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SUMMARY

While lipid traits are known essential mediators of cardiovascular disease, few approaches have taken
advantage of their shared genetic effects. We apply a Bayesian multivariate size estimator, mash, to
GWAS of four lipid traits in the Million Veterans Program (MVP) and provide posterior mean and local
false sign rates for all effects. These estimates borrow information across traits to improve effect size ac-
curacy. We show that controlling local false sign rates accurately and powerfully identifies replicable ge-
netic associations and that multivariate control furthers the ability to explain complex diseases. Our appli-
cation yields high concordance between independent datasets, more accurately prioritizes causal genes,
and significantly improves polygenic prediction beyond state-of-the-art methods by up to 59% for lipid
traits. The use of Bayesianmultivariate genetic shrinkage has yet to be applied to human quantitative trait
GWAS results, and we present a staged approach to prediction on a polygenic scale.

INTRODUCTION

A principal goal of genome-wide association studies (GWAS) is to accurately identify genetic variants that influence the risk of developing a

trait. While the number of significantly associated variants increases with a larger sample size, most estimated heritability remains unex-

plained.1,2 Novel Bayesian methods leveraging genetic pleiotropy applied to existing samples may improve power for genetic discovery

beyond widespread univariate approaches.3,4 As many phenotypes in biology exist on quantitative and continuous spectra, describingmulti-

variate continuous effects is an essential step toward a better understanding of complex phenotypes.

Multivariate adaptive shrinkage (mash4) is a Bayesian adaptive shrinkage tool designed to estimate genetic variants associated with mul-

tiple phenotypes. Mash takes advantage of any correlation in genetic signals that might increase the power to detect associations and

improve the precision of effect size estimates.4,5 Mash uses empirical estimates of the overall covariance structure of phenotypes to model

the genetic effect at any single nucleotide polymorphism (SNP) as a mixture of multivariate normal distributions. Each mixture component

defines a ‘pattern of sharing’ of effects among conditions from which the SNP might arise (Figure 1) and is readily available using the accom-

panying softwaremashR.4 Using empirical Bayesianmethods, the covariance patterns are estimated from the strongest signals in the dataset,

scaled to unit variance, and ‘stretched’ by a grid of magnitudes to reflect an abundance of shape–scale combinations. The relative frequency

of each shape and scale combination is then estimated from a sampling of the overall dataset. Given this prior information, the likelihood for

each SNP is then calculated for each mixture component. If the effects are strongly correlated, such estimates are enhanced by incorporating

additional data — that is, by using all traits jointly. Importantly, if there is no sharing, multivariate estimates have been shown to do no worse

than univariate estimates.4,6 To date, no existing methods for Bayesian multivariate effect size shrinkage have been applied to human GWAS

and staged into a predictive framework to estimate polygenic scores. The proposed approach leverages the information borrowed across

quantitative clinical phenotypes to improve effect size estimates and later across genetic markers to improve polygenic prediction.

Our work is an application of the existing multivariate Bayesian modeling approach, mash, to multivariate GWAS to establish improved

power, prediction, and prioritization using a joint approach. Bayesian methods allow one to combine information across traits to better es-

timate individual SNP effects. In addition, they provide a rational and quantitative way to incorporate biological data, and they can allow for a
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Figure 1. Mash estimates data-drive covariance patterns of true genetic effects as the multivariate prior to improve posterior estimates for

downstream analyses

Mash35 estimates the covariance of the effects in an empirical Bayes fashion, thus estimating patterns of sharing among conditions (here, lipid traits) from the

strongest signals in the data, and estimating the relative abundance of such patterns from a random set of all data. This allows us to provide the posterior

estimate of the effect and its associated local false sign rate, or posterior probability of incorrectly identifying the sign of the effect, for each SNP and use

these posterior estimates to improve performance in polygenic prioritization, enrichment analyses, on polygenic risk scoring. mash, multivariate adaptive

shrinkage; SNP, single nucleotide polymorphism; lfsr, local false sign rate; PRS, polygenic risk score; LD, linkage disequilibrium.
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range of possible genetic models in a single analysis.7 We then combine information between traits using a Bayesian framework for shrinkage

by patterns of linkage disequilibrium.8

The use of Bayesian multivariate tools has broad implications for GWAS and polygenic risk score construction. Here we present a staged

approach to prediction on a polygenic scale, which has yet to be applied to human quantitative trait GWAS results.

As a case study, we apply mash to GWAS for blood lipid concentrations. These studies have advanced our understanding of causal re-

lationships for diverse cardio-metabolic conditions, including coronary artery disease (CAD), the leading cause of death worldwide.9 Since

currently identified variants explain only a tiny fraction of the estimated overall heritability of plasma lipids,10,11 improved efficiency for lipid

genetic associations may yield new insights using existing genetic association data.

RESULTS

Multivariate genetic discovery for plasma lipids

Using summary-level lipid GWAS data generated with conventional methods from the Million Veterans Project (MVP) across 291,746 individ-

uals (210,967; 72.3% European ancestry10), we sought first to jointly estimate effect sizes across the four plasma lipid traits (i.e., total choles-

terol [TC], low-density lipoprotein [LDL-C] cholesterol, high-density lipoprotein [HDL-C] cholesterol, and triglycerides [TG]) for approximately

28million SNPs usingmash.We identify 5583 500-kb linkage disequilibrium (LD) blocks (from 1000Genomes European Samples12) in theMVP

data containing at least one variant with a local false sign rate <0.05 for at least one lipid trait. Here, the local false sign rate (lfsr) is defined as

the posterior probability of incorrectly identifying the sign of the effect, which has been used to help provide a bridge between FDR (false

discovery rates) and effect size estimation.5 We use an lfsr threshold of 0.05 in line with existing published resources to define an effect

with a low posterior probability of being null or incorrectly signed.3,4,7

We emphasize that a local false sign rate is distinct from a family-wise error rate. A local false sign rate reflects only the probability of an

effect being non-zero and incorrectly signed. By contrast, a family-wise error rate corrected p value controls the global level of at least one

false positive association without accounting for the inherent significance (or nullness) of the dataset.

Omnigenic model

We next used mashR to analyze the distribution of regression coefficients from the set of all SNPs.5 Mash models the GWAS results as a

mixture of SNPs that have a true effect size of precisely zero, with SNPs that have a true effect size that is not zero across multiple traits.

The additional multivariate layer captures information about patterns of sharing across traits when compared to univariate shrinkage ap-

proaches.5 Critically, our approach uses adaptive shrinkage in that patterns of sharing are learned from the data in a hierarchical fashion

and then used to ‘nudge’ noisy likelihoodmeasurements towardpatterns consistent with the overall signal. Using this approach, we estimated

that 84%of all SNPs present in theMVPdataset are associatedwith non-zero effects on LDL-C, including both causal SNPs and nearby SNPs in

linkage disequilibrium (LD). This does not imply that most variants are causal, given that the typical extent of LD was around 10 kb–100 kb.13

Instead, this suggests that most 100-kb windows in the genome include variants that affect lipid levels. When stratifying by the LD score14 for

each SNP, we see a clear effect that SNPs with more LD partners are more likely to be associated with each lipid trait (Figure S13). This is

directly consistent with the results of Bulik–Sullivan14 et al. who showed that in settings of polygenic architecture, the LD score plot is indeed

a straight line. Indeed, the LD score for a given SNP i is the sumof the squared correlations14,15 with SNPj: LDi =

 P
j

rij

!2

. We used LD scores
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Figure 2. The utility of controlling for false discovery

(A and B) (A) Amultivariate approach allows that for a given probability of being null (lfdr)36 or for a given local false sign rate (lfsr) (B) there can be a variety of effect

sizes depending on the relative strength of evidence in alternative subgroups.

(C) We demonstrate the relationship between effect size and p value.

(D) Finally, (D) a given non-null rate can lead to greater resolutions in the range of possible local false sign rates as reflected in a variety of Local false sign rates for a

given non-null rate. HDL-C, high-density lipoprotein cholesterol; lfsr, local false sign rate; lfdr, local false discovery ratel; LDL-C, low-density lipoprotein

cholesterol; LDSC, linkage disequilibrium score; TG, triglycerides.
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from the European ancestry samples in the 1000 Genomes Project (EUR) with an unbiased estimator of r2 with 1 centiMorgan (cM) windows.14

Importantly, this finding is also consistent with the conclusions of Boyle et al.16 who introduced the idea of an ‘omnigenic’ hypothesis, in which

many quantitative traits are influenced by both the majority of genomic SNPs and a vast number of causal variants, each with tiny effect sizes

on quantitative traits.

Boyle et al.16 found clear enrichment of a shared directional signal for most SNPs, even for SNPs with p values as large as 0.5. This led us to

consider the information contained in those with non-null but potentially not genome-wide significant effects. After applying mashR, we found

that themedian absolute effect size for an SNP satisfying an lfsr threshold of 0.05 was 0.15 while themedian absolute effect size for an SNP satis-

fying a local false discovery rate (lfdr) of 0.05 was 0.15. By contrast, an SNP satisfying a genome-wide significance threshold of 5 3 10�8 has a

standardized effect of 6.54, consistent with the results of Boyle et al.16 who found that themedian effect of non-null SNPswas approximately 10%

of genome-wide significant SNPs (Figures 2A–2C). Importantly, both the resolution and stringency using lfsr thresholds is greater than lfdr for a

given level of evidence (Figure 2D). For example, an effect may have a very low estimated local false discovery rate if there exists sufficient ev-

idence it is significantly different from0. However, the local false sign rate is in direct proportion toboth the size and the precision of the effect: for

small, precise effects, the probability of incorrectly signing the effect may still be substantial for a given local false discovery rate.

Given this observation, we hypothesized that utilizing methods capable of incorporating refined joint posterior effect size estimates and

quantifying posterior probabilities of being non-zero (or, even more stringently, incorrectly signed) would add to the ability to explain the

heritability of complex disease in a polygenic risk score. We sought to compare our estimates directly to a univariate approach for adaptive

Bayesian shrinkage,5 as published GWAS have used a 5% FDR threshold to replicate GWAS targets.17 We show that a univariate shrinkage

approach that controls for local false discovery (ash) replicates everything in previously published MVP data,10 which results in a consistent

increase in power across phenotypes (Figures 3A and 3C, green to blue). This is explained by the adaptive control of local false discovery

when compared with Bonferroni-corrected GWAS. We depict the number of LD blocks containing an effective variant in at least one block,

defined by p value <53 10�8 in traditional analyses or lfsr <53 10�2 in adaptive shrinkage analyses. We note that given the large size of the

conservatively chosen LD blocks, the probability of containing at least one associated SNP is increased and therefore there is a non-null prob-

ability of replication by chance. However, the number of blocks replicated using mash for identification is greater than the number of blocks

replicated by alternative methods.
iScience 26, 107854, October 20, 2023 3
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Figure 3. Control of false discovery improves power to detect over control of family-wise error rate

(A and B) (A) Univariate measure of local false sign rate control using ash5 replicates essentially all existing associations and dramatically increases power to

detect. Multivariate adaptive shrinkage adds an additional layer of local false sign rate control by incorporating information across phenotypes. We plot the

number of LD blocks containing at least one significant variant across traits in (B) joint approach results in most significant associations being shared in at

least 2 subgroups, whereas a univariate approach does not capture the tendency to share effects across conditions.

(C) HDL-C, LDL-C, and TG. Of note, there are 5583 500-kb blocks present in our dataset. Ash, univariate adaptive shrinkage; mash, multivariate adaptive

shrinkage; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides.
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We ascertained the improvement in multivariate control of false discovery when comparing multivariate adaptive shrinkage to univariate

adaptive shrinkage (Figure 3C, blue to red). Most effects were shared across conditions, owing to the assessment of effects jointly, in com-

parison to univariate shrinkage effects (Figure 3B).

Improved polygenic risk scoring across ancestries

Mash-derived weights show improvements up to 58% in the proportion of variance explained by the polygenic score compared to weights

derived from traditional univariatemaximum likelihood associationmapping.We comparedwith the same approach using the results from an

MTAG analysis of these summary statistics as inputs to the Ldpred2 model. In most cases, using MTAG results as input performed no better

than using univariate (maximum likelihood estimate, MLE) analysis (Figures 4A–4C). These improvements hold when subdividing the testing

population into European and non-European individuals on all traits excluding triglycerides, a phenomenon which has been previously

observed18 (Figures 4A–4C; Table S1). Of note, the baseline performance of models excluding genetic variables from association with
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Figure 4. Mash improves polygenic prediction

We consider the improvement in proportion of variation explained by LDpred28 on prediction of lipid traits across ethnicities using mash derived posteriors and

univariate GWAS estimates as weight inputs over a model including only baseline covariates. Here we display the estimate of R2 and corresponding 95% CI. We

compare the performance of the infinitesimal model using maximum likelihood estimates (MLE), multivariate (mash) or multivariate trait association for GWAS

(MTAG) output for all (global), European ancestry, or non-European ancestry (See STAR methods for details; Table S4 for results in tabular form) to a baseline

model using only baseline covariates of age and sex in each model. GWAS, genome-wide association study; Ash, univariate adaptive shrinkage; mash,

multivariate adaptive shrinkage; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TG, triglycerides.
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LDL-C is poor owing to the phenotypic heterogeneity inherent in statin dosing and duration present in the UKBB population. Despite this,

mash inputs still improve the proportion of variation explained by 53%. Significantly, we shrink the input ‘weights’ derived from our multivar-

iate discovery set using LD score regression from the 1000 Genomes reference panel.12 Next, we computed scores on an independent set of

individuals in the UKBB, without the need for parameter tuning in an additional collection of data. This is due to the analytic solution innate in

the infinitesimal model introduced by Privé8 (details in Materials and Methods). Most importantly, we compare our results using mash to ex-

isting multivariate effect size estimation for GWAS, MTAG.19 Mash is superior to MTAG across ancestries and lipid traits. Furthermore, MTAG

appears to perform similarly to MLEs. MTAG estimates the covariance of the errors using LD score regression, but mash’s additional power

comes from its ability to boost (or shrink) effect sizes from the estimated covariance of the true effects rather than the residual error covariance

matrix alone.We also compared using PRS-CS and showed thatmash often improves predictive power evenwithout additional tuning param-

eter selection (as in the infinitesimal model of LDpred2) when compared to raw MLE summary statistic input (Table S7). However, in a previ-

ously published head-to-head comparison, LDpred2 performance was superior to all Bayesian shrinkage approaches in polygenic predic-

tion.8 We display the results using LDpred2-infinitesimal model. We demonstrate with additional cross-validation, it is possible to achieve

even greater performance as shown using the LDPred2-Grid model (Table S8). Importantly, while the exchangeable effects are necessary

for the estimation of the mash prior, it is not a condition of the prediction algorithm.

Furthermore, mash allowed us to consider which hierarchical patterns received the most ‘weight’ in the mixture model. As expected, the

components that received most of the hierarchical weight showed effects that were shared in sign and magnitude among LDL-C, TC and TG

and strongly inversely correlated with effects in HDL-C (Figure S1, online workflow).
Sources of improved heritability explained

To understand the improved heritability explained, we evaluated the extent of cross-replication betweenUKBiobank (UKBB) andMVP results.

After computing mash posterior means for all overlapping SNPs from models fit separately using MVP and UKBB (Figures S2 and S3), we

aimed to identify replication on a per-trait and across-trait basis. Using UKBB lipid genetic summary statistics for 315,133 individuals

(100% European ancestry)20 overlapping the same boundaries used above, we identified 3,935 500-kb LD blocks containing at least one

lfsr <0.05 across traits. 3761 of these 3935 of these identified UKBB blocks were replicated in the MVP discovery dataset. We choose

500-kb blocks as this is a conservative estimate of human LD using data from the 1000 Genomes Project.21,22 We note that given the large

size of the conservatively chosen LD blocks, the probability of containing at least one associated SNP is increased and therefore there is a

non-null probability of replication by chance. However, the number of blocks replicated usingmash for identification is greater than the num-

ber of blocks replicated by alternative methods: 95.6% and 75.1% of the discoveries in UKBB and MVP, respectively, cross-replicate (Fig-

ure 5A). Using a hypergeometric test for the probability of observing replication by chance given the number of significant blocks, we find

p = 1.273 10�81 in HDL-C, 4.983 10�60 in LDL-C, and 6.963 10�75 in TG. Additionally, we reproduced all associations captured by the pre-

vailing multivariate GWAS package MTAG,19 and we replicated 12-fold (Figure 5A; Figure S3) more LD blocks when comparing non-zero

blocks containing at least one significant effect across traits between MTAG19 and mash-posterior results without incurring additional false

positives.

In the per-trait analysis, 68% and 88% of MVP and UKBB discoveries cross-replicate for HDL-C, 42% and 82% of MVP and UKBB discoveries

cross-replicate for LDL-C, 63% and 91%ofMVP andUKBB cross-replicate for triglycerides, and 50% and 81%ofMVP andUKBB cross-replicate

for total cholesterol (Figure S3). Again, this increase in power holds across traits when compared to existing multivariate approaches for com-

mon diseases using the softwareMTAG.19We identify substantially more blocks containing a variant significant in at least one trait (Figure 3A)

when compared to a traditional univariate assessment using a genome-wide family-wise error rate of 53 10�8. Our Bayesian multivariate ef-

fect size estimate using mash improved the sensitivity to detect and replicate associations between datasets.

We find that this sizable improvement over univariate association is driven largely by gains in precision as well as control of false discovery

versus family-wise error rate. This concept is shown to safely increase the power to detect associated non-zero effects The effective sample

size can be determinedby considering the ratio of the original standard error to the posterior standard error for an individual trait (Equation 1).

We found that effects with small sample sizes (and accordingly large standard errors) benefit from an increase in posterior sample size over

initial sample size.

neffective =
bs2original
~s2posterior

noriginal (Equation 1)

We found a median effective sample boost of 4.4-fold (IQR 3.54–5.64) using the relationship between the original standard error and the

posterior marginal variance, consistent with the robust sharing among lipid subgroups (Figure S4).
Improved causal gene prioritization

We investigated how mash would prioritize known Mendelian lipid targets compared to univariate methods. We used the Polygenic Priority

Score (PoPS), which is a gene prioritization method23 that leverages genome-wide signal from GWAS summary statistics. PoPS incorporates

data from extensive public bulk and single-cell expression datasets, curated biological pathways, and predicted protein–protein interactions.
iScience 26, 107854, October 20, 2023 5
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Figure 5. Bayesian multivariate method improves discovery and improves polygenic prioritization consistency of known lipid targets while enhancing

known annotation estimation

(A) MVP and UKB were fit usingmash separately. MTAG was fit on theMVP dataset. We delimited identical 500-kb LD blocks and computed all blocks containing

at least one variant at an lfsr <0.05 across traits. There are 5583 blocks present in total. Hypergeometric p = 1 3 10�83 for replication between mash and UKBB.

(B) Mash consistently prioritizes 47 genes among LDL-C, HDL-C, and TG, while univariate methods prioritize 23. Of these, 24 are found consistently by mash

but not by univariate (MLE) approach, while only 4 are found consistently by univariate approach but not mash. We use polygenic prioritization framework

detailed in.37

(C) Using TORUS25 we consider enrichment in 27 of the 52 classes examined by Finucane et al.14 and see that mash versus univariate estimates tend to increase

features known to be enriched in GWAS hits and decrease those known to be depleted (p values for difference in the plot). We display for HDL-cholesterol

(LDL-C, TG, and TC in Figures S5–S7; Table S5).GWAS = genome-wide association study, HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density

lipoprotein cholesterol; mash, multivariate adaptive shrinkage; TG, triglycerides; TC, total cholesterol; MVP:mash, Million Veterans Program data analyzed

using mash; MVP:uni, Million Veterans Program Data analyzed using traditional GWAS univariate analysis; UKB:mash, UK Biobank data analyzed using mash;

UKBB:uni, UK Biobank data analyzed using traditional GWAS univariate analysis; MVP:MTAG, Million Veterans Program Data analyzed using MTAG.19
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Compared to univariate summary statistics, we found that marginal estimates from posterior means supplied by mash better prioritized

known lipid candidate genesmore consistently between traits. Among the top 100 prioritized genes for each trait, there were 47 intersections

among HDL-C, LDL-C, and TG using mash and only 27 using raw univariate estimates. Of the 47 genes, only 48% (23) were shared with those

prioritized by the univariate approach (Figure 5B; Table S2). Consequently, 24 genes consistently identified by mash across all four lipid

traits — but not by univariate methods— including LPL (lipoprotein lipase),CETP (cholesterol ester transfer protein), APOA4 (apolipoprotein

A4), LIPG (endothelial lipase) and ADIPOQ (adiponectin precursor). These genes have established relevance to lipids in model systems and

human studies. However, the four genes consistently identified by univariate methods but not by multivariate methods were VEGFA, TP53,

ESR1, and ENG. These genes are not currently known to robustly influence lipids in model systems or human studies in an interrogation of the

Jackson lab phenotypic mutation database. When comparing a list of known Mendelian lipid genes,24 the median rank assigned using mash

results was consistently higher than when using univariate association summary statistics (Tables S3 and S4). We also demonstrate boxplots of

these genes showing in general higher prioritization of known lipid candidates using mash over univariate approaches (Figures S11 and S12).

Recall that lower ranks indicate improved prioritization. Thus, while critics may argue an overzealous estimate of associated features, the

shrinkage of error within mash refutes erroneous univariate estimates and strengthens biological conclusions. The consistency of mash

and univariate methods reinforce the reliability of our multivariate approach.

We further compare polygenic prioritization with mash to one using MTAG inputs (Figure 6). When comparing the top 100 genes prior-

itized by each model per trait (Figures 6A–6C), we show that mash and MTAG share many of the same lipid-specific candidates. However,

mash prioritizes some known lipid genes in LDL (APOA4), HDL (LIPG), and TG (LIPC) that MTAG does not, and mash consistently prioritizes

47 among all three while MTAG prioritizes only 37 (Figure S8).

Improved enrichment for functional annotations

Finally, we sought to determine whether mash discoveries prioritize biologically relevant associations better than those observed from con-

ventional univariate methods. Using TORUS25 and conservatively defined LD blocks,22 we showed that using mash compared to univariate

statistics for this analysis improved the estimation of expected enrichment parameters and depletion when applying a list of previously

described annotations.14 For example, we demonstrated that the areas of the genome known to be enriched for transcriptional

activity (i.e., super-enhancers) and promoters showed stronger log odds ratio (base 2) of enrichment using mash-derived summary

statistics compared to the estimation from using univariate association statistics to assess annotation enrichment parameters
6 iScience 26, 107854, October 20, 2023
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Figure 6. Performance of polygenic prioritization using MTAG and mash

(A–C) Above, we use mash or MTAG summary effect sizes for 11.8 M variants from the Millions Veterans Project (N = 330K) as inputs to PoPS polygenic

prioritization and return the top 50 ranked genes in HDL, LDL and TG (A,B,C). HDL-C, HDL cholesterol; LDL-C, LDL-cholesterol; TG, Triglycerides. Full list

available in Table S2B mash, multivariate adaptive shrinkage; MLE, maximum likelihood estimate; MTAG, multi-trait analysis of GWAS.
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(Figure 5C; Figures S5–S7; Table S5 and S6). Similarly, annotations with prior evidence for depletion (i.e., repressors, background selection)

showed a greater degree of depletion usingmultivariate summary statistics, as evidenced by background selection and repressors, which are

repressed to a greater degree (p = 0.001), and coding regions which are enriched to a greater degree usingmash (p = 63 10�5; 13 10�4, see

Figure 5C) compared to using univariate association statistics. The direction of enrichment or depletion was preserved between univariate

andmashmultivariate estimates. We also compare to results usingMTAG as inputs to the same framework and show consistency in direction

with slight though non-significant improvements using mash as inputs (Figure S10).

Mash exceeds MTAG in power and accuracy

Detailed methodological work established mash superior to both univariate shrinkage and multivariate configuration based6 shrinkage ap-

proaches.Wedesign two simulations: in the first, we simulate true effects using the empirical covariancematrix fromour lipid analysis and only

1% of effects are non-null. We use a shared structured approach according to these empirical covariance matrices (Figure S9). We use a

conservatively specified residual (error) correlation coefficient of 0.8 to emulate a noisy GWAS setting where participants may be shared

among conditions. Under these conditions, mash exceeds univariate (ash) and joint (eQTL BMA) Bayesian shrinkage approaches. In this

setting, effects are broadly shared (non-null units have an effect in many conditions), and ‘‘structured’’— that is, similar in size and direction,

with greater similarity among some subsets of conditions. The empirical covariancematrix from themodel estimation generates these effects

as in4 but with additional sparsity and stronger correlation of residuals. As discussed in we note that mash uses two distinct strategies to

improve the accuracy of effect estimates by shrinking estimates toward zero, which improves average accuracy because most effects are

null; and in the presence of ‘‘structured effects’’, it shares information across conditions to improve accuracy. In our setting, we borrow infor-

mation across lipid traits which are known to have high between trait heritability.10,20,26

Next, we simulated a GWAS case in which the 1.3 M HapMap3 SNPS are assessed in association with four simulated traits as described in

our detailed STAR methods section (see STAR methods). The simulation is based on the simulated EUR genotype data provide by Zhang

et al.27 In brief, we randomly sampled 1000 of the 1.3 million HapMap3 SNPs as causal SNPs to conservatively emulate the lipid setting.

We assumed that the causal SNPs were shared across 5 traits and their per-allele effect size followed multivariate normal distribution while

the non-causal SNPs had zero effect. In this setting, all 1000 (<0.01% of total) true effects are correlated with themaster trait (’trait 10) with rg of
0.70. Furthermore, the cross-trait heritability is specified at 0.60, and there are 1000 causal SNPS to conservatively emulate the lipid setting.

Under these conditions, mash exceeds MTAG in both power as measured by AUC (Figure 7A) and accuracy as measured by Root Mean

Squared Error (Figure 7B) and when compared to maximum likelihood estimates. Interestingly, MTAG shows little improvement over

maximum likelihood estimates.

DISCUSSION

Understanding the genetic basis of common disease is a crucial paradigm toward meeting modern genomic medicine goals. The principal

strategies for improving power for discovery hinge on large sample sizes and the inclusion of diverse ancestries to analyze new alleles. Here,

we introduce the application of a Bayesian multivariate approach, ‘mash’, for enabling improved discovery and effect size estimation of
iScience 26, 107854, October 20, 2023 7
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Figure 7. Mash exceeds existing multivariate method MTAG in simulated framework

(A) Here, we simulate 1.3 million HapMap3 SNPS with genome-wide heritability of 0.6 across four traits. In this setting, the 1000 causal SNPS are shared identically

by all traits, while the effect sizes have a between trait correlation of 0.7 with the main trait. Under these conditions, we estimate the tradeoff in True Positives

versus False Positives for a given threshold. The empirical True Positive (sensitivity) and False Positive (1- specificity) are plotted along the x axis in (A).

(B) We display the root mean squared error for all effects, defined as RMSE = Oðq � d
qÞ2 where here q represents the true effect: The simulation is intentionally

sparse to replace a GWAS instance with less than 0.001% causal effects. Please see detailed STARMethods section for further details. mash, multivariate adaptive

shrinkage; MLE, maximum likelihood estimate; MTAG, multi-trait analysis of GWAS.
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genomic variants without increasing the sample size. Not only do such joint approaches share information across traits to improve power, but

critically, we show that robust effect size estimates enable more precise prioritization of genomic targets, enhance assessment of enrichment

parameters, and improve prediction on a polygenic basis when coupled with methods to shrink across LD blocks. There has been much work

on the utility of summary statistics in both fine-mapping and prediction.5,28,29 Namely, working with two numbers bB andcse rather than simply

p or Z, can yield substantial gains in functionality while providing a convenient estimation framework instead of only testing.

False discovery rates offer a flexible way of capturing inherent differences in the relative signal between populations while controlling the

proportion of discoveries that are false. Local false discovery rates are thus obviate arbitrarily stringent p values by allowing one to include

the prior probability of absence of signal (often termed p0) in computing the posterior probability of being null and are widely accepted in the

genomics community.17,30,31 The local false sign rate is analogous to the ‘‘local false discovery rate’’(lfdr), but measures confidence in the sign

of each and confidence in each effect being non-zero, and is thus more stringent.4

Importantly, we use the local false sign rate to characterize effects, a convenient method of controlling for multiple hypotheses while also

incorporating the consistency in sign and magnitude of effects. It is more stringent than the lfdr because it requires actual discoveries to be

not only nonzero, but also correctly signed. The local false discovery rate is well known to conservatively control for false discoveries in genomic

applications.5,32,33 Furthermore, in some settings withmany discoveries, the lfsr and lfdr can be quite different and emphasize the benefits of the

lfsr, particularly its increased robustness to modeling assumptions.5 This allows for a multiple hypotheses correction that incorporates the pre-

cision of the effect size estimate5 beyond confidence in the binary classification of a variant as associated or unassociated.

While assembling the evidence, we found that considering the non-null distribution of SNPs provided a much broader understanding of

the collective contribution of genetic variation to quantitative phenotype mapping. Moreover, the inclusion of local false sign rates broad-

ened this resolution as a non-null SNP can have varying effect sizes (Figure 2C). Our multivariate mapping enhanced the resolution, showing

that two SNPs with the same local false sign rate can have different posterior effect estimates arising from the mixture of multivariate normal

distributions that depend on the ‘boost’ the SNP receives from the effects in correlated phenotypes. More generally, the heritability of com-

plex traits and diseases is spread broadly across the genome,34 implying that a significant fraction of all genes contribute to variation in quan-

titative traits. Then, we combined this increased power from false discovery control with the precision and adaptive nature of estimating ef-

fects across conditions, presumably adding to the increase in power.We show that these effects are biologically believable. To summarize, we

improved our power to both predict and detect through i) control of false discovery instead of family-wise error rate, and ii) incorporation of

additional information captured by between-trait sharing of effect-size information.

While well-suited to genetic settings in which effects are additive, multivariate normal methods are limited by settings in which the effects

are roughly normally distributed in each trait. Furthermore, the benefit of such a method is stronger when the effects are more strongly corre-

lated than the errors. Perhaps most notably, after estimating effects, correction still must be done for LD as such a method does not currently

consider the correlation between SNPs. However, suchworkmust also be done after univariateGWASestimation. Herein, we provide a frame-

work to do so with available LD tools.8

Limitations of the study

Here, we demonstrate that the use of joint estimation of effects can enhance power for prediction, prioritization, and discovery. However, the

limits of such an approach are as follows: First, the use of local false discovery cannot be interpreted in the same context as family-wise error
8 iScience 26, 107854, October 20, 2023



ll
OPEN ACCESS

iScience
Article
rate control and should be thought of in the context of describing effect size estimation rather than limiting the probability of observing at

least one false positive. Second, in reporting replication, we note that we chose conservatively estimated 500-kb blocks to define an area of

approximate linkage disequilibrium; however, the choice of large blocks means some amount of replication is expected by chance. To over-

come those challenges, we use a hypergeometric test to assess the significance of observing a defined number of replicated variants in both

the UK Biobank and MVP using mash. Finally, in this paper we report the results using LDpred2 as a method for PRS estimation and focus

particularly on the results under their infinitesimal model. However, this approach can be extended to a setting with alternative approaches

to PRS development, and we hope this will motivate future work to explore the use of joint methods for discovery in combination with

methods of LD shrinkage for prediction.

In conclusion, applying these methods demonstrates the significant promise of multivariate approaches for GWAS of complex traits and

the improvement gained in both prediction and prioritization through control of false discovery of multivariate adaptively shrunk effect size

estimates.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

MVP Summary Statistics38 dbGAP phs002453.v1.p1.c999

UK Biobank39 UK Biobank Application 7089, Basket 2008463

Software and algorithms

mashR4 Urbut et al.4 https://cran.r-project.org/web/packages/

mashr/vignettes/intro_mash.html

Polygenic Prioritization Software Weeks et al.22 https://github.com/FinucaneLab/pops

LDPred2 Prive et al.8 https://privefl.github.io/bigsnpr/articles/

LDpred2.html

R https://www.r-project.org

TORUS Wen et al.25 https://github.com/xqwen/torus

Other

Online methods for rerunning mash with

available summary statistics and displaying all

covariance matrices.

N/A https://broadinstitute.github.io/

natarajanlab_wiki/MVP-mfit.html

Worklow for running LDpred2 with MVP

summary statistics using SoS pipeline for

simple univariate case (template for adding

analogous mash summary stats for additional

traits)

N/A " \o "https://broadinstitute.github.io/

natarajanlab_wiki/hdl_univariate.htmlhttps://

broadinstitute.github.io/natarajanlab_wiki/

hdl_univariate.html

https://broadinstitute.github.io/

natarajanlab_wiki/hdl_mash.html

Online methods for producing Torus

metaplots:

N/A https://broadinstitute.github.io/

natarajanlab_wiki/metaplot_strat_torus.html

Online methods for reproducing Venn

diagrams:

N/A https://broadinstitute.github.io/

natarajanlab_wiki/venn_diagrams.html

Ranking of all genes by mashR and MLE via

shiny app:

N/A https://surbut.shinyapps.io/testgenelist/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Pradeep Natar-

ajan (pnatarajan@mgh.harvard.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data

The input summary statistics and corresponding posterior means effect size estimates generated in the analyses for theMillion Veterans Proj-

ect and UK Biobank reported in this study cannot be deposited in a public repository because it is available with appropriate IRB access. To

request access, contact dbGAP and the UK Biobank for details. Accession numbers or DOIs are listed in the key resources table. The poly-

genic risk score weights have been deposited in the PGS catalog and are available upon request from the lead author.

� Code

All original code has been deposited at broadinstitute.github.io/natarajan_lab/index.html and is publicly available as of the date of publica-

tion.
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� Other items.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Study participants

Association testing was performed in up to 297,626 white (European ancestry), black (African ancestry), and Hispanic Million Veterans Program

(MVP) participants with blood lipids stratified by ethnicity followed by ameta-analysis of results across all three groups as previously described.10

Samples were imputed to the 1000Genomes project p3v5 reference panel (b37), and ancestry specific Hardy-Weinberg equilibrium P< 1x10-20,

posterior call probability <0.9, imputation quality/INFO <0.3, minor allele frequency (MAF) < 0.0003, call rate <97.5% for common variants

(MAF >1%), and call rate <99% for rare variants (MAF <1%) were used for QC. Variants were also excluded if they deviated >10% from their ex-

pected allele frequency based on reference data from the 1000Genomes Project. Trans-ethnicmeta-analysis of white (European ancestry), black

(African ancestry), and HispanicMVPparticipants for 291,933 and 297,626 peoplewas produced for inverse normal transformedHDL cholesterol,

Inverse normal transformed LDL cholesterol, Inverse normal transformed triglyceride levels and inverse normal transformed total cholesterol.38

UK Biobank samples39 were genotyped on either the UK BiLEVE or UK Biobank Axiom arrays and imputed into the Haplotype Reference

Consortium panel and the UK10K+1000 Genomes panel. Variant positions were keyed to the GRCh37 human genome reference. Genotyped

variants with genotyping call rate <0.95 and imputed variants with INFO score <0.3 or minor allele frequency % 0.005 in the analyzed sam-

ples36 were excluded. After variant-level quality control, 11,622,901 imputed variants remained for analysis Lipid levels were collected on the

Beckman Coulter AU5800 Platform and were adjusted for cholesterol medication.40 Participants without imputed genetic data, or with a gen-

otyping call rate <0.98, mismatch between self-reported sex and sex chromosome count, sex chromosome aneuploidy, excessive third-de-

gree relatives, or outliers for heterozygosity were excluded from genetic analysis.39 IRB approval was obtained by an institutional review com-

mittee in accordance with the principles outlined by iScience.

Input use as summary statistics

There has been much work on the utility of summary statistics in both fine-mapping and prediction.5,28,29 Namely, working with two numbersbB andcse rather than simply p or Z, can yield substantial gains in functionality while providing a convenient framework for estimation as

opposed to only testing. It is not the goal of this paper to summarize the substantial body of literature on summary statistics.

Model and fitting of mash model

Using the procedure outlined in Urbut et al.,4 we first generated data-driven covariancematrices Uk.We first identified the rows of theM SNPs

by R traits matrix bZ of Z statistics across traits that were likely have an effect in at least one condition. In the MVP data, we chose rows cor-

responding to the ‘‘top’’ SNP for each of the 1703 conservatively defined LD blocks specified in22 as the SNP with the strongest absolute

observed Z statistic across traits from the matrix of Z statistics, which we defined to be the SNP with the highest value of

Zmax
j dmax

r
bbjr=bsjr . We used the maximum, rather than the sum because we wanted to include effects that were strong in a single lipid trait

rather than effects that were shared among all lipids. The matrix of residual errors, bV , as articulated here4: namely, by estimating the

empirical covariance (correlation) matrix of the smallest (by absolute value) z statisticis present in the dataset, namely those with an absolute

value of |Z-statistic| <2. The intutition is that:

bB = B+E
bB � Nð0; bV + UkÞ

Hence truly null effects in which B = 0 arise solely from the covariance of errors. In our simulation based on the initial framework of mash4

(Figure S9), we liberally simulate a setting in which the covariance of residuals is 0.8 between traits. Next, we fitted a mixture of MVN distri-

butions to these strongest effects using methods from Bovy et al.41 We used a list of 16 matrices (i.e., K = 16) in this application that incor-

porated 7 data drivenmatrices in addition to the identity and four canonical ‘trait specific’ matrices as well asmatrix for equal effects and three

matrices with varying levels of fixed heterogeneity.4,6,42 Next, we expanded by a grid of 21 scaling factors (i.e., L = 21) ranging fromu2 = 0:07

to u2 = 72:43 as specified by the range of observed ‘noisy‘ effects in a training set of 40,000 SNPS.

Thenwe repeated thismodel fitting procedure with the UKBB data, choosing a new set of ‘maxes’ and computingweights on a training set

from UKBB.

We computed posterior means and local false sign rates for 28,686,877 SNPs in the MVP databases and 13,788,619 million SNPs in the

UKBB which overlapped at 11,1577,790 loci. Detailed calculations are described in (4).

Gene enrichment

TORUS25 uses a hierarchical Bayesmodel to estimate the enrichment of a variety of genomic annotations inQTL and in turn assigns a posterior

probability of inclusion to the ‘causal’ nature of the corresponding loci. We used the assigned posterior mean expected Z scores from mash
iScience 26, 107854, October 20, 2023 13
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and corresponding univariate Z statistics as inputs to the TORUS model and observed the estimation of log OR of an annotation parameter

being enriched (depleted) in QTL. This package considers the strongest loci per block, and we used the 1703 blocks as conservatively defined

by Berisa et al.22 Furthermore, we used the set of annotation parameters available through the Price lab.43We provide a link to the commands

to run appropriate pipeline44 and corresponding annotation file.

Gene prioritization

In order to rank genes based on their strength of effects as demonstrated by associated SNPs and consequent feature enrichment, The Poly-

genic Gene Prioritization (PoPs) algorithm works in three steps.37 Recall that lower ranks indicate higher priority.

1. Use magma to assign gene association statistics based on significance of associated SNPs.

2. Select marginally associated features by performing enrichment analysis for each gene feature separately.

3. Estimate Polygenic Priority Scores23 (PoPs) by fitting a joint model for the enrichment of all selected features using ‘leave one out’

regression.

Here, we used the local false sign rate (lfsr) and p value for all SNPs considered by the MVP project for our mash and univariate analyses,

respectively. We used the 1000 Genomes human reference to specify LD among variants per the PoPS protocol, the MAGMA list of genetic

annotations to map genes to respective loci, and control and PoPS features from the available packages as detailed within the PoPS package

and accompanying software.45 We then ranked genes in order of prioritization score and compared mash estimates to univariate assess-

ments. Recall that lower ranks indicate higher priority.

QUANTIFICATION AND STATISTICAL ANALYSIS

Polygenic score prediction

We used the LDpred28 infinitesimal sites model to control for this genetic correlation. In this model, all markers are causal (p = 1), and effects

are drawn from a Gaussian distribution, i.e.,

Bjr � N

 
0;
hr

2

M

!
(Equation 2)

where h2 represents the heritability of the trait and M the number of markers. The posterior mean can be derived analytically.

E

 
Bjr

�� bB�
jr
;Dz

�
M

Nh2
I+D

�� 1 bBjr (Equation 3)

Here, bBjr is the ordinary least square estimate from a univariate GWAS analysis. Here, D denotes the LD matrix between the markers ob-

tained from an outside reference panel, in our case the 1000 Genomes EUR dataset.

In a typical analysis, one uses bBjr that are estimated from a univariate GWAS analysis in each trait separately. However, we replace this with

the posteriormeans on a per trait basis frommash. The bjr are each themarginal output of the posteriormean arising from themixture normal

cited in4 which weight the importance of each prior distribution shape and scale by the probability density of the observed effect under that

distribution with the observedmean and standard error. The posterior mean is thus a weighted average of the observed ‘noisy’ estimate and

the prior mean, in this case a mixture of unimodal distributions centered at 0.

As noted we use the exchangeable Z-statistic model in which we assume the standard errors bs2 are known as in,4 these estimates are then

rescaled by their standard error to compute the input summary statistic weights for rescaling in LDpred2.8 As noted we use the exchangeable

‘Z’ statistic model which assumes that the effects scale with standard errors (alpha = 1 in 5), which we find is most appropriate in genomic

contexts. We use the posterior estimates of E(b
��ðcseg; bbÞ in all downstream analyses, and given that our posterior estimates are of

Eðb =csejcse; bbÞ and V ðb =csejcse; bbÞ we rescale these posterior estimates by the original standard error to produce posterior means for both

b and its corresponding posterior standarddeviation (a hyperparameter).We report themarginal ‘diagonal’ of the posterior covariancematrix

and rescale by each conditions corresponding standard error.

General workflow as follows

1) We perform QC on reference panel (1000 genomes12)

2) We intersect SNPs common to the reference panel (1000 genomes12), discovery dataset (MVP) and scoring dataset (UKBB). This left us

with approximately 400K SNPs.

3) Harmonize alleles for shared direction

4) We calculate the LD matrix and fit the LDSC per LDpred2.8

5) We use this LDmatrix and to compute the posterior weights from initial summary statistics (either arising fromGWAS summary statistics

or from the posterior means of mash output).

6) We compute the PRS using the infinitesimal model8 for all individuals in UKBB.
14 iScience 26, 107854, October 20, 2023



ll
OPEN ACCESS

iScience
Article
7) We associated these scores with the phenotype of interest in a linear model that includes age and sex as additional (baseline) cova-

riates.

8) We then divide into EUR and non-EUR individuals to assess population-specific performance. A sample vignette running it on HDL uni-

variate summary statistics is available on github as detailed in the key resources table. We use both the inf and grid models and cross-

validate on a holdout subset of 400 individuals for the grid model.
Simulations

In Figure 7, we simulate 1.3MHapMap SNPs with Nc 1000 causal SNPS (0.01%), 0.6 H2 such that each causal SNP has an effect correlated at 0.7

with the master trait. The simulation is based on the simulated EUR genotype data provide by Zhang et al.27 In brief, we randomly sampled

1000 of the 1.3 million HapMap3 SNPs as causal SNPs and assumed that the causal SNPs were shared across four traits and their per-allele

effect size followed multivariate normal distribution and the non-causal SNPs had zero effect. The intertrait correlation was set at 0.70. For all

the traits, the phenotype was generated using y = X � b+e; where X was the genotype matrix, b is the simulated per-allele effect size, e was

the non-genetic component following a normal distribution of mean = 0. The standard deviation of e was set so that the heritability for all the

traits was fixed at 60%. The GWAS was performed with 100k of the simulated individuals. mashR was fit according to the empirical covariance

matrix and with additional dimensional reductions as above, and mtag was run as in19 with n_min = 0.0

In Figure S9, we simulate a setting of shared structured effects in which 100 causal SNPs out of 10,000 (1%) are active with generativemodel

arising from the empirical covariance matrix generated in Equation 1. We simulate with residual correlation matrix bV generated such that the

correlation is 0.8 between traits.

‘‘Shared, structured effects’’ simulations

We simulated each bj from the mixture model in Equation 1 with mixture parameters based on fit to the MVP lipid data. This is the simulation

procedure in more detail.

1. We took the 8 ‘‘data-driven’’ covariance matrices U1, .,U8 learned from the MVP data, standardized as described above.

2. We simulated 100 ‘‘non-null units’’: independently for j = 1, .,1 00, we (a) chose a component k uniformly at random from 1, ..,8,

(b) simulated a scaling factor u as the absolute value of an N(0,1) random variable, and (c) simulated bj � N4(0, uUk).

3. For the 9,900 ‘‘null units’’, we set bj = 0.

4. For all 10,000 units, we simulated bb4 � Nðbj; bVj Þwhere bVj was the diagonalmatrix with diagonal elements 0.12 and correlation r = 0:8:
ADDITIONAL RESOURCES

Additional References for this manuscript including link to workflow code for completing analyses and producing plots available at https://

broadinstitute.github.io/natarajanlab_wiki/index.html.
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