection fractions (LVEF), serum creatinine

(SCr), serum uric acid (SUA), platelet, and aortic cross-clamp time (ACCT) were found as

the parent nodes of CSA-AKI, while ultrafiltration volume and postoperative central

venous pressure (CVP) were connected with CSA-AKI as children nodes. In the severe

CSA-AKI model, age, proteinuria, and SUA were directly linked to severe AKI; the new

nodes of NYHA grade and direct bilirubin created relationships with severe AKI through

was related to LVEF, surgery types, and SCr level. The internal AUCs for predicting CSA-

AKI and severe AKI were 0.755 and 0.845, which remained 0.736 and 0.816 in the

external validation. Given the known variables, the risk for CSA-AKI can be inferred at

individual levels based on the established BNs model and prior information.

Conclusion: BNs model has a high accuracy, good interpretability, and strong general-

izability in predicting CSA-AKI. It facilitates physicians to identify high-risk patients

and implement protective strategies to improve the prognosis.
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1 | INTRODUCTION

Along with the enhancement of medical technology, considerable pro-

gress has been achieved in the surgical treatments of cardiac diseases.

Each year, an estimated 2 million cardiac surgeries are performed

worldwide.1 Acute kidney injury (AKI) is a well-recognized compli-

cation following cardiac surgery. The pooled incidence of cardiac

surgery-associated acute kidney injury was 24.3% from a global

meta-analysis.2 Furthermore, severe CSA-AKI is positively associ-

ated with a higher mortality, prolonged length of hospital stay, and

increased medical cost.3 The occurrence of CSA-AKI involves both

demographic and perioperative factors, and the specific mechanism

and severity vary with the individual.4

Early identification of high-risk CSA-AKI patients, with the appli-

cation of prediction models, allows clinicians to monitor these patients

periodically and take prophylaxis to prevent the occurrence of AKI.

Several risk prediction models for AKI have been developed based on

logistic regression, such as Clinic Score,5 Mehta Score,6 and the Simpli-

fied Renal Index Score.7 Yet, despite the findings that good perfor-

mance was reported in internal evaluation, most of these models had

poor discrimination in the external validation with an area under the

receiver-operator characteristic curves (AUC) below 0.7.8,9 Hence, it

is necessary to apply advanced algorithms to develop a more flexible

and efficient model to identify AKI, especially severe AKI, in an early

stage. Bayesian networks (BNs) is considered as one of the classical

machine learning algorithms. It can not only graphically exhibit the

relationships between casual or associated variables in a network, but

also quantitatively define the conditional probability of each node. In

the field of nephron-epidemiology, this characteristic makes BNs

more applicable to verify the multiple etiology hypothesis of CSA-AKI.

To this end, we conduct a prospective cohort in patients who

underwent cardiac surgeries. The objective is to propose the BNs-

based predictive model for revealing the complex inherent relations

between CSA-AKI and its associated factors, and then to evaluate the

model's predictive ability and external practicality.

2 | METHODS

2.1 | Patient selection

From January 1st 2013 to December. 31st 2015, patients receiving

cardiac surgeries from a tertiary hospital in Shanghai of China were

enrolled as the study participants. We further excluded those who

were under 18 years old, receiving the heart transplant, lacked sur-

gery, and biochemical data, or took less than one serum creatinine

(SCr) test. Then the eligible participants were subdivided participants

into two cohorts. Patients admitted in 2013 to 2014 were assigned as

a derivation cohort, and used for statistical analysis, BNs modeling,

and internal evaluation. The rest patients in 2015 were designated as

a validation cohort to verify the model's external generalizability. The

study has been approved by the Zhongshan hospital institutional

board (B2017-039). Participation was voluntary and anonymous, with

the confidentiality of patients' identity information assured. Before

data collection, informed consent was signed by all participants or

their agents.

2.2 | Data collection

We applied a self-designed questionnaire to collect demographic

information and preexisting comorbidities. Data on perioperative fac-

tors were retrieved along with its time records in the electronic medi-

cal records. Laboratory indicators within 24 hours at admission were

used as the baseline biochemical levels. We finally selected 27 medical

indicators that were common in cardiac surgery. These variables were

divided chronologically into four groups: ① demographic features:

age, gender, body mass index (BMI); ② preoperative features: hyper-

tension, diabetes, coronary angiography, New York heart association

(NYHA) grade, left ventricular ejection fractions (LVEF), alanine amino-

transferase (ALT), aspartate aminotransferase (AST) and direct biliru-

bin (DBil), SCr, estimated glomerular filtration rate (eGFR), serum uric

acid (SUA), urine protein, urine erythrocyte, album, hemoglobin,

hematocrit, platelet, serum sodium, and potassium; ③ intraoperative

features: cardio-pulmonary bypass (CPB), surgery type, aortic cross-

clamp time (ACCT), and ultrafiltration volume; ④ postoperative fea-

ture: central venous pressure (CVP) within 6 hours.

2.3 | Definition and classification

According to the 2012 KDIGO criteria,10 AKI is diagnosed as the

absolute value of the SCr increase ≥0.3 mg/dL (≥26.5 μmol/L) within

48 hours or an increase ≥1.5 times baseline levels within 7 days, or a

urine output <0.5 mL/kg/h lasting over 6 hours. Severe AKI refers to

an SCr increase ≥2.0 times baseline level or ≥ 4.0 mg/dL or initiation

of renal replacement therapy (RRT). Cardiac surgery was classified as

the valve, coronary artery bypass grafting (CABG), aorta, valve+CABG,

valve+large vessels, and others. The reference range of eGFR and

SUA was ≥90 mL/min/1.73m2 and ≤ 359 μmol/L, respectively. The

reference range of serum sodium and potassium was

137 ~ 147 mmol/L and 3.5 ~ 5.3 mmol/L, respectively. Values out of

the reference range were considered as hypo-electrolytemia or hyper-

electrolytemia.

2.4 | gLASSO-logistic regression

Multicollinearity and high dimensionality are often encountered in

clinical data. If not handled properly, they can lead to incorrect param-

eter estimates or wrong inferences. The LASSO (Least absolute

shrinkage and selection operator) method is a shrinkage estimation

method proposed by Tibshirani (1996).11 LASSO can apply a penalty

term l1, which is based on the ordinary least squares estimation, and

compress the regression coefficients β of irrelevant variables to zero,

thereby achieving model estimation and variable selection. The
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gLASSO (group LASSO) is an extension of LASSO, which can select

the whole categorical variable as predefined, instead of the single

dummy variables.12 The expression of gLASSO is

β̂gLASSO = argmin Y−Xβk k22 +
XG

g =1
λg βIg

���
���
2

� �

where G is the number of groups and Ig is the variable set of gth

group, g = 1, 2, …, G. λg refers to the penalty parameter of gth group,

which can be regarded as an intermediate between the l1- and l2- type

penalty.

2.5 | Bayesian networks

Bayesian networks was first proposed by Pearl Judea in 1988 and

widely used in the field of machine learning.13 It contains a directed

acyclic graph (DAG) G = (V, A) and a global probability distribution. In

DAG, each node vi ∈ V corresponds to a random variable Xi. The

global probability distribution can be decomposed into smaller condi-

tional probability distributions (CPD) according to the edges aij ∈ A in

the DAG. The factorization of BN' global distribution is specified as:

P X1,…,Xnð Þ=P X1ð ÞP X2jX1ð Þ…P XnjX1,X2,…,Xn−1ð Þ=
Yn

i=1

P Xijπ Xið Þ;θ Xið Þð Þ

where π(Xi) is a set of parent variables of Xi. Given the value of π(Xi),

each node Xi is conditionally independent of its non-descendants.

Building a BNs model requires two steps: structure learning and

parameter learning. Tabu-search is one of the advanced algorithms in

structure learning. Compared with K2 and hill-climbing, Tabu-search

can escape local optima, by random restarts as well as single-arc addi-

tion, removal and reversals, to achieve an optimal network with mini-

mized score function.14 Parameter learning refers to defining the

numerical parameters of each local distribution by using either maxi-

mum likelihood (ML) estimation or Bayesian estimation. ML estimation

aims at finding the value of parameter θ, which maximizes the likeli-

hood P(Xi| θ), and it is written as ~θ = argmaxθP Xijθð Þ . BNs inference

boils down to finding a posterior distribution by applying the Bayesian

rules. If we call E as the set of observed variables (Evidence), and Z as

the set of target or non-observed variables, then computing an infer-

ence on a graphical model finds:

P ZjE,θð Þ= P Z,E j θð Þ
P Ejθð Þ =

P Z,E j θð ÞP
z∈ZP Z= z,E j θð Þ

2.6 | Statistical analysis

The distributional differences of covariates between the derivation

and validation cohorts were assessed by using the standardized differ-

ences (SD). SD can distinguish the clinical difference, rather than

statistical significance, in a large sample size. If the SD values of most

variables exceeded the threshold of 10%, participants in two cohorts

were considered to originate from different source populations. In the

derivation cohort, we further described the distribution of CSA-AKI

and severe AKI in different clinical factors. Then we quantified their

association strength with the adjusted odds ratios (aOR) by using mul-

tiple logistic regression. The analysis was conducted in IBM SPSS 22.0

(IBM Corp., Armonk, New York) with a significance level of 0.05. The

gLASSO-logistic regression was run in “grpreg” packages of R program

3.6.0 (R core team) to select predictors of CSA-AKI from candidate

variables. In gLasso penalty algorithm, the 10-fold cross-validation was

applied to plot the set of the regularization parameter λ. When cross-

validation error reached the minimized value (log[λ.min]), the optimal

variables were selected. After that, these predictors were used for

BNs modeling in “bnlearn” packages of R program. The structure of

BNs was learned under the tabu-search algorithm, while the ML esti-

mation was chosen to acquire the CPD parameters. Model visualiza-

tion was done in Netica 5.18 (Norsys Software Corp., Vancouver, BC,

Canada). Lastly, the predictive ability of BNs models was validated, in

both the derivation and validation cohorts, by using precision rate,

recall rate, F-measure value, and AUCs. The related analysis was run

in Weka 3.8.0 software (Waikato Environment for Knowledge Analy-

sis, the University of Waikato, New Zealand).

3 | RESULTS

3.1 | Baseline characteristics and CSA-AKI
incidence

In total, 5533 patients were enrolled in the final analysis. Of them,

3639 patients were assigned to the derivation cohort and 1894

patients to the validation cohort (Supplementary Figure S1). In the

derivation cohort, the average age was 55.0 ± 13.2 years, and 59.6%

was male, while the average age was 55.8 ± 13.0 years, and 57.5%

was male in the validation cohort. Most of the covariates shared

a < 10% SD value, indicating that participants from two cohorts were

clinically comparable (Supplementary Table S1).

3.2 | Preoperative risk factors associated with
CSA-AKI

In the derivation cohort, 1364 patients were diagnosed with CSA-AKI

(37.5%). Of them, 405 patients developed to severe AKI quickly. In

Figure 1, male patients shared a relatively higher AKI risk (42.7% vs

29.7%). Dividing age into four levels, the incidence of CSA-AKI

increased significantly from 18.8% in the youngest group to 45.3% in

patients over 60 years of age. Obesity (BMI≥28) also increased the

incidence of AKI (51.4%). Table 1 showed that poor cardiac conditions

(NYHA grade ≥ 3, LVEF<50%) were associated with a substantially

higher risk of CSA-AKI. Patients with a higher DBiL, eGFR, and SUA

levels before surgery also increase the risks of developing CSA-AKI
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(aOR ranged from 1.20 to 2.63). Coronary angiography was not found

a significant association with both AKI and severe AKI. When patients

had proteinuria and hematuria at admission, the aOR of CSA-AKI

increased to 2.24 and 1.30. Other biochemical risk factors included

anemia, hypoalbuminemia, thrombocytopenia, and so forth. Besides,

the above-mentioned features were identified as the risk factors for

severe AKI but shared higher aOR values. One exception was that

hyponatremia and hyperkalemia were more positively associated with

severe AKI rather than AKI.

3.3 | Intraoperative and postoperative risk factors
associated with CSA-AKI

Table 1 also demonstrates that patients who underwent complicated

cardiac surgery, such as the aorta, valve+CABG or larger vessels, were

more susceptible to CSA-AKI (aOR ranged from 3.45 to 6.54) and

severe AKI (aOR ranged from 5.65 to 19.43). The utilization of CPB,

ACCT, and ultrafiltration volume also has marked impacts on develop-

ing CSA-AKI. With the increase of CVP level after surgery, the risk of

AKI also kept growing. Patients with a CVP of ≥10 mmHg had an

adjusted odds ratio of 4.53 for AKI and 8.42 for severe AKI.

3.4 | Variable selection in gLASSO-logistic
regression

Before BNs modeling, we applied gLASSO-logistic regression to

perform variable selections for both CSA-AKI and severe AKI.

When log(λ.min) reached-4.63, twelve predictors of CSA-AKI were

selected from the original feature-pool (Supplementary Figure S2).

It included age, gender, BMI, SCr, SUA, proteinuria, LVEF, platelet,

surgery type, ACCT, ultrafiltration volume, and postoperative CVP

level. Following the same steps with a log(λ.min) of −4.69, thirteen

not identical variables were selected for severe CSA-AKI predic-

tion, including age, BMI, SCr, SUA, NYHA grade, LVEF, platelet,

DBiL, proteinuria, surgery type, ACCT, ultrafiltration volume, and

CVP level. Then, we presented these predictors into multiple logis-

tic regression to quantify the association strength with CSA-AKI

and severe AKI (Table 2).

3.5 | BNs establishment and model inference

The predictive models for CSA-AKI and severe CSA-AKI were con-

structed separately by using BNs analysis. Each predictor was rep-

resented by a node, and its relationships with other nodes were

linked through an edge. In the CSA-AKI model, there were 13

nodes and 18 directed edges between CSA-AKI and its predictors.

Figure 2A shows the complex network structure of CSA-AKI model,

in which gender, LVEF, SCr, SUA, platelet, and ACCT were

observed as the parent nodes of AKI. Mechanical ventilation and

postoperative CVP were also connected with CSA-AKI as children

nodes. Surgery type was indirectly linked to CSA-AKI through

ACCT, while proteinuria created connections with AKI through

affecting SCr level. Meanwhile, the severe CSA-AKI model enrolled

14 nodes and 19 edges, where most of the variates and relation-

ships were similar to those in the CSA-AKI model (Figure 2B). The

specific-changed relationships in the severe CSA-AKI model were

as follows: age and proteinuria were directly linked to severe AKI;

the new node of NYHA grade was related to LVEF and surgery

type, which created a relationship with severe AKI through SUA

and ACCT; DBiL had indirect connections with severe AKI through

proteinuria and SCr level.

Given the known evidence variables, we can infer the risk for

developing CSA-AKI based on the established BNs model. For exam-

ple, when a 50-year-old male patient received 1.5 hours ACCT and

3500 mL ultrafiltration during valve surgery and maintained a postop-

erative CVP of 9 mmHg, the maximum posterior probability of AKI

was 71.6% based on prior information acquired from the model (Sup-

plementary Figure S3A). While if ACCT and ultrafiltration were

adjusted at the minimum level and correcting the CVP timely, the inci-

dence of AKI reduced to 16.1% notably (Supplementary Figure S3B).

F IGURE 1 CSA-AKI and severe AKI incidence in varied
demographics among patients receiving cardiac surgery
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TABLE 1 Perioperative factors of CSA-AKI and severe AKI in patients with cardiac surgery in the derivation cohort (n = 3639)

Variables Total

CSA-AKI Severe CSA-AKI

n (%) aORa (95% CI) n (%) aORa (95% CI)

Comorbidities

Hypertension 1142 504(44.1) 1.13(0.97 ~ 1.31) 156(13.7) 1.22(0.96 ~ 1.55)

Diabetes 366 147(40.2) 0.85(0.67 ~ 1.06) 43(11.7) 0.83(0.58 ~ 1.18)

Coronary angiography

No 2004 700(34.9) 1.00 210(10.5) 1.00

Yes (within 3 days) 408 162(39.7) 0.86(0.68 ~ 1.08) 52(12.7) 0.92(0.65 ~ 1.31)

Yes (outside 3 days) 1227 502(40.9) 0.99(0.84 ~ 1.16) 143(11.7) 0.92(0.72 ~ 1.18)

NYHA grade

1–2 1531 503(32.9) 1.00 131(8.6) 1.00

3–4 2108 861(40.8) 1.38(1.20 ~ 1.59) 274(13.0) 1.67(1.33 ~ 2.10)

LVEF

≥50% 3209 1153(35.9) 1.00 331(10.3) 1.00

<50% 430 211(49.1) 1.52(1.24 ~ 1.87) 74(17.2) 1.94(1.44 ~ 2.61)

Liver function

ALT (≥40 U/L) 484 183(37.8) 0.95(0.77 ~ 1.16) 53(11.0) 0.98(0.71 ~ 1.35)

AST (≥35 U/L) 496 209(42.1) 1.25(1.03 ~ 1.52) 72(14.5) 1.53(1.14 ~ 2.04)

DBiL (≥20.4 μmol/L) 507 223(44.0) 1.50(1.23 ~ 1.83) 92(18.1) 2.43(1.84 ~ 3.19)

Renal function

SCr (<115 μmol/L) 3431 1226(35.7) 1.00 351(10.2) 1.00

SCr (≥115 μmol/L) 208 138(66.3) 1.67(1.43 ~ 1.94) 54(26.0) 2.05(1.69 ~ 2.49)

eGFR (≥90 mL/min/1.73m2) 1722 548(31.8) 1.00 162(9.4) 1.00

eGFR (60 ~ 89 mL/min/1.73m2) 1624 640(39.4) 1.20(1.04 ~ 1.40) 177(10.9) 1.11(0.87 ~ 1.41)

eGFR (≤59 mL/min/1.73m2) 293 176(60.1) 2.63(2.02 ~ 3.42) 66(22.5) 3.19(2.23 ~ 4.56)

SUA (≤359 μmol/L) 1942 590(30.4) 1.00 154(7.9) 1.00

SUA (360 ~ 419 μmol/L) 790 314(39.7) 1.34(1.12 ~ 1.61) 102(12.9) 1.83(1.39 ~ 2.42)

SUA (≥420 μmol/L) 907 460(50.7) 2.06(1.74 ~ 2.44) 149(16.4) 2.79(2.15 ~ 3.62)

Urine Protein 168 93(55.4) 2.24(1.62 ~ 3.08) 43(25.6) 3.66(2.42 ~ 5.52)

Urine Erythrocyte 456 176(38.6) 1.30(1.05 ~ 1.60) 72(15.8) 1.73(1.28 ~ 2.34)

Biochemical test

Album (<35 g/L) 172 81(47.1) 1.47(1.08 ~ 2.02) 25(14.5) 1.60(1.01 ~ 2.55)

Hemoglobin (<115 g/L) 400 158(39.5) 1.30(1.04 ~ 1.63) 55(13.8) 1.44(1.04 ~ 2.00)

Hematocrit (<30%) 53 28(52.8) 2.17(1.25 ~ 3.80) 5(9.4) 1.37(0.51 ~ 3.66)

Platelet (≤125*109) 406 200(49.3) 1.69(1.37 ~ 2.09) 67(16.5) 1.94(1.43 ~ 2.64)

Electrolyte disorders

Hyponatremia 62 28(45.2) 1.35(0.81 ~ 2.27) 13(21.0) 2.28(1.18 ~ 4.41)

Hypernatremia 124 44(35.5) 0.83(0.57 ~ 1.21) 13(10.5) 0.84(0.46 ~ 1.54)

Hypokalemia 147 66(44.9) 1.42(1.01 ~ 2.00) 23(15.6) 1.67(1.03 ~ 2.71)

Hyperkalemia 30 15(50.0) 1.85(0.89 ~ 3.88) 7(23.3) 3.15(1.25 ~ 7.97)

CPB

Yes 2619 1020(38.9) 1.97(1.67 ~ 2.33) 327(12.5) 2.60(1.97 ~ 3.44)

No 1020 329(32.3) 1.00 78(7.6) 1.00

Surgery type

Valve 1935 689(35.6) 1.72(1.42 ~ 2.09) 191(9.9) 2.42(1.71 ~ 3.43)

CABG 756 254(33.6) 1.00 51(6.7) 1.00

Aorta 108 72(66.7) 6.54(4.17 ~ 10.25) 38(35.2) 19.43(10.9 ~ 34.64)

756 LI ET AL.



3.6 | Predictive ability of BNs model in the
internal, 10-fold cross, and external validation

The precision rate for predicting CSA-AKI was about 70% in both

internal and external validation (Figure 3A). It suggested that BNs

model has an advanced suitability for predicting CSA-AKI. Notably, in

the severe AKI model, the F-measure value was up to 85.9% in inter-

nal validation and 88.7% in external validation, demonstrating a good

agreement between the actual observations and the BNs predictions

for the risk of severe AKI (Figure 3B). Figure 3C,D provides the AUCs

for both CSA-AKI and severe AKI. It was observed that the internal

AUCs for predicting CSA-AKI and severe-AKI were 0.755 and 0.845.

In the process of external validation, AUCs also remained at levels of

0.736 and 0.816. The Mantel-Haenszel test showed that the differ-

ences of predictive accuracy were not statistically significant among

internal, 10-fold cross, and external validation datasets (P = .106 and

.229 in CSA-AKI model and severe AKI model, respectively).

4 | DISCUSSION

In the present study, the incidence of CSA-AKI was estimated at

37.5%. It is consistent with reported literature, ranging from 3.1% to

42% according to the source population and AKI definition.15,16

Among these AKI cases, nearly one third (405/1364) could quickly

develop to severe condition (stage 2-3) within a short time. CSA-AKI

can be described as the type-1 cardiorenal syndrome, inducing an

acute or chronic dysfunction of the heart and kidneys. An abrupt

deterioration of cardiac or renal function might trigger pathophysio-

logic disorder of the other organ.17 Apart from nephrologists, physi-

cians in other departments usually ignore the early detection of AKI,

due to a lack of dynamic SCr monitoring. One cross-sectional survey

in China reported that over 70 % of hospitalized patients with identifi-

able AKI could not be recognized.18

The occurrence of CSA-AKI was affected by a range of risk fac-

tors. It refers to not only the demographic features such as age,

gender, and comorbidity, but also the perioperative factors such as

the surgery complexity, ACCT, ultrafiltration volume, and whether

or not CPB are given. The main pathways of CSA-AKI include hypo-

perfusion, ischaemia-reperfusion injury, neurohumoral activation,

inflammation, oxidative stress, nephrotoxins, and mechanical

factors.4,19

In this study, we applied BNs to develop predictive models of AKI

and severe AKI in patients with cardiac surgery. Through the directed

acyclic graph, the complex relationships between risk factors and AKI

were delineated intuitively. Importantly, these interdependencies are

consistent with the biological and clinical interpretations.20,21 For

example, patients with complicated cardiac surgeries and prolonged

ACCT are more likely to develop into CSA-AKI. Yet, such high-order

interaction cannot be conducted in traditional logistic models. BNs

acted as a tool to represent beliefs and uncertain knowledge about

facts and events using probabilities. Through data mining and self-

TABLE 1 (Continued)

Variables Total

CSA-AKI Severe CSA-AKI

n (%) aORa (95% CI) n (%) aORa (95% CI)

Valve + CABG 167 104(62.3) 3.58(2.52 ~ 5.10) 40(24.0) 6.85(4.15 ~ 11.29)

Valve + large vessels 235 130(55.3) 3.45(2.52 ~ 4.72) 41(17.4) 5.65(3.49 ~ 9.15)

Others 438 115(26.3) 1.50(1.12 ~ 2.01) 44(10.0) 2.99(1.87 ~ 4.77)

ACCT

No 1020 329(32.3) 1.00 78(7.6) 1.00

≤59 min 1507 468(31.1) 1.36(1.13 ~ 1.63) 125(8.3) 1.51(1.10 ~ 2.07)

60 ~ 119 min 1037 517(49.9) 3.02(2.49 ~ 3.67) 177(17.1) 4.35(3.19 ~ 5.92)

≥120 min 75 50(66.7) 7.26(4.29 ~ 12.29) 25(33.3) 15.42(8.12 ~ 29.30)

Ultrafiltration volume

≤1999 mL 1086 337(31.0) 1.00 81(7.5) 1.00

2000 ~ 2999 mL 2214 850(38.4) 1.37(1.17 ~ 1.61) 258(11.7) 1.71(1.31 ~ 2.24)

≥3000 mL 339 177(52.2) 2.36(1.83 ~ 3.05) 66(19.5) 3.63(2.50 ~ 5.27)

Postoperative CVP

≤7 mmHg 1340 260(19.4) 1.00 49(3.7) 1.00

8 ~ 9 mmHg 867 354(40.8) 2.88(2.37 ~ 3.50) 100(11.5) 4.41(3.07 ~ 6.33)

≥10 mmHg 1432 750(52.4) 4.53(3.80 ~ 5.39) 256(17.9) 8.42(6.09 ~ 11.64)

Abbreviations: ACCT, aortic cross-clamp time; ALT, alanine aminotransferase; aOR, adjusted odds ratio; AST, aspartate aminotransferase; CABG, coronary

artery bypass grafting; CI, confidence interval; CPB, cardiac pulmonary bypass; CSA-AKI, cardiac surgery associated acute kidney injury; CVP, central

venous pressure; DBil, direct bilirubin; eGFR, estimated glomerular filtration rate; LVEF, left ventricular ejection fractions; NYHA, New York heart associa-

tion; SCr, serum creatinine; SUA, serum uric acid.
aOR was adjusted by age, gender, and body mass index.
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learning,22 BNs can capture probabilistic relations from the “ready-

made” medical records and reveal the potential unknown relationships

by separating direct and indirect dependencies.23 Before BNs model-

ing, we initially applied gLASSO-logistic regression to remove irrela-

tive variables and overcome the issues of local overfitting and node

sparsity. So far, LASSO has been widely used for data reduction and

model fitting in BNs and other machine learning.24,25

The BNs-based model showed a high accuracy, good interpret-

ability, and strong generalizability. In CSA-AKI model, the AUCs were

beyond to 0.730. While the model performed even better for the pre-

diction of severe AKI with AUCs>0.800 for both internal and external

validation. Even compared with the previous AKI model by using

other machine learning algorithms, the predictive ability of our model

keeps no less striking. Kate et al.26 compared the AUCs of support

vector machines, decision trees, and naive Bayes detection in older

patients and found that naive Bayes performed better (AUC: 0.699).

Koyner et al.27 applied a gradient boosting machine model for

predicting AKI with the AUC of 0.730 Among general inpatients. Dif-

ferent from these algorithms, our model could infer the probability of

AKI occurring based on the acquired prior knowledge even if the

known evidence variables were limited. With the accumulation of

new data, the structure and parameter of BNs model can keep

upgrading continuously. Eventually, we can infer further information

or make predictions about unobserved situations and events.

TABLE 2 CSA-AKI and severe AKI predictors selected by gLASSO-Logistic regression
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F IGURE 2 Bayesian networks model of risk factors of CSA-AKI and severe AKI

F IGURE 3 Model evaluation in the internal, 10-fold cross, and external validation
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Given the complex and dynamic pathologies of CSA-AKI, it is

challenging to conduct clinical trials. With the causal inference of

BNs model, we can simulate the effects of interventions without

performing real-world experiments, which in many cases is expen-

sive and/or impossible. As illustrated in Supplement Figure S3, if

medical interventions were taken to avoid excessive ACCT and ultra-

filtration volume and correct the postoperative CVP level timely, the

incidence of CSA-AKI should be reduced significantly from 71.6% to

16.1%. Preliminary evidence also suggests that avoidance of hemo-

dynamic instability and careful control of postoperative CVP and

mean arterial pressure (MAP) level may help to alleviate the risk of

AKI.28-30 These measures are almost cost-free and can be

implemented as secondary prevention strategies in daily clinical

practices.

The hospital-acquired AKI could have been reduced by a fifth if

physicians paid more attention to monitoring electrolytes, identifying

patients with high-risk, and executing kidney prophylaxis.31 Leverag-

ing BNs model into the personalized risk prediction can contribute to

identifying those at risk for CSA-AKI (even before SCr rising) and

improve patients' postoperative outcomes. Still, the study limitations

should be stated. Firstly, participants came from a single medical cen-

ter. Although we had tried to recruit as many patients as possible, the

representativeness are potentially biased. It may contain the further

extrapolation of BNs models. Secondly, this study did not collect the

medication history of nephrotoxic drugs due to the extensive lack of

drug data. The absence of this factor may affect our model's predic-

tive ability to some extent. Thirdly, it has been reported that some

novel biomarkers (interleukin 18 and kidney injury molecule-1) could

predict the occurrence of subclinical kidney injury,32 which can act as

a promising tool to improve the early diagnosis. In future studies, we

intend to conduct a multicenter, prospective cohort to collect both

clinical and molecular data. The BNs' structure and parameters also

will be retrained in the more extensive database with a clear causal

time-sequence.

5 | CONCLUSIONS

AKI remains a substantially high incidence in patients who underwent

cardiac surgeries. We propose a BNs model based on demographic

and perioperative risk factors. It not only can reveal the complex rela-

tionships between predictors but also infers the individual probability

of developing CSA-AKI. It will facilitate physicians to identify patients

with a higher risk of AKI and take protective strategies to improve

patients' prognosis.
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