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Cardiovascular disease is the number one cause of death in 
the industrialized world. Much of the morbidity and mortality 
from heart disease can be linked to elevated low-density 
lipoprotein (LDL) cholesterol, and one of the key genes 
that increases LDL cholesterol is Proprotein convertase 
subtilisin/kexin type 9 (PCSK9). In a recent study in non
human primates, Lindholm et al. demonstrate that a 1 month 
course of weekly subcutaneous therapy with either of two 
locked nucleic acid (LNA) antisense oligonucleotides target-
ing PCSK9 rapidly decreases the expression of both PCSK9 
and circulating LDL cholesterol without reported toxicity.1 
The reduction in serum LDL is sustained for more than a 
month after the last dose of the LNA antisense.

LDL is normally removed from the circulation on binding the 
LDL receptor, LDLR. PCSK9 functions by increasing the rate 
of degradation of the LDLR, secondarily preventing LDL clear-
ance. PCSK9 thus increases circulating LDL, thereby also 
increasing the risk of atherosclerosis. Intriguingly, PCSK9 does 
not appear to be required for any other function, as humans 
completely lacking PCSK9 are perfectly healthy, and in fact 
have elevated expression of LDLR and much lower circulat-
ing LDL, with reduced risk of cardiovascular disease.2 Based 
on these and other genetic data PCSK9 is widely considered 
to be a validated target, and inhibitors of PCSK9 are excel-
lent therapeutic candidates. Given that nearly all patients with 
elevated LDL will be treated with statins, the gold standard 
for therapy of hyperlipidemias, it is extremely important that 
PCSK9 inhibitors have been shown in primate models to pro-
vide further reductions in LDL beyond what can be achieved 
with statins alone.3 Several PCSK9 inhibitors are in preclinical 
and clinical development by biotech and pharmaceutical com-
panies, using approaches including small molecules, mono-
clonal antibodies, antisense and RNA interference.4

Against this backdrop of clear need for PCSK9 antago-
nists, the results of Lindholm et al. reveal the great progress 
over recent years in the development of antisense oligo-
nucleotides against targets expressed in the liver. Two dif-
ferent antisense oligonucleotides, SPC4061 and SPC5001, 
are compared to a control, SPC3088 (the control was used 
for the in vitro studies, but not in vivo). All three of these 
oligonucleotides had phosphorothioate backbones and were 
designed as LNA gapmers 13–16 bases long with two or 
three LNA modifications at the 5′ end, three LNA modifi-
cations at the 3′ end, and a DNA core (to facilitate RNAse 

H-mediated cleavage of the complementary PCSK9 mRNA 
target). Both of the antisense oligonucleotides showed similar 
activity in vitro, whether by transfection or unassisted uptake 
(also referred to as “gymnotic delivery”) into HepG2 cells. 
There has been some speculation that perhaps unassisted 
uptake would better predict in vivo efficacy than transfection 
experiments, but such was not the case in the results of Lind-
hom et al.: despite similar in vitro activity of the two antisense 
oligonucleotides, SPC5001 proved to be significantly more 
potent than SPC4061 in the multiple dose monkey study, 
reducing circulating PCSK9 protein by 85% compared to 
50% in the monkeys dosed with SPC4061. Both antisense 
gapmers were present within liver tissue at similar concen-
trations (~50 µg oligonucleotide/gram of tissue), excluding 
sequence-dependent differences in liver uptake. At present, 
there appears to be no in vitro correlate for in vivo efficacy 
with antisense oligonucleotides, and experimenters wishing 
to develop the most potent compound with the best thera-
peutic index may be well advised to proceed into primate 
testing with multiple candidate compounds before selecting 
a lead for clinical development.

The in vivo efficacy of the SPC5001 was both rapid and 
sustained. Serum PCSK9 was reduced by >50% as early 
as 24 hours after the first dose. The target protein con-
centration was ~85% reduced during the dosing period, 
with a gradual recovery during the subsequent 2 months. 
Even 1  month after the last dose of SPC5001, monkeys 
still showed approximately a 50% reduction from baseline 
PCSK9 concentration.1

In a fairly typical previous study using 20 base-long  
2′-O-methoxyethyl antisense gapmers the oligonucleotide 
concentration in the liver required for 50% inhibition of the 
target ApoB mRNA was ~300 µg/g of liver tissue.5 Although 
one cannot really compare potency across different targets, 
and of course the Lindholm et al. study is not a pharmaco
kinetic analysis allowing the derivation of a liver EC50, the 
fact that Lindholm et al. show a liver concentration of just 
50 µg oligonucleotide SPC5001/gram of tissue is associ-
ated with a >80% reduction in target RNA suggests a much 
greater in vivo potency of the relatively short gapmer LNA 
designs compared to the earlier 20mer gapmer designs using  
2′-O-methoxyethyl.

The safety profile is paramount for any compound under 
consideration for chronic administration, such as a PCSK9 
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inhibitor. Some LNA oligonucleotides sequences are hepato-
toxic,6 but other LNA antisense compounds of the same length 
and pattern of modifications can be quite nontoxic: LNA anti-
sense gapmers to survivin and hypoxia-inducible factor-1α 
have been dosed in human clinical trials above 4 mg/kg 
weekly for as long as over a year with an acceptable safety 
profile (http://webcast.aacr.org/portal/p/2011annual552). The 
results of Lindholm et al. are quite encouraging in providing 
further evidence for the fundamental safety of the LNA plat-
form, showing no worrisome changes in serum chemistries or 
pathologic evidence of organ toxicity within the 30-day study, 
in which monkeys were dosed subcutaneously once at 20 mg/
kg followed by four weekly doses at 5 mg/kg. Although not 
commented on in the present study, subcutaneous injection 
of gapmer oligonucleotides commonly induces injection site 
reactions, which are typically transient, mild, and reversible.

Translation of animal studies into the clinic is often chal-
lenging. The first human phase I safety and tolerability clinical 
trial of SPC5001 opened 18 May 2011, but was terminated 
4 October 2011 (http://clinicaltrials.gov/show/NCT01350960). 
Henrik Ørum, the Santaris CSO, provided the following com-
ment on the clinical trial termination: “we observed pharma-
cology as expected but weren’t satisfied with the therapeutic 
window given that the drug is intended for chronic use. Still 
like the target, though, so we are looking for a fast follow-up 
with the appropriate profile.” (H. Ørum, personal communica-
tion, Santaris CSO, 7 December 2011).

The LNA modification combines several desirable prop-
erties for the development of therapeutic oligonucleotides. 
The constrained sugar provides a substantial increase in 
Tm, the LNA is highly resistant to nucleases, and it greatly 
reduces immune stimulatory effects compared to unmodified 
oligonucleotides. The shorter length of the LNA gapmers in 
the current study compared to traditional 2′-O-methoxyethyl 
20mer gapmers should reduce the level of serum protein 
binding, and may conceivably allow faster exit from endo-
somes due to the reduced charge, although that has yet to 
be demonstrated. It is possible that there may also be other 

properties of LNA modifications that provide further advan-
tages for in vivo applications, and remain to be identified. 
Constrained sugars have become accepted as the next 
generation in development of antisense therapeutics to the 
point that in 2010 Isis adopted a constrained sugar, IScEt, 
for its upcoming antisense programs (http://www.isispharm.
com/Antisense-Technology/Antisense-Drug-Discovery-
Platform/Medicinal-Chemistry.htm).

Great scientific insights or breakthroughs seldom lead 
directly and smoothly into new therapeutic platforms. 
Instead, the initial innovation that launches a new field 
typically requires successive further innovations for clinical 
translation. Over the last two decades the field of antisense 
therapeutics has overcome many challenging barriers and 
built up a solid technical foundation. Recent studies such as 
Lindholm et al. leave little doubt that the development of short 
LNA gapmers for antisense therapy represents an important 
further innovation that will support the wider contributions of 
antisense technology to therapeutic pipelines.
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