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Abstract

Background: Bemisia tabaci (Gennadius) is a phloem-feeding insect poised to become one of the major insect pests in open
field and greenhouse production systems throughout the world. The high level of resistance to insecticides is a main factor
that hinders continued use of insecticides for suppression of B. tabaci. Despite its prevalence, little is known about B. tabaci
at the genome level. To fill this gap, an invasive B. tabaci B biotype was subjected to pyrosequencing-based transcriptome
analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes.

Methodology and Principal Findings: Using Roche 454 pyrosequencing, 857,205 reads containing approximately 340
megabases were obtained from the B. tabaci transcriptome. De novo assembly generated 178,669 unigenes including
30,980 from insects, 17,881 from bacteria, and 129,808 from the nohit. A total of 50,835 (28.45%) unigenes showed similarity
to the non-redundant database in GenBank with a cut-off E-value of 10–5. Among them, 40,611 unigenes were assigned to
one or more GO terms and 6,917 unigenes were assigned to 288 known pathways. De novo metatranscriptome analysis
revealed highly diverse bacterial symbionts in B. tabaci, and demonstrated the host-symbiont cooperation in amino acid
production. In-depth transcriptome analysis indentified putative molecular markers, and genes potentially involved in
insecticide resistance and nutrient digestion. The utility of this transcriptome was validated by a thiamethoxam resistance
study, in which annotated cytochrome P450 genes were significantly overexpressed in the resistant B. tabaci in comparison
to its susceptible counterparts.

Conclusions: This transcriptome/metatranscriptome analysis sheds light on the molecular understanding of symbiosis and
insecticide resistance in an agriculturally important phloem-feeding insect pest, and lays the foundation for future
functional genomics research of the B. tabaci complex. Moreover, current pyrosequencing effort greatly enriched the
existing whitefly EST database, and makes RNAseq a viable option for future genomic analysis.
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Introduction

The whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodi-

dae), is a phloem-feeding insect pest that causes severe damage in

both agricultural and horticultural systems worldwide. More than

24 morphologically indistinguishable B. tabaci biotypes have been

identified [1], and recent studies suggest that most of these

biotypes represent genetically distinct cryptic species [2–5].

Among them, B biotype (also known as Middle East-Asia Minor

1) [2] has been studied extensively and considered as one of the

most invasive and destructive whiteflies worldwide. As an invasive

species, B. tabaci can cause considerable yield losses dierctly

through phloem-feeding and indirectly through the transmission of

plant pathogenic begomoviruses [6]. Bemisia tabaci has been

controlled predominantly by synthetic insecticides. Due to

consistent exposure to insecticides, B. tabaci has developed high

levels of resistance to a wide range of commonly used synthetic

insecticides [7–11]. In China, B. tabaci was first recorded in the late

1940s, and the indigenous whiteflies have never elevated to the

major pest status. However, this has changed when B. tabaci B

biotype, originated in the Middle East-Asia Minor region

including Iran, Israel, Jordan, Kuwait, Pakistan, Saudi Arabia,
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Syria, United Arab Republic, and Yemen, was introduced into the

mainland China in the mid-1990s. Since then, B biotype has

gradually displaced the indigenous whiteflies in most parts of the

China [12,13], and has become a major insect pests in the open

field as well as in the greenhouse production systems.

Same as phloem-feeding aphids, B. tabaci not only harbors

Portiera aleyrodidarum, an obligatory symbiotic bacterium which

supplements the amino acid deficient diets [14], but also has a

diverse array of facultative symbionts including Rickettsia, Hamilto-

nella, Wolbachia, Arsenophonus, Cardinium and Fritschea. Although

these facultative symbionts are considered ‘‘secondary’’ because

they are not essential for the survival of their hosts, they can

manipulate hosts in many other ways, and bear evolutionary

significance [15]. Chiel et al surveyed the composition of facultative

symbionts among laboratory and field populations of B. tabaci from

various host plants in Israel [16]. The results established a

correlation between facultative symbionts and whitefly biotypes,

e.g., Hamiltonella was B -specific, whereas Wolbachia and Arsenopho-

nus were detected only in the Q biotype. Such association suggests

a possible contribution of these facultative bacterial symbionts to

the biological differences observed among whitefly biotypes,

including insecticide resistance, host range, competitive displace-

ment, virus transmission, and speciation [16]. Morin et al showed

that a 63-kDa GroEL homologue produced by the endosymbiotic

Hamiltonella is essential for the circulative transmission of the

Tomato yellow leaf curl virus (TYLCV) in B. tabaci [17]. Interactions

between GroEL protein and TYLCV particles ensure the safe

circulation of the virus in insect hemolymph [17–19]. In Israel,

Hamiltonella has only been detected in B biotype [16], and B can

efficiently transmit the virus. In contrast, Q does not harbor

Hamiltonella, and it can barely transmit TYLCV. Based on these

observations, a causal link between the transmission efficiency of

TYLCV and the presence of Hamiltonella has been established [18].

In southwestern United States, the range expansion of B. tabaci B

biotype is apparently facilitated by the rapid spread of Rickettsia sp.

nr. Bellii, a maternally inherited facultative bacterial symbiont

[15]. Whiteflies infected with Rickettsia had a significantly higher

fitness level and Rickettsia can manipulate the sex ratio of whitefly

hosts by producing female-biased offspring. This dynamic

interactions between Rickettsia and their whitefly hosts represent

a rapid coevolution of both insects and their symbionts to optimize

the newly established symbiosis [15].

Despite its ever-increasing pest status and enormous economic

impacts, the whole genome sequencing of B. tabaci has yet to be

materialized as a result of its innate complexity in biology

(symbiosis) and genome (genome size, repeat elements, and high

levels of heterozygosity). Next-generation sequencing (NGS) [20–

22], including Roche 454-based pyrosequencing and Solexa/

Illumina-based deep sequencing, have provided unprecedented

opportunities for genomic research in non-model systems wherein

little or no genomic resources are available [23]. For example,

NGS has been applied in various transcriptomic analyses in insects

and has contributed substantially to gene discovery, including

molecular markers (SNPs) [24], Bt receptors [25], rice stripe virus

identification [26], cyanogenic glucosides biosynthesis [27],

immune responses [28,29], chemosensation and sex determination

[30], insecticide targets and detoxifying enzymes [31–33],

developmental stage -specific genes [34,35] and tissue-specific

genes [36,37] (Table S1). Transcriptomic analysis of the

greenhouse whitefly, Trialeurodes vaporariorum, uncovered a diverse

array of transcripts potentially involved in the xenobiotics

detoxification and the targets for major classes of synthetic

insecticides [31]. Most recently, the in-depth analyses of B. tabaci

transcriptomes gave a better understanding of molecular mecha-

nisms underlying the conspecific divergence of the B and Q

biotypes [32,38].

In this study, we used the Roche 454 pyrosequencing platform

to provide a comprehensive view of the genes expressed in an

invasive B.tabaci B biotype. We generated over 300 million bases of

high-quality DNA sequences and carried out transcriptome and

metatranscriptome analyses to shed light on the molecular bases of

symbiosis and insecticide resistance. Moreover, this transcriptome

sequencing effort has significantly enriched the existing gene pool

for this agriculturally important key pest and provides an

invaluable resource for the subsequent RNAseq analysis as well

as for the future B. tabaci genome annotation.

Results and Discussion

Sequencing Summary
To obtain a comprehensive view of the transcriptional profile of

the invasive sweet potato whitefly, Bemisia tabaci, B biotype in

China, a polyphenic cDNA library including egg, nymph, and

adult developmental stages was constructed and sequenced using

the Roche 454 GS FLX Titanium platform. One picotiter plate of

sequencing generated 1,109,732 raw reads with an average

sequence length of 304 bases and an average GC content of

39%. After trimming the low quality sequences and removing the

rRNAs and short reads of less than 100 bps, 907,985 reads were

passed through to the next process. In addition, 50,780 reads

mapped to B. tabaci mitochondrion were discarded. Eventually, a

total of 857,205 reads were generated and used for the subsequent

assembly.

A ‘‘step-by-step’’ strategy was used in the assembly of the B.

tabaci transcriptome to accurately distinguish the sequences from

different origins including insect, gut symbionts, parasites, and

pathogens. After the assembly, 178,669 unigenes were obtained

including 23,694 isotigs and 154,975 singletons (Table 1; Figure

S1). Among them, 30,980 unigenes (6781 isotigs and 24199

singletons) belonged to the insect group. The length of isotigs

varied from 180 to 4,681 bp with an average length of 840 bp.

The sequencing coverage (estimated as the average number of

reads per isotig) was 80 for the insect group. For the bacteria and

nohit groups, we obtained 523 and 16390 isotigs, respectively, and

17,358 and 113,418 singletons, respectively. The sequencing

coverage for the bacteria and nohit group was 17 and 43,

respectively. The average lengths of the isotigs for the insect and

nohit groups are comparable to the average length of the B. tabaci

contigs documented in the traditional Sanger sequencing method

[39].

Functional Annotation
The unigenes were subjected to BLASTX similarity search

against the NCBI non-redundant (nr) protein database to

determine their putative functions. Based on the sequence

similarity with known insect and bacteria genes, unigenes were

subdivided into three groups: insect (30,980), bacteria (17,881),

and nohit (129808). A total of 50,835 unigenes (28.5%) in these

three groups exhibited significant similarity at the cutoff value of

1e-5 (Table 1, Table S2). The taxonomic distribution of species

that provided the most top hits is shown in Figure 1, and the

species that generated most of the top BLAST hits was the pea

aphid (Acyrthosiphon pisum) (9.70%) [40]. A high degree of sequence

similarity between B. tabaci and A. pisum may be due to their

similarity in the taxonomic status (Hemiptera), diet/feeding

behavior (phloem-feeding), and symbiotic relationships with their

gut microbiota (obligatory and facultative symbiosis).

Transcriptome Profiling of B. tabaci
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Functional Classification and Pathway Analysis
In total, 40,611 unigenes were assigned to one or more Gene

Ontology (GO) terms (Table S3). As shown in Figure 2, these

unigenes were divided into three main categories: cellular

component (12 subcategories), molecular function (12 subcatego-

ries), and biological process (19 subcategories). The largest

subcategory found in the ‘‘cellular component’’ group was ‘‘cell

part,’’ which comprised 45.9% of the genes. This is consistent with

the bed bug, Cimex lectularius [33], emerald ash borer, Agrilus

planipennis [36], and Q-biotype whitefly [32]. In the ‘‘molecular

function’’ and ‘‘biological process’’ GO terms, ‘‘oxidoreductase

activity (81.9%)’’ and ‘‘metabolism (44.0%)’’ were the most

abundant subcategory, respectively. The Kyoto Encyclopedia of

Genes and Genomes (KEGG) metabolic pathway analysis

revealed that 6,917 unigenes could be assigned to the 288 given

pathways (Table S4). The metabolic pathways putatively involved

in insecticide resistance and nutrient digestion were metabolism of

xenobiotics, drug metabolism, salivary secretion, peroxisome, and

ABC transporters.

Putative Molecular Marker
In total, 9,075 simple sequence repeats (SSRs or microsatellites)

including 1470 (16%) trinucleotide repeats, 671 (7.4%) dinucleo-

tide, and 196 (2.2%) tetranucleotide repeats were identified

(Table 2; Table S5). In addition, 7,834 unigenes contained SSRs,

in which 902 (12%) had more than 1 SSR. The molecular marker,

SSRs, identified in this study lays a foundation for the better

understanding of the adaptation and ecology of B. tabaci [41]. The

identity of predicted molecular markers, however, needs to be

validated in future research to exclude false positives and

sequencing errors.

Meta-transcriptome Analysis of Symbiotic Bacteria
A total of 17,766 bacterial unigenes were classified into 322

genera, suggesting a rich microbial community in B. tabaci. The

most abundant phylum, class, order, family, and genus was

Proteobacteria (92%) (Figure S2), Betaproteobacteria (59%)

(Figure S3), Burkholderiales (58%) (Figure S4), Comamonadaceae

(50%) (Figure S5), and Delftia (43%) (Figure 3, Table S6),

respectively. Delftia sp., a gram negative bacterium which belongs

to the Proteobacteria, was detected only in insect’s hemolymph

Table 1. Sequence and assembly summary of B.tabaci transcriptome.

Sequence and assembly summary Insect group Bacteria group No-hit group Total

Total reads 317497 26003 513705 857205

Aligned reads 289514 8407 389169 687090

Number of isotigs 6781 523 16390 23694

Average isotig length (bp) 840 595 732 /

Range of isotig length (bp) 180–4681 135–4004 101–5775 /

Average number of reads per isotig 80 17 43 /

Range of number of reads per isotig 2–3669 2–844 2–3013 /

Number of singletons 24199 17358 113418 154975

Number of unigenes (contigs+singletons) 30980 17881 129808 178669

Unigenes with NCBI nr match1 29672 17607 3556 50835

1The cutoff value was 1e-5.
doi:10.1371/journal.pone.0035181.t001

Figure 1. Top BLAST hits of B. tabaci sequences to various insect species.
doi:10.1371/journal.pone.0035181.g001
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[42]. Delftia sp. is a known D-amino acid amidase-producing

bacterium and might play a key role in insect survival [43,44].

Delftia, Wolbachia, and three other cultivable bacteria co-occurred

and persisted in the guts of Aedes albopictus [45]. Delftia was also

documented in the gut microfauna of Helicoverpa armigera [46] and

in the metagenome of Daphnia symbionts [47]. Other abundant

genera included Serratia, Stenotrophomonas, and Bordetella. Delftia and

Serratia were all detectable in H. vitripennis [48]. Serratia contains a

secondary endosymbiont, Serratia symbiotica. Serratia symbiotica

provided protection against heat stress in several aphid species

[49,50], and might be related to the biosynthesis of tryptophan in

Cinara cedri [51]. Stenotrophomonas is a midgut bacterium in Anopheles

gambiae [52] and Culex quinquefasciatus [53]. In comparison to

prothiofos-resistant populations, susceptible Plutella xylostella lacked

Pseudomonas sp. or Stenotrophomonas sp. in their gut microbiota,

bacteria species known for their ability to break down pesticides

[54–56]. Same as Delftia, Bordetella was documented in the

metagenome of Daphnia symbionts as well [47]. Endosymbionts,

including Hamiltonella, Buchnera, and Spirosoma, were prevalent in

phloem-feeding aphid [57–60] and B. tabaci (Table 3 and Table

S6).

Table 3 summarized partial sequences of some bacterial

endosymbionts in B. tabaci, including Portiera (96 unigenes),

Wolbachia (34 unigenes), Rickettsia (137 unigenes), Hamiltonella

(112 unigenes) and Arsenophonus (9 unigenes). To date, one

primary symbiont (Portiera) and six secondary symbionts

(Hamiltonella, Arsenophonus, Cardinium, Wolbachia, Rickettsia, and

Fritschea) have been documented in B. tabaci [61]. The primary

symbiont could supplement nutrients when the host insects fail

to provide sufficient quantity of nutrients from a restricted diet

of plant phloem [61,62]. These secondary symbionts play

important roles in the biology and ecology of B. tabaci as well.

For example, single or repetitive infections with secondary

symbionts can affect the susceptibility of B. tabaci to synthetic

insecticides [63,64]. The proliferation of Rickettsia may be

involved in B. tabaci’s ability to defend against natural enemies

[65] and influence the thermotolerance in B biotype [66].

Hamiltonella was reported to provide the protection for A. pisum

against parasitoids [67–69], and was involved in the transmis-

sion of the tomato yellow leaf virus by B. tabaci B biotype [18]. It is

worth noting that 9 Arsenophonus sequences were found in this

study, while a previous study showed that Arsenophonus was Q

biotype-specific in Israel [16]. However, this is not unusual that

the composition of facultative symbionts in whitefly is biotype

dependent and geographically dependent. For example, Hamil-

tonella was B-specific in Israeli populations [16], whereas it was

ubiquitously abundant in both B and Q biotypes in China [70].

Host-symbiont cooperation in the amino acid production
For functional classification, bacterial unigenes were subjected

to the Cluster of Orthologous Groups (COG) database. A total

of 9,647 unigenes have a COG classification in four main

categories and 20 subcategories (Figure 4). The most enriched

Figure 2. Distribution of unigenes based on the Gene Ontology (GO) functional categories.
doi:10.1371/journal.pone.0035181.g002

Table 2. Summary of microsatellite loci predicted in B.tabaci
transcriptome.

Total number of sequences examined 178669

Total size of examined sequences (bp) 64757967

Total number of identified SSRs 9075

Number of sequences containing SSR 7834

Number of sequences containing more than 1 SSR 902

Number of SSRs present in compound formation 1052

doi:10.1371/journal.pone.0035181.t002
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category is ‘‘METABOLISM,’’ which account for 40.5% of the

unigenes involved in all COG categories. The cluster ‘‘Amino

acid transport and metabolism’’ represents the largest subcate-

gory (10.4%). In aphids, the 10 essential amino acids are scarce

in the phloem sap diet and are supplied by the obligate

bacterial endosymbiont [71].

We found 533 KEGG Orthology (KO) numbers involved in the

amino-acid biosynthesis, among which 276 from the insect group

and 257 from the bacterial group. Not surprisingly, genes for

biosyntheses of the amino acids essential for the whitefly host are

predominantly supplied by the bacterial group (Figure 5A) and

those for the non-essential amino acids are predominantly supplied

by the insect group (Figure 5B). Such complementarity signifies the

beauty of symbiosis, in which symbiont and host are intercon-

nected and interdependent in the production of essential and non-

essential amino acids, respectively. In some extreme cases, the

biosynthetic pathways of the host and the symbiont are

intertwined, such as glutamate and aspartate (Figure 5A), a group

of non-essential amino acids serving as the precursors for an array

of essential amino acids. This result is in agreement with aphids

[71,72], suggesting the collaborative productions of essential and

non-essential amino acids in bacterial symbionts and their insect

hosts could be the rule rather than the exception in the phloem-

feeding insects.

Genes Putatively Involved in Insecticide Resistance
Invasive biotypes of B. tabaci have developed substantial

resistance to a wide range of synthetic insecticides, especially to

the neonicotinoids, over the past decade. The rapid competitive

displacement of the invasive B. tabaci over the indigenous

counterparts in China is explained, at least partially, by the onset

development of insecticide resistance. Sequences encoding en-

zymes potentially involved in the xenobiotics detoxification and

the targets of the major classes of synthetic insecticides were

extracted and compared with sequences from the NCBI protein

database. Genes potentially involved in the insecticide metabolic

resistance are summarized in Table 3, including conventional

detoxification enzymes such as cytochrome P450 monooxygenase

(P450, 223 unigenes), carboxylesterase (CarE, 45 unigenes) and

glutathione s-transferase (GST, 60 unigenes); and putative

insecticide targets, including nicotinic acetylcholine receptor

(nAChRs, 12 unigenes), gamma-aminobutyric acid receptor

(GABA, 4 unigenes) and acetylcholinesterase (AchE, 7 unigenes).

The average length of these unigenes was 497 (P450), 719 (CarE),

564 (GST), 498 (nAChRs), 613 (GABA), and 338bp (AchE)

respectively. It is worth noting that an array of ABC transporters

(460 unigenes with an average length of 365bp) was also

indentified in the B. tabaci transcriptome, representing a gene

subfamily that plays a key role in xenobiotic resistance [73].

Figure 3. Diversity and phylogeny of bacterial symbionts in B. tabaci. Phylogenetic relationships of symbiotic bacteria in B.tabaci were
resolved at the Genus levels.
doi:10.1371/journal.pone.0035181.g003
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P450s are a large superfamily of heme-containing monooxy-

genases that play a critical role in catalyzing the metabolisms of

endogenous and exogenous compounds [74,75]. Based on the

closest BLAST hits in the NCBI nr database, transcripts encoding

putative P450s were assigned to appropriate CYP clades and

families (Table 4). All 4 major insect CYP clades (CYP2, 3, 4 and

mitochondrial; [76–78]) were identified in B. tabaci transcriptome.

Specifically, among 223 P450 unigenes annotated in the NCBI nr

database, 135 contained CYP family information, of which 4

unigenes were excluded from the subsequent analysis due to their

sequence similarity with non-insect organisms including Arabidopsis

thaliana and Uncinocarpus reesii 1704. The remaining 131 unigenes

were subdivided into 4 clades and 13 families, including 4 families

of CYP18, CYP304, CYP305 and CYP306 in CYP2 clade, 3

families of CYP6, CYP347 and CYP354 in CYP3 clade, 1 CYP4

family in CYP4 clade, and 5 families of CYP49, CYP301,

CYP302, CYP315 and CYP353 in mitochondrial CYP clade

(Table 4). The majority of annotated P450s belonged to the CYP3

clade (84/131), and followed by CYP4 (26/131), mitochondrial

(15/131), and CPY 2 (6/131). It is not surprise to see the

dominance of CYP3 and CYP4 P450 clades due to their

documented functions in the metabolism of plant secondary

chemicals and synthetic insecticides [76]. At family level, CYP6

(78) and CYP4 (26) are the most abundant P450 families. Recent

mechanistic study showed that the neonicotinoid resistance

developed in phleom-feeding hemipterans B. tabaci and Myzus

persicae were caused by the overexpression of CYP6CM1 [89] and

CYP6CY3 [79], respectively. In comparison to other phloem-

feeding hemipterans (115 in the green peach aphid M. persicae, 83

in the pea aphid Acyrthosiphon pisum), the number of putative P450s

annotated in the B. tabaci transcriptome (131) is well within the

range [80]. Without a fully sequenced genome, however, this

number is likely overestimated and the identity of these annotated

P450s warrant further analysis and validation. Most recently, 454-

based transcriptomic analysis of greenhouse whitefly T. vaporar-

iorum identified 57 P450s, although authors suspected the number

of P450s should be greater [31].

A Case Study with Thiamethoxam Resistant B. tabaci
Neonicotinoids, targeting the postsynaptic nicotinic acetylcho-

line receptors (nAChRs), are one of the most effective

insecticides against a broad spectrum of phloem-feeding insects,

including hemipterans like aphids and whiteflies [81]. Thia-

methoxam was the first commercially available neonicotinoid

Table 3. Genes of interest in B.tabaci transcriptome.

Candidate genes Unigenes (isotigs)1 Unique hits
Average length
of unigenes (bp)

Average length
of isotigs (bp)

Metabolic resistance and insecticide targets

Cytochrome P450 monooxygenase 223 (35) 97 497 1146

Carboxylesterase 45 (18) 17 719 1274

Glutathione S-transferase 60 (20) 24 564 914

Acetylcholinesterase 7 (1) 4 338 642

Nicotinic acetylcholine receptor 12 (3) 8 498 803

GABA receptor 4 (2) 3 613 719

Sodium channel 1 (1) 1 1039 1039

Chloride channel 17 (2) 14 441 703

NADH dehydrogenase 138 (59) 72 495 706

NADH oxidoreductase 10 (0) 6 371 0

ABC transporter 460 (16) 221 365 626

Catalase 21 (7) 18 560 1007

Peroxidase 48 (12) 28 416 622

Superoxide dismutase 31 (3) 15 377 744

Digestive enzymes

Trypsin 16 (2) 9 432 864

Protease 329 (69) 182 470 887

Salivary protein 12 (5) 4 544 691

Sucrase 45 (13) 8 522 864

Trehalase 48 (4) 14 386 797

Symbiotic bacteria

Wolbachia 34 (4) 12 398 660

Rickettsia 137 (3) 77 330 740

Portiera 96 (35) 31 450 820

Hamiltonella 112 (1) 58 322 620

Arsenophonus 9 (0) 5 275 0

1Unigenes include both isotigs and singletons. Here, we summarized the total number of unigenes (isotigs), total number of unique BLAST hits in the NCBI nr database
with a cutoff value of 1e-5, average length of unigenes, and average length of isotigs within unigenes.
doi:10.1371/journal.pone.0035181.t003
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insecticide from the thianicotinyl subclass [82]. Several whitefly

species, including B. tabaci and Trialeurodes vaporariorum, have

developed substantial resistance to neonicotinoids [11,83,84].

Alteration of target sites and metabolic resistance are the two

major mechanisms governing insecticide resistance [85]. In the

case of neonicotinoid resistance, both mutations in nAChRs

[86] and elevated metabolic detoxification have been found to

be involved [87,88]. The mechanistic study of neonicotinoid

resistance in B. tabaci, however, only linked the enhanced

oxidative detoxification by P450 rather than the target site

mutation to the resistance [89,90].

To investigate the expression profiles of putative detoxifica-

tion P450s in the thiamethoxam-resistant [TH-2000, LC50 (95%

CL) = 1326 (1259–1615) mg L–1] and susceptible strains [TH-S,

LC50 (95% CL) = 17.2 (15.4–19.3) mg L–1], 44 P450 genes from

this study, several others from the traditional Sanger sequencing

(4) [39], and NCBI database (15) were subjected to the qRT-

PCR analyses (Table S7). Three P450 genes, CYP6a8, CYP4v2

and CYP6v5, showed significantly higher mRNA expression

levels (.10-fold) in the resistant TH-2000 in comparison to the

susceptible TH-S strain (Table S7; Figure 6). CYP6cm1, which

was over-expressed in the imidacloprid-resistant B. tabaci [89],

did not exhibit elevated mRNA levels (Table S7). This may

suggest a different mechanism existed between the thia-

methoxam and imidacloprid resistance, although both insecti-

cides are neonicotinoids. To elucidate the role of these P450s in

the B. tabaci thiamethoxam resistance, studies including cloning

the full length cDNA and functional characterization of CYP6a8,

CYP4v2, and CYP6v5 using RNAi are currently in progress.

Putative Digestive Enzymes
Furthermore, B. tabaci has more than 600 recognized host plants

[91], suggesting a diverse array of digestive enzymes. Digestive

enzymes identified from this sequencing effort include trypsin (16

unigenes), protease (329 unigenes), salivary protein (12 unigenes),

sucrase (45 unigenes), and trehalase (48 unigenes) (Table 3). For

example, trehalase plays a pivotal role in various physiological

processes, including flight metabolism [92], chitin synthesis [93],

and cold tolerance [94] through the hydrolysis of trehalose, a

principal hemolymph sugar in insects which is an indispensable

substrate for energy production and macromolecular biosynthesis

[95]. Trehalase was divided into the soluble (Tre-1) and the

membrane-bound (Tre-2) trehalases [96]. In this study, the 48

unigenes were manually assembled into 14 different trehalases

containing both Tre-1 and Tre-2 (Table S8).

Figure 4. COG classification of the symbiotic bacteria in B. tabaci. ME: Metabolism; CPS: Cellular processes and signaling; ISP: Information
storage and processing; PC: Poorly characterized (inside circle); Q: Secondary metabolites biosynthesis, transport and catabolism; F: Nucleotide
transport and metabolism; H: Coenzyme transport and metabolism; I: Lipid transport and metabolism; G: Carbohydrate transport and metabolism; C:
Energy production and conversion; P: Inorganic ion transport and metabolism;E: Amino acid transport and metabolism; N: Cell motility; D: Cell cycle
control, cell division, chromosome partitioning; U: Intracellular trafficking, secretion, and vesicular transport; V: Defense mechanisms; O:
Posttranslational modification, protein turnover, chaperones; T: Signal transduction mechanisms; M: Cell wall/membrane/envelope biogenesis; J:
Translation, ribosomal structure and biogenesis; L: Replication, recombination and repair; K: Transcription; S: Function unknown; R: General function
prediction only.
doi:10.1371/journal.pone.0035181.g004
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Transcriptome Resources in Whitefly
Current transcriptome data come from the traditional Sanger

sequencing and,most recently, next generation sequencing including

Roche 454 pyrosequencing and Illumina deep sequencing (Table 5).

The average lengths of reads and assembled sequences (contigs/

unique sequences/isotigs) are comparable in the Sanger (301 and

515 bp, respectively) and 454-based transcriptomes (362 and 965,

respectively, in T. vaporariorum, and 304 and 760, respectively, in this

study), and considerably longer than the Illumina-based sequences

(75 and 479, respectively, in B. tabaci B-biotype, and 75 and 266,

respectively,B. tabaciB-biotype).However, theultrahigh-throughput

Illumina-based transcriptomes provide exponentially more sequenc-

ing information, i.e., billion in comparison to million base pair of total

reads. Despite the relatively smaller sequencing outputs, the 454

pyrosequencing performs equally well or better at addressing specific

biological questions. For instance, a survey of genes putatively

involved in insecticide resistance deduced from current available

whitefly transcriptomes showed the similar or greater number of

transcripts predicted by the 454 sequencing platform in comparison

to others (Table S9).

Unlike the whole genome, a transcriptome represents the snap

shot of a physical (e.g., tissue) and/or a physiological (e.g.,

developmental stage) state of the tested organisms. The dynamic

nature of transcriptome sequencing offers an unparallel opportu-

nity to investigate fundamental biological questions at the global

gene expression level. The transcriptome analyses of whiteflies

shed light on the molecular understanding of insecticide resistance

([31] this study), conspecific divergence [32,38], and symbiosis (this

study). Without a fully sequenced genome, a robust EST database

is essential for any ‘‘omics’’-based analyses in whiteflies. Tissue-

and treatment-specific transcriptomes will add additional dimen-

sions to existing whitefly EST database to make RNAseq, also

called ‘‘Whole Transcriptome Shotgun Sequencing’’, a viable

option in future analyses. Moreover, a comprehensively annotated

EST library will provide molecular clues to address outstanding

biological questions related to whiteflies, symbionts, and their

interactions with host plants.

Materials and Methods

Ethics Statement
Bemisia tabaci B biotype strains used in this study were initially

collected in Beijing in 2000, and have been maintained in a

greenhouse at the Institute of Vegetables and Flowers, Chinese

Figure 5. Schematic drawing of amino-acid biosynthetic pathways in B.tabaci. Essential (A) and non-essential (B) amino acid biosynthetic
pathways were deduced from B.tabaci transcriptome sequences. The sequential pathways are represented by boxes which indicate one step
catalyzed by the named enzyme. Blue box denotes the enzyme detected exclusively in the bacterial group, red box represents the enzyme only
detected in the insect group, and purple box designates for the enzyme found in both groups. Outside the boxes, the three-letter abbreviations of
amino acids are highlighted in black; compounds detected only in the insect group are in red; compounds found only in the bacterial group are in
blue; and compounds detected in both groups are in purple.
doi:10.1371/journal.pone.0035181.g005
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Academy of Agricultural Sciences. No specific permit was required

for the described field collections, and the location is not privately-

owned or protected in any way. The species in the genus of

Aleyrodidae are common agricultural pests and are not included

in the ‘‘List of Protected Animals in China’’.

Construction of a Comprehensive cDNA Library
Sample preparation. To maximize the representation of B.

tabaci transcriptome, cultures of different B. tabaci B biotypes

including strains developed on different host plants and strains

resistant to thiamethoxam, abamectin, and bifenthrin resistant B.

tabaci were collected. In addition, all development stages including

egg, nymph and adult were pooled. The purity of each B. tabaci B

biotype strain was examined using a mitochondrial DNA marker

(COI) every 2–3 generations [97].

RNA isolation, library construction, and 454

sequencing. The RNA sample was extracted using the Trizol

reagent (Invitrogen) according to the manufacturer’s instructions.

The purity and degradation of total RNAs were checked on 1%

agarose gels, respectively. About 15 mg of total RNA from each

sample were pooled equally, producing about 270 mg of total

RNA. The concentration of the pooled sample was adjusted to

1 mg/ml. Poly(A)-containing RNA was separated from the total

RNA (1 mg/ml) using DynabeadsH mRNA purification kit

(Invitrogen). About 1 mg of mRNA was converted to the first-

strand cDNA using SuperScripeH II Reverse Transcriptase

(Invitrogen) and random primers (Promega). The. cDNA

synthesis of the second strand was performed using DNA

polymerase I (Promega). with aRNA as the template. The

amplified double cDNA product was purified and extracted

using the Min EluteH Gel Extraction Kit (QIAGEN). The cDNAs

were sheared to 500–1000 bp and directly used to construct a

sequencing library. Approximately 1.5 mg of the resultant cDNA

was end polished followed by ligation with adapters and finally

immobilized on beads.

Single-strand DNA isolated from the beads was characterized

for correct size using a. LabChip 7500. The concentration and

proper ligation of the adapters were examined by. qRT-PCR. A

full PicoTiter plate was sequenced following the manufacturer’s

protocol using the Roche 454 GS FLX Titanium chemistry.

Quantitative Real Time PCR (qRT-PCR) Analysis
Sample preparation. Thiamethoxam susceptible (TH-S)

and resistant (TH-R) strains were determined as described

previously [98,99]. Before sample collection, a leaf-dip bioassay

[98] was carried out to validate the resistance level, i.e., the

resistance factor [LC50 (TH-R)/LC50 (TH-S)] was at least 70-

fold. About 3,000 adult whiteflies from TH-R were treated with

2,000 mg/L thiamethoxam (,LC80) to eliminate the

heterozygous individuals. Then, the survivors were collected

after 48 hours and designated as the TH-2000. A total of 300

TH-S and TH-2000 adults, respectively, were collected, snap

frozen in liquid nitrogen, and stored at –80uC for the subsequent

qRT-PCR analysis.

qRT-PCR. Total RNA was extracted from TH-2000 and TH-

S adults, respectively, using Trizol (Invitrogen) following the

manufacturer’s protocols. The total RNA obtained was resus-

pended in nuclease-free water and the concentration was

measured using Nanodrop (Thermo Scientific Nanodrop 2000).

About 0.5 mg of total RNA was used as template to synthesize the

first-strand cDNA using a PrimerScript RT reagent Kit (TaKaRa)

following the manufacturer’s protocols. The resultant cDNA was

diluted to 0.1 mg/ml for further analysis in the qRT-PCR (ABI

7500) using an SYBR Green Realtime PCR Master Mix

(TaKaRa).

qRT-PCR primers (Table S10) for the selected cytochrome

P450 genes (Table S7) were designed using the Primer Express 2.0

software. The cycling parameter was 95uC for 30 s followed by 40

cycles of 95uC for 5 s and 62uC for 34 s, ending with melting

curve analysis (65uC to 95uC in increments of 0.5uC every 5 s) to

check for nonspecific product amplification. Relative gene

expression of P450s was calculated by the 2–DDCt method [100]

using housekeeping genes 18s rRNA and b-actin as the references to

eliminate sample-to-sample variations in the initial cDNA samples.

Table 4. Putative P450s in B. tabaci transcriptome.

Putative P450s # Occurrence Family members with corresponding numbers

Clade Family

CYP2 CYP18 3 CYPXVIIIA1(3)

CYP304 1 CYPCCCIVA1(1)

CYP305 1 CYPCCCVA1(1)

CYP306 1 CYPCCCVIA1(1)

CYP3 CYP6 78 CYPVIX1(2), CYPVI-like(12), CYPVIG2(2), CYPVICX1(16), CYPVICM1(21), CYPVIBQ13(3),
CYPVIBK17(5), CYPVIAY1(5), CYPVIAX1(7), CYPVIAS33(2), CYPVIA8(1), CYPVIA5(2)

CYP347 5 CYPCCCXLVIIA1(5)

CYP354 1 CYPCCCLIVA5(1)

CYP4 CYP4 26 CYPIVV2(1), CYPIV-like(12), CYPIVL6(1), CYPIVG48(1),CYPIVG43(1),CYPIVG11(1), CYPIVC39(1),
CYPIVC3(1), CYPIVC1(6), CYPIV(1)

Mitochondrial CYP CYP49 2 CYPXLIXA1(2)

CYP301 1 CYPCCCIB1(1)

CYP302 9 CYPCCCIIA1(9)

CYP315 2 CYPCCCXVA1(2)

CYP353 1 CYPCCCLIIIA1(1)

doi:10.1371/journal.pone.0035181.t004
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Sequence Analysis
Raw data were cleaned and ribosomal RNA was trimmed with

SeqClean [101] using all known rRNA sequences downloaded

from the NCBI database. The minimum read length of 100bp was

used to ensure assembly quality. The trimmed and size-selected

reads were then mapped to B. tabaci mitochondrion [102] with

gsMapper in Newbler 2.5 (Roche). After preprocessing, all clean

reads were assembled using a step-by-step strategy. First, all known

insect protein sequences (1,229,681 items) and bacteria protein

sequences (19,178,750 items) were downloaded from the NCBI

database. Then, the clean reads were compared with known insect

and bacteria protein sequences using the BLASTX algorithm with

a cutoff value of 1e-5. All clean reads were divided into three

groups according to the BLAST results, which are designated as

the insect groups, bacteria groups, and nohit groups. Finally, the

three groups were assembled, respectively, with gsAssembler in

Newbler 2.5 (Roche) using cDNA default parameter sets. For a

better result, the isotigs and contigs were renamed, respectively, in

the format of ‘‘2.0_BB_ISOTIG00001’’ and ‘‘2.0_BB_CON-

TIG00001’’ in which ‘‘2.0’’ stands for the second trial, ‘BB’ for the

group (INSECT, BACTERIA or NOHIT), and ‘‘00001’’ for an

arbitrarily assigned number. The singletons were renamed in the

format of ‘‘2.0_BB_XXXXXXXXXXXXXX’’ in which each

‘‘X’’ denotes for an arbitrarily assigned letter or number. The

Roche 454 reads of B. tabaci transcriptome have been deposited

into the NCBI Sequence Read Archive under the accession

number SRA036954.

Functional Annotation and Classification
Unigenes including isotigs and singletons were searched against

the NCBI-nr protein database using the BLASTX program with a

cutoff value of 1e-5, and the best hits were regarded as the

annotations of the unigenes. The unigenes that had no hits in the

nr database were further compared with all existing B. tabaci

nucleotide sequences (39,322 items) in NCBI using the BLASTN

program with a default cutoff of 1e-10. For functional classifica-

tion, unigenes were searched against the InterPro protein

signature databases through InterProScan [103]. Unigenes with

GO terms extracted from the InterPro output were classified into

specific functional categories. In addition, unigenes were submit-

ted to the KEGG online service (http://www.genome.jp/kegg/)

for pathway analysis [104].

SSR Molecular Marker Identification
The identification and localization of microsatellites were

accomplished using a PERL5 script (named MIcroSAtellite MISA)

[105]. The script can identify both perfect and compound

microsatellites, which are interrupted by a certain number of

bases.

De novo Meta-transcriptome Analysis
The unigenes in the bacteria group were used for the de novo

meta-transcriptomic analysis. First, the unigenes were phyloge-

netically classified by PhymmBL, a phylogenetic classification

tool that combines Phymm and BLAST [106]. Classification

results at the genus level were extracted by a Perl script with a

confidence score .0.8. Then, the unigenes were searched

against the COG database using BLASTX for functional

classification with the cutoff value of 1e-5. Also, the unigenes

in insect and bacteria groups were separately submitted to the

KEGG online service (http://www.genome.jp/kegg/) [104] and

BRENDA Enzyme Information System [107] for the pathway

analysis of amino acids.

Supporting Information

Figure S1 Summary of sequencing assembly. (A) Distri-

bution of isotig lengths in the insect group; (B) distribution of the

Figure 6. Gene expression profiling of putative P450s in
thiamethoxam resistant and susceptible B. tabaci. mRNA
expression levels of P4506a8 (A), CYP4v2 (B), and CYP6v5 (C) in
thiamethoxam resistant (TH-2000) and susceptible (TH-S) B. tabaci
were analyzed by the qRT-PCR. Relative gene expressions in the
resistant TH-2000 population were normalized to the susceptible TH-S
population using both 18s rRNA and b-actin as the internal references.
Standard errors were generated from the three biological replicates.
doi:10.1371/journal.pone.0035181.g006

Transcriptome Profiling of B. tabaci

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e35181



number of reads per isotig in the insect group;(C) distribution of

isotig lengths in the bacterial group; (D) distribution of the number

of reads per isotig in the bacterial group; (E) distribution of isotig

lengths in the nohit group; (F) distribution of the number of reads

per isotig in the nohit group.

(TIF)

Figure S2 Diversity and phylogeny of bacterial symbi-
onts in B.tabaci. Phylogenetic relationships of symbiotic

bacteria in B.tabaci were resolved at the Phylum levels.

(TIF)

Figure S3 Diversity and phylogeny of bacterial symbi-
onts in B.tabaci. Phylogenetic relationships of symbiotic

bacteria in B.tabaci were resolved at the Order levels.

(TIF)

Figure S4 Diversity and phylogeny of bacterial symbi-
onts in B.tabaci. Phylogenetic relationships of symbiotic

bacteria in B.tabaci were resolved at the Class levels.

(TIF)

Figure S5 Diversity and phylogeny of bacterial symbi-
onts in B.tabaci. Phylogenetic relationships of symbiotic

bacteria in B.tabaci were resolved at the Family levels.

(TIF)

Table S1 Transcriptome analyses in non-model insects using

NGS platforms.

(DOCX)

Table S2 NCBI-nr best blast hits in the transcriptome of B. tabaci

B biotype.

(XLSX)

Table S3 Gene ontology of B. tabaci transcriptome.

(XLSX)

Table S4 KEGG summary of B. tabaci transcriptome.

(XLSX)

Table S5 Putative microsatellite loci in B. tabaci transcriptome.

(XLSX)

Table S6 Genus-level distribution of B. tabaci bacterial sequenc-

es.

(XLSX)

Table S7 qRT-PCR analyses of selected B. tabaci P450s.

(XLSX)

Table S8 Putative trehalase receptor genes in B. tabaci

transcriptome.

(DOCX)

Table S9 Genes putatively involved in insecticide resistance in

whitefly transcriptomes.

(DOCX)

Table S10 Primers used for the qRT-PCR analyses.

(XLSX)
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