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Abstract

We have used a previously unavailable model of pancreatic development, derived in vitro from human embryonic stem
cells, to capture a time-course of gene, miRNA and histone modification levels in pancreatic endocrine cells. We investigated
whether it is possible to better understand, and hence control, the biological pathways leading to pancreatic endocrine
formation by analysing this information and combining it with the available scientific literature to generate models using a
casual reasoning approach. We show that the embryonic stem cell differentiation protocol is highly reproducible in
producing endocrine precursor cells and generates cells that recapitulate many aspects of human embryonic pancreas
development, including maturation into functional endocrine cells when transplanted into recipient animals. The availability
of whole genome gene and miRNA expression data from the early stages of human pancreatic development will be of great
benefit to those in the fields of developmental biology and diabetes research. Our causal reasoning algorithm suggested
the involvement of novel gene networks, such as NEUROG3/E2F1/KDM5B and SOCS3/STAT3/IL-6, in endocrine cell
development We experimentally investigated the role of the top-ranked prediction by showing that addition of exogenous
IL-6 could affect the expression of the endocrine progenitor genes NEUROG3 and NKX2.2.
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Introduction

Diabetes is a highly prevalent disease characterised by elevated

and poorly regulated blood glucose caused by a defect in insulin

production by the pancreatic beta cell, reduced insulin action in its

target tissue, or a combination of the two. The World Health

Organisation estimates that diabetes currently affects 220 million

individuals worldwide (http://www.who.int/mediacentre/

factsheets/fs312/en/) rendering this a huge area of interest for

the medical and drug discovery fields. Over a decade ago, Shapiro

and coworkers demonstrated a pathway to a cure by restoring

glucose control via the transplantation of pancreatic islets from

cadaveric donors into diabetic patients [1]. However, this method

is hindered by the scarcity of donor material [2], resulting in

intense scientific interest in the generation of renewable sources of

pancreatic islet cells for cell replacement therapy.

A major advancement toward this goal was achieved by

D’Amour and colleagues [3] when they developed a high-

efficiency method of converting pluripotent human embryonic

stem cells (hESC) into pancreatic endocrine cells. This was

accomplished by using a precise, stepwise combination of growth

factors and small molecules to recapitulate in vitro, the develop-

mental biology of the human pancreas. They further demonstrated

that while these cells are minimally functional in vitro, transplan-

tation of the cells into recipient mice allows for their complete

maturation into functional glucoregulatory islet-like cell clusters

[4].

While this work has been a major advance in the field of islet

cell therapy, an added advantage of this cell differentiation system

is that it provides experimental access to a heretofore unavailable

window of human embryonic pancreas development, namely from

germ layer specification through to pancreatic endocrine cell

commitment. Although the entire time-course of developmental

steps is of general interest, we are particularly interested in the

molecular events leading to endocrine cell commitment and

differentiation. We hypothesized that understanding the genetic

control of early islet cell development and differentiation would

reveal novel pathways regulating endocrine cell function in the

adult.

To improve the understanding of these molecular events three

levels of biology were probed at a genome-wide scale: gene

expression, miRNA expression and epigenetics. Similar techniques

have been used to study in vitro developmental processes in a range
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of directed differentiation stem cell-based models [5] including the

generation of neural cells [6], intestinal tissue [7], adipocytes [8]

and myoblasts [9] as well as islet production itself [10,11]. Outside

the context of directed differentiation, mature mammalian beta

cells and islets have also been extensively profiled at the epigenetic

[12–14], miRNA [15–17], protein [18] and gene expression levels

[19–22]. Even with the availability of this extensive background

literature, the efficiency of the directed differentiation protocol we

use and the integration of three different genome-wide datasets

results in unique insights into the formation of pancreatic

endoderm.

One of the key goals of this analysis is to identify novel

regulators of the latter stages of pancreatic endoderm formation, as

we hypothesise that some of these regulators may be manipulated

as novel targets for the treatment of diabetes. The identification of

such causal drivers of biological processes is a crucial task in many

drug discovery projects. High-throughput techniques, such as

microarrays and next-generation sequencing, are limited in that

they only measure the response of a cellular system. They do not,

however, address the key question of unraveling the causal

cascades of signaling molecules, receptors, kinases and transcrip-

tion factors that lead to the observed response. We use an

innovative causal reasoning approach (known as the Causal

Reasoning Engine (CRE)) that leverages prior biological knowl-

edge, available in published literature, to identify putative novel

regulators and regulatory pathways involved in endocrine

pancreas development.

We show that hypotheses generated using CRE algorithms can

be borne out by laboratory testing in our pancreatic precursor

model system. As evidenced by the predicted role of IL-6 in the

promotion of endocrine cell formation, we show that addition of

exogenous IL-6 to cells at the pancreatic precursor stage resulted

in an increase in NKX2.2 and NEUROG3 expression, indicative

of new endocrine specification, validating the approach and

providing a number of new potential targets for exploration.

Results

Directed Differentiation of hESC to Endocrine Precursors
In an effort to explore the molecular pathways involved in

pancreatic endocrine cell formation and maturation, we turned to

the Viacyte hESC directed differentiation cell model. This system

has been previously reported to be capable of generating

pancreatic progenitor cells that can fully differentiate into

functional insulin-producing cells upon implantation into mice

[4]. We reasoned that this in vitro culture system, while not an

identical surrogate of in utero human pancreatic development,

should recapitulate many of the critical cell fate decisions

occurring during pancreatic organ development, and do so in a

more experimentally tractable format. As a first step, we

internalized a modified protocol developed by Viacyte to perform

their cell differentiation in a non-adherent rotating culture format

[23]. Using this improved method, we could increase cell yield

while maintaining 90–99% purity at each stage (Figure S1(A)).

The synchronicity in differentiation is maintained up until the cells

enter the pancreatic lineage, when the culture becomes a complex

mixture of pancreatic progenitors and committed endocrine cells

as the cells undergo their final differentiation steps and select their

ultimate cell fate (duct, acinar, or endocrine cells).

The complexity of the cell population generated can be seen by

flow cytometric analysis at day 14 (Figure S1(B)). By this stage,

approximately half of the cells in the culture are committed

endocrine cells, by virtue of their expression of the pan-endocrine

lineage marker Chromogranin A. This ChromograninA popula-

tion consists of a mixture of cells expressing hormones from each

of the differentiated lineages (a, b, d, e, PP) (Figure S1(A) and

S1(B)). A low level of off target differentiation into intestine, liver,

anterior endoderm or mesoderm was seen. Pancreatic progenitor

cells, defined by co-expression of NKX6.1 and PDX1 and the

absence of ChromograninA, typically comprise between 20%–

40% of the culture. In a confirmation of the previous report [5],

we showed that when these cells were implanted into the

epididymal fat pad of SCID-bg mice, they were competent to

mature into functional islet-like cell. Glucose-dependent human C-

peptide secretion was observed by 8 weeks post-implant, with

maximal function reached by 6 months (Figure S1(C)) indicating

that the grafts are functional and that the in vitro-generated cells

have pancreatic endocrine progenitor properties. Using this model

system as a platform, we sought to further understand the gene

expression changes that contribute to pancreatic endocrine cell

formation. The high cell purity, coupled with the synchronous

response of these cells to the inductive cues provided in the

protocol make it particularly amenable to detailed transcriptome

analysis at each stage from pluripotent cell through the early

endoderm and foregut stages.

As a proof of concept that relevant pathway information can be

identified using this model, we first sought to validate the system

by examining changes in mRNA and miRNA expression as well as

global methylation patterns within the early stages of the

differentiation. This is a period in which there is an exceptionally

high degree of homogeneity in the culture, which facilitated the

interpretation of the data.

Samples were harvested at the end of the pluripotent hESCs

(day 0), mesendoderm (day 1), definitive endoderm (day 2) and

primitive foregut (day 5) stages from three independent differen-

tiation experiments. Additional samples were harvested at days 8

and 11 as these cells develop through the pancreatic progenitor

and endocrine lineage. Samples were then profiled for whole

genome gene and miRNA expression analysis using Illumina

Human HT-12v3 and Human v2 miRNA BeadChips respectively.

In parallel, additional cell samples were processed for analysis by

ChIP-Seq using an antibody against histone 3 lysine 4 trimethlya-

tion (H3K4me3), an epigenetic mark of active chromatin.

Comparison of Global mRNA, miRNA and H3K4me3 Time-
course Profiles

As an initial analysis to demonstrate the consistency of the

system across independent experiments, we generated a clustered

heatmap based on the correlation of global gene expression levels

(Pearson correlation coefficient (R)) between samples Figure 1(A).

The samples from each time point cluster closely together (the

minimum R between two samples from the same time point is

0.99), demonstrating the highly reproducible nature of this

protocol. Similarly, we generated heatmaps from the miRNA

and H3K4me3 data (Figs S2(A) and S2(B)), with the same patterns

of clustering seen in both cases. Principal component analysis

(PCA) plots of the same data that show similar patterns of

clustering are also given in the supplementary materials (Figure

S3).

The microarray generated gene expression data was confirmed

by spot-checking the expression of 113 selected genes (listed in

Table S1) by qRT-PCR. The correlation between the measured

fold changes across time from the two technologies was high, with

88% of transcripts showing a correlation with R .0.7 and 82%

with R .0.9. The relative expression levels by array and qRT-

PCR for four exemplar genes and a histogram of all correlation

coefficients are given in the supplementary materials (Figures S4

and S5). Figure 1(B) shows the expression profiles for a set of

CRE Targets for Maturation of Endocrine Precursors
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commonly used markers at each stage of the protocol. The

expression patterns of these markers confirm the correct produc-

tion of the relevant cell type at each point in the protocol. The top

20 differentially expressed (P,0.01; fold change .1.5; ranked by

P) genes and miRNAs at each time interval are provided in the

supplementary tables S2 and S3.As well as gene markers, a

number of miRNAs are known to be involved in pancreatic

development and insulin secretion. Our data support a role for

some of these species in the in vitro differentiation process

examined here. We observe large increases in expression over

time for miR-375 [24,25], miR-7 [26] and miR-503 [15], though

for the insulin secretion regulating miRNA miR-9 [27] expression

rises and then falls (data not shown). A recent study by Bolmeson

et al., of miRNA enriched in pancreatic islet samples versus liver

and skeletal muscle identified miR-127-3p, miR-184, miR-195

and miR-495 [28]. Although our analysis does not extend to

include fully functioning islets, we did detect increased expression

of miR-127-3p and miR-495 at day 8 and day 11. miR-184 was

also detected at high levels at day 11 relative to the day 1– day 8

samples, but we also observed high expression in the starting

hESC population, suggesting that although it may have a role in

development it is not islet-specific. Finally, in contrast to the

observations by Bolmeson et al., our data reveals a strong

reduction in miR-195 expression during differentiation. This

could possibly be due to donor variation, given that our data is

generated from a single hESC line as opposed to a pool of donors,

or indicate that the trend reverses later in differentiation.

Correlations between H3K4me3 and mRNA Expression
A high level of H3K4me3 is generally considered a marker of

actively transcribed genes [29–31]. Using the MACS tool [32] we

found a relatively consistent number of significant H3K4me3

peaks across the time course, though there was a slight downward

trend observed. The number of peaks detected ranged from

,38,000 at day 0 to ,32,000 at day 11. As has been observed

previously [33], in our data H3K4me3 peaks tend to overlap with

transcriptional start sites (TSS) and the levels form a characteristic

double peak (Figure S6).

Next, we tested to see whether the H3K4me3 levels around each

TSS correlated with gene expression levels. A positive correlation

between absolute H3K4me3 and gene expression levels is observed

for all time points, though it is weaker at some of the later points

and at day 11 in particular (Figure 2(A)). A stronger effect is seen

when the changes in H3K4me3 and expression levels between

consecutive time points are correlated. A matrix of the correlations

between all possible pairs of time intervals is shown in Figure 2(B).

This analysis shows that the expression changes between any two

consecutive time points are well correlated with the H3K4me3

changes in the same time interval, and that no correlation is

observed with gene expression changes at subsequent (or

preceding) time intervals. This implies that, at this time resolution,

H3K4me3 levels around a TSS are not predictive of future

expression levels, but rather tend to reflect the degree of

transcriptional activation at the site at the moment of sampling.

We also examined whether the correlation between H3K4me3

levels and transcriptional activity was better for some groups of

genes than others. Figure 2(C) shows a histogram of the correlation

coefficients between H3K4me3 levels and expression levels

calculated for each gene across the time-course. A clear peak

towards the right hand side can be seen, consistent with the view

that H3K4me3 positively correlates with expression. However we

were surprised to see a small, but significant bimodality in the data

(P,1e23, Hartigan’s Dip Test), with an apparent secondary

hump in the distribution of correlations around R = 20.5. To

understand if the genes that showed a negative correlation

between H3K4me3 levels and gene expression levels corresponded

to any particular functional grouping, a gene set enrichment test

was run using the correlation coefficients as the basis of the gene

ranking. The result suggests that, of all functional classes,

ribosomal genes show a significant degree of anti-correlation

Figure 1. Transcriptome analysis shows the reproducibility of the differentiation protocol. (A) Genome wide gene expression correlation
heatmap between samples. Samples are clustered by the Euclidean distance between rows/columns and single linkage clustering. The colored bar
along the top of the heatmap indicates the timepoint at which the sample was taken (pink: day 0, maroon: day 11). (B) Heatmap of expression of
selected markers. The developmental stage is indicated by the labels to the left of the heatmap.
doi:10.1371/journal.pone.0056024.g001
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between H3K4me3 levels and gene expression. The distribution of

correlation coefficients for ribosomal genes is shown in Figure 2(C)

in red alongside the genome wide distribution in green. The

expression and H3K4me3 levels of an exemplar ribosomal gene

are shown in Figure 2(D).

SOX17, a definitive endoderm marker, is more typical in

showing a strong peak in H3K4me3 levels around its TSS at the

same time points as its gene expression peaks (Figures 3(A) and

(B)). However, a recent study [14] showed that pancreatic islets

have low levels of H3K4me3 around the genes encoding secreted

hormones such as insulin and glucagon, despite these cells showing

high expression of these genes. We observe the same effect in our

day 11 sample, where the expression of insulin is induced without

any concomitant increase in H3K4me3 levels around the insulin

TSS and within the gene body (Figure 3(C) and (D)). We observe a

similar trend for a number of other genes expressed specifically in

the day 11 sample including ISL1, and the secreted peptides

GHRL and SPP1. This suggests that transcriptional regulation

Figure 2. Epigenetic changes generally correlate with transcriptional changes. (A) Heatmap of the correlation between H3K4me3 levels
(rows) and gene expression (columns) at every pair of timepoints. (B) Heatmap of the correlation between changes in H3K4me3 levels (rows) and
changes in gene expression (columns) at every pair of time intervals. (C) Histogram of the correlation coefficients (R) for the correlation between
H3K4me3 levels and gene expression across time for every gene in the dataset. Green bars show the distribution of R for all genes and red bars show
the distribution for ribosomal genes only. (D) Gene expression (green) and H3K4me3 levels across time for ribosomal gene MRPS17.
doi:10.1371/journal.pone.0056024.g002
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without concomitant changes in H3K4me3 levels is a not

uncommon feature in the latest stages of differentiation; consistent

with our earlier observation that the correlation between

H3K4me3 and expression is weakest at day 11.

Across the whole genome, our H3K4me3 profiles from the day

11 sample showed good correspondence with those derived by

Stitzel et al. from islet cells, with 87% of the peaks overlapping. Of

the peaks that are unique to the day 11 cells in our dataset (not

observed at any of the other time points) 39% overlapped with the

islet cell peaks, compared to 22% for the peaks unique to the day 0

cells.

miRNA – Gene Regulatory Interactions
In contrast to the H3K4me3 data, the integration of miRNA

data with gene expression data is complicated by the fact that

miRNAs can be associated with the regulation of multiple genes

and many of these associations are only based on in silico

predictions.

Figure 3. Induction of insulin expression is not accompanied with epigenetic changes. (A) Gene expression (blue) and H3K4me3 level (red)
profiles for SOX17. The horizontal dashed line indicates the background H3K4me3 level. (B) H3K4me3 reads piled up over the SOX17 gene body at
days 0, 2 and 11. The start and end points of SOX17 are indicated by dashed lines. (C&D) As for (A&B) but for Insulin.
doi:10.1371/journal.pone.0056024.g003

CRE Targets for Maturation of Endocrine Precursors
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To address this, we use a pragmatic approach whereby we

combine known, literature curated miRNA – gene associations

from Tarbase [34] with confident in silico predictions – defined as

associations predicted by two or more of the targetscan [35],

PicTar [36] and mirbase [37] databases. Since miRNAs generally

function through inducing the targeted degradation of their target

mRNA [38], we then filter these associations by only considering

those where the expression levels of the gene and miRNA are anti-

correlated. Not all miRNA – gene interactions are repressive at the

transcript level [39], so this may lose some true functional

interactions, but it reduces the number of associations to a more

manageable level. As a second level of filtering, we also consider

the H3K4me3 levels of the target gene. This allows us to filter out

those genes where the changes in gene expression level are

adequately explained by the H3K4me3 level and so parsimony

dictates that miRNA regulation is not required.

Figure 4(A) shows the expression profile of CD47 and one of its

predicted regulating miRNAs – miR-9. A clear anti-correlation is

observed, as expected if miR-9 is regulating CD47 levels. miR-9 is

known to be involved in insulin secretion [27,40] as is CD47 and

its receptor SHPS-1 [41]. However the existence of a functional

link between the two has not been previously reported to our

knowledge. A counter-argument to the importance of miR-9 on

the regulation of CD47 expression is the H3K4me3 levels around

the CD47 TSS. These levels correlate strongly with the gene

expression implying that miR-99s effect, if present, may only be

small.

To avoid cases were H3K4me3 levels adequately explained the

expression changes, next we turned our attention to those cases

where the miRNA and gene expression levels were anti-correlated,

but where the gene expression and H3K4me3 levels were poorly

correlated. An example of this, again involving miR-9, is shown in

Figure 4(B). The miR-9 target, Integrin Beta1 (ITGB1), has

recently been shown to play a role in pancreatic development [42],

but again the functional link between miR-9 and ITGB1 has not

been reported previously. ITGB1 gene expression levels anti-

correlate with miR-9 levels, but in this case the change in gene

expression, particularly at later time points, cannot be well

explained by changes in H3K4me3 which generally stays below

the background threshold.

A final example where no clear links to pancreatic development

exist for either the miRNA or the gene is shown in Figure 4(C). In

this case the players are ANP32B, a histone chaperone and

negative regulator for apoptosis [43], and miR-206, a miRNA

known to be involved in myogenesis and to regulate the expression

of other histone modifying genes [44,45]. As with ITGB1, the

H3K4me3 levels around the ANP32B TSS show little or no

correlation with ANP32B expression levels, but strong anti-

correlation with miR-206. This is particularly noticeable after

day 8 where miR-206 expression suddenly jumps and ANP32B

expression drops.

Since computational prediction of the regulatory effects of

miRNAs remains a challenge, even after the integration of gene

expression and epigenetic information as done here, experimental

validation will be required to confirm functional roles in endocrine

cell development for the miRNAs and miRNA-gene interactions

we have identified.

Canonical Signaling Pathways Involved in Development
The developmental and signaling pathways leading to endo-

derm specification have been well studied [46] and have served as

the basis for this and other directed differentiation protocols. We

therefore sought to validate our expression profiling system by first

confirming that we could detect changes in the known signaling

pathways being manipulated in this protocol. We used gene set

enrichment methods to confirm the involvement of these pathways

and to begin to search for novel regulators.

Figure 5(A) shows the result of a gene set enrichment analysis on

the changes in gene expression at each time interval, using GO

terms as the basis for the gene sets. Genes were called differentially

expressed at each time interval based on a minimum fold change

of 2 and multiple testing adjusted P value of less than 0.01. The

number of differentially expressed genes was 718, 760, 1036, 1288

and 445 at day 0-day 1, day 1-day 2, day 2-day 5, day 5-day 8 and

day 8-day 11 respectively. The most striking trend we observe in

the gene set enrichment analysis is the sharp down regulation of

genes involved in cell division that occurs in two waves: between

day 1 and day 2 and between day 5 and day 8. Genes involved in

phosphoinositide-mediated signaling (PI3K) follow a similar trend,

which supports the previously described connection between PI3K

signaling and endodermal differentiation [35].

Figure 5(B) shows a heatmap concentrating on intracellular

signaling pathways as defined by KEGG [47]. The SPIA

algorithm [48] was used to identify those pathways showing

significant perturbations due to expression changes at each time

interval. These correspond well with the known pathways and

those manipulated through exogenous ligands. For example,

during the first day of the differentiation (day 0-day 1) exogenous

Wnt3a and Activin A are added to the culture media, and as

expected, Wnt signaling shows large perturbations at this point.

However, there is also a change in the Wnt signaling pathway

from days 2–5, a period in which no exogenous Wnt ligand is

added to the media, and therefore is likely driven by endogenous-

ly-produced Wnt signaling models. There is a robust induction of

Wnt5a during this period of foregut patterning and expansion,

consistent with mouse studies that indicate that Wnt5a regulates

intestinal cell proliferation and gut expansion [49,50] as well as

studies that suggest a role for Wnt in pancreatic development [51].

Based on the results of the gene set enrichment analysis, we

looked at cell cycle regulation in more detail. Figure 6(A) shows a

heatmap of the expression levels of those cell cycle genes that

change most significantly over the time-course. Most genes fall into

the cluster exemplified by cyclin E1 (CCNE1) where expression

generally falls with time, but particularly between days 1 and 2 and

5 and 8 (the time intervals identified above) (Figure 6(B)). The four

genes not in this main cluster are cell cycle inhibitors such as

CDKN1A/C and SMAD3. For these, gene expression increases

over time (Figure 6(C)). These results suggest that cell proliferation

decreases as the cells become more differentiated (as described

above) and the involvement of SMAD3 suggests that this process

may be driven by TGF-beta signaling [52]. An exception to the

decrease in expression of cell cycle related genes at later time

points is cyclin D1 (CCND1) whose levels closely match those of

cyclin E1 until day 11, when its levels jump dramatically

(Figure 6(D)). Levels of D1 and D2 cyclins have been shown to

be essential for post-natal beta cell growth in mouse [53] and

human models [54]. The beta cell precursors formed at day 11

seem then to be entering a cell-type specific proliferation regime

regulated by these cyclins.

A novel observation from the gene set enrichment analysis is

dramatic change in genes involved in cholesterol biosynthesis

(Figure 7(A)) during early specification from pluripotent cell to

foregut endoderm. Figure 7(B) shows a heatmap of the expression

of the enzymes involved in cholesterol biosynthesis and Figure 7(C)

shows the expression of miR-33, a miRNA linked to cholesterol

homeostasis [55,56]. Almost all of the genes encoding these

enzymes show a sharp drop in expression at day 1 followed by

recovery at day 2 and then a gentle decrease in expression. While

CRE Targets for Maturation of Endocrine Precursors

PLOS ONE | www.plosone.org 6 February 2013 | Volume 8 | Issue 2 | e56024



the significance of this is unknown, cholesterol is, among other

things, a precursor for steroid hormones such as estrogen and

progesterone, and a recent report by Wong et al. links estrogen

receptor signaling to embryonic stem cell proliferation and self-

renewal [57]. Cholesterol is also known to play an important role

in development, particularly through its role in the post-

translational modification of the sonic hedgehog protein [58].

At the final time interval, insulin and Jak-STAT signaling

become perturbed. Jak-STAT signaling has been linked to Ngn3

expression [59], but is most commonly linked to beta cell function

in terms of the apoptotic response of cells to pro-inflammatory

cytokines [60]. Having observed this perturbation at the signaling

pathway level we returned to the gene level data and confirmed

that expression levels of cytokines, such as IL-8, do increase

dramatically at these time points (Figure S7). We suggest that the

role of cytokine signaling, and Jak-STAT signaling in particular,

may have an under-appreciated role in beta cell development and

look at this in more detail in the next section.

Causal Reasoning to Identify Novel Developmental
Regulators

With the experimental system validated on the early stages of

the differentiation, we then turned to the pancreatic induction

stage (days 8–14) of the protocol where the complexity of cell types

within the system increases dramatically. While the canonical

signaling pathways involved in beta cell development are fairly

Figure 4. Epigenetic changes can be used to identify novel regulatory miRNAs. (A–C) Gene expression (blue), miRNA expression (green)
and H3K4me3 levels for CD47, ITGB1 and ANP32B and the miRNAs associated with them. In all 3 cases the miRNA is predicted to regulate the relevant
gene and is also anti-correlated in level. In (A) H3K4me3 levels correlate closely with the gene expression, whilst in (B & C) there is no correlation,
suggesting a stronger role for the miRNA regulation.
doi:10.1371/journal.pone.0056024.g004
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well understood, not all of the individual regulators behind these

processes had been fully identified by these pathway based

approaches. We hypothesized that using our expression profiling

data set, additional regulators of endocrine cell development could

be identified using a novel network-based approach termed Causal

Reasoning.

The Causal Reasoning Engine (CRE) is a method that utilizes

manually curated, causal relationships. Each relationship encodes

a conducted causal experiment in which a stimulus was applied to

a biological system and the outcome recorded and published.

Causal Reasoning was introduced in Pollard et al. [61] as a way to

use this causal knowledge to predict causal drivers of observed

large-scale transcriptional changes. We rely on a method

published by Chindelevitch et al. [62] that introduced a statistically

sound scoring scheme and showed that the method is reliable even

when not all causal relationships are correctly specified. This last

point is especially important as causal statements will originate

from different biological contexts. Ultimately, Causal Reasoning

provides a list of potential causal drivers (e.g. NEUROG3 up-

regulation) with statistical quantification as to how many of the

observed transcriptional changes are explained by it. Notably,

these drivers are usually not implicated on a transcriptional level

but rather refer to changes in abundance, activity or post-

translational modifications of proteins.

We ran CRE on the gene expression changes between day 8

and day 11 to try and identify novel regulators of the process

underlying endocrine precursor formation and endocrine cell

development. Table 1 shows the top 20 protein hypotheses

(potential causal drivers) ranked according to their Correctness

score, i.e. the difference between the number of correctly and

number of incorrectly explained transcripts. All hypotheses pass a

p-value threshold of 1025. A substantial proportion of these top-

ranking hypotheses are well known to be involved in beta cell

differentiation, proliferation and apoptosis. To demonstrate more

formally that CRE is capable of correctly identifying causal drivers

of beta cell function, we performed an enrichment analysis using

results from literature mining. A genome-wide literature search

shows that ,4% of all human genes are associated with beta cell

function in one or more published papers (see Materials and

Methods for details of the literature analysis and synonyms used).

In comparison, amongst the top 20 CRE hypotheses over 50% of

genes are associated and amongst the top 50 hypotheses, ,40%

are associated with the same level of confidence. This is a highly

statistically significant enrichment (hypergeometric P,1610215).

We also observe that the proportion of drivers identified by CRE

that are linked to beta cell function decreases as the lower ranked

hypotheses are included (Figure S8), confirming that our approach

is correctly identifying important causal drivers and that the

ranking algorithm we use brings the most important drivers to the

top of the list.

Although the CRE hypotheses are enriched for genes known to

be involved in beta cell function, there are also many hypotheses

identified that have not previously been linked to this process.

Combining these known and novel drivers allows us to build new

pathways with potential roles in the regulation of this process. One

such pathway can be built from the NEUROG3, E2F1 and

KDM5B hypotheses. Taken together, these hypotheses correctly

explain 8% of the total gene expression changes observed between

day 8 and day 11. The number of correctly and incorrectly

explained expression changes for each is shown in Figure 8(A).

The role of NEUROG3 as a driver in beta cell function is well

known [63,64], but the roles of E2F1 and KDM5B are less well

established.

Recent work has shown that E2F1 directly binds to and

activates the NEUROG3 promoter in the embryonic pancreas

[65] and ectopic E2F1 expression stimulates beta cell proliferation

[66]. The causal analysis also highlights that E2F1 activity is

known to increase CCND1 expression [67], which we have

Figure 5. Functional analysis of gene expression changes at each time interval. (A) Heatmap of enrichment of GO terms amongst up and
down-regulated genes at each time interval. Red indicates an enrichment amongst up-regulated genes and green an enrichment amongst down-
regulated genes. (B) SPIA analysis of signaling pathways at each time point. The numbers in each cell indicate the -log10 of the P value for
perturbation of the given pathway at each time interval. Darker colors indicate strong perturbations and white indicates no perturbation.
doi:10.1371/journal.pone.0056024.g005
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already shown is up-regulated at this time point, almost uniquely

amongst cell-cycle regulators. We hypothesize that KDM5B’s role

is even further up the pathway. Recent work has shown that

KDM5B is a negative regulator of E2F1 in cancerous cell lines

[68]. KDM5B and E2F1 share several downstream genes in

common, as shown in Figure 8(A), mostly relating to cell cycle

functions. There is also one gene in common between KDM5B

and NEUROG3, which is the secreted hormone galanin. Based on

these observations we would hypothesise that KDM5B may make

a novel target for modulation of beta cell growth and differenti-

ation in vitro and possibly in vivo.

The top ranked driver of gene expression from day 8 to day 11

was found to be IL-6. SOCS3, a downstream regulator of IL-6

signaling was also highly ranked, and this, along with the previous

observation that cytokine driven Jak-STAT signaling appeared to

be active at these later time points, pointed us towards a role for

this pathway in beta cell function. SOCS3 has been linked with

beta cell survival and proliferation previously [69], however the

role of IL-6 appears to be less well appreciated. Although outside

the top ranked hypotheses, STAT3, one of the principal

transcription factors activated by IL-6, was also identified as a

significant regulator. Together the IL-6, STAT3 and SOCS3

hypotheses explain 10% of the observed gene expression changes.

The three components share several downstream genes, shown in

Figure 8(B), including the beta cell specific cyclin CCND1 and

ID1, STAT1 and cFOS.

Figure 6. Expression of cell cycle genes occurs in bursts. (A) Heatmap of genes involved in cell cycle processes. (B–D) Gene expression (green)
and H3K4me3 levels (red) for CCNE1, CDKN1C and CCND1.
doi:10.1371/journal.pone.0056024.g006
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Another potential novel driver of beta cell development

identified by CRE is RET, the up-regulation of which is known

to induce BRAF, hRAS and MAP kinase signaling. The RET

hypothesis itself explains some 3% of the gene expression changes

observed between day 8 and day 11. We were able to find one

study linking RET to beta cell development [70], in which the

authors show that GDNF, which signals through a complex

involving RET, increases beta cell mass and proliferation. This

pathway may make a novel in vivo target for modulation of beta

cell regeneration.

RET feeds into a larger network we derive from the top ranked

causal drivers and shown in Figure 8(C). This network shows the

largest connected component of the network of causal drivers with

P,161024, including protein nodes and protein families. The

network involves factors well known to be involved in beta cell

function, such as NEUROG3, NEUROD1 [71,72] and

CDKN1A, but also a number of novel regulators. CDKN1A

Figure 7. Expression of cholesterol metabolizing genes shows a strong time dependence. (A) The cholesterol biosynthesis pathway from
squalene-PP (top left) to cholesterol (top right) showing all enzymes and some intermediates. Enzymes whose gene expression patterns fall into the
largest cluster seen in the heatmap of the expression levels for these enzymes (B) are colored purple, other enzymes are light blue. LIPA and SOAT1/2
interconvert cholesterol and cholesterol ester. The cholesterol sensitive miRNA-33a shows a similar expression pattern (C) to the main cluster.
doi:10.1371/journal.pone.0056024.g007
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forms one of the most notable hubs in this small network and has

links feeding into it from both the IL-6 and KDM5B/E2F1/

NEUROG3 pathways identified above. As has been proposed

recently, modulation of this central cell cycle inhibiting regulator

may be necessary to allow beta cell proliferation in vivo [73].

Experimental Validation of CRE Predictions
We then went back to the cell differentiation protocol to

evaluate predictions from the CRE, using the top hypothesis IL-6

as our test case. The CRE analysis predicted that signaling

through the IL-6 pathway will positively affect NEUROG3

expression, and thus promote the formation of new endocrine

cells. We were able to detect expression of the gene for the IL6

receptor (IL6R) in all of the day 11 replicates (P,0.05). We tested

this hypothesis by adding exogenous IL-6 to the culture media and

looked for gene signatures indicative of new endocrine cell

formation. Recombinant IL-6 (100 ng/ml) was added during

stage 4 (days 8–14) of the differentiation and gene expression

changes analyzed by qRT-PCR at day 14. To facilitate the

detection of IL-6 mediated changes, Noggin, a powerful inducer of

NEUROG3 expression, was omitted from the culture media

during the IL-6 treatments.

As predicted by the CRE analysis, addition of IL-6 significantly

up-regulated mRNA expression of the endocrine progenitor gene

NEUROG3 by approximately 3-fold (Figure 9(A)). NKX2.2,

which is genetically downstream of NEUROG3 and a marker of

Table 1. Top 20 protein causal drivers of early pancreatic
endoderm formation between day 8 and day 11.

Gene Reg. Corr. Incorr. Ambig. Notes

IL6 Up 47 9 2

CDKN1A Down 39 7 2 2ve growth, +ve apoptosis

THAP1 Down 29 0 0

IL1B Up 48 20 5 2ve growth, +ve apoptosis

NEUROG3 Up 29 3 1 +ve differentiation

EGF Up 29 9 3 +ve growth

NCOR1 Down 22 2 0

IL1A Up 35 16 2

TP53 Down 36 18 2 +ve apoptosis

HRAS Up 25 8 2 +ve apoptosis

SOCS3 Down 18 2 0 2ve growth

TNFSF11 Up 18 2 0

E2F1 Up 18 2 1 +ve differentiation

RET Up 21 6 0

SMAD3 Up 17 5 0 2ve differentiation

KDM5B Down 16 4 0

CXCR7 Down 14 2 0

RB1 Down 12 1 0 2ve growth

TCF3 Down 13 2 1 2ve apoptosis

COL18A1 Down 12 1 0

The number of correctly, incorrectly and ambiguously explained gene
expression observations are given for each gene as well as the predicted
direction of regulation (up meaning activation/down meaning inhibition). The
notes for each gene indicate that in cases where the gene is already associated
with beta cell function whether it is generally considered a positive or negative
regulator of beta cell differentiation, proliferation (growth) or apoptosis. All
hypotheses pass correctness and enrichment p-value thresholds of 1025.
doi:10.1371/journal.pone.0056024.t001

Figure 8. CRE identifies a number of novel pathways poten-
tially involved in the final stages of endocrine pancreas
development. (A) The KDM5B, E2F1 and NEUROG3 pathway described
in the text. Arrows within the blue boxes indicate predicted increases
(green) or decreases (red) in activity of the given protein between day 8
and day 11. The pie charts indicate the number of gene expression
changes between day 8 and day 11 that are correctly (blue) and
incorrectly (red) predicted. Genes regulated by each protein are
indicated on the right. Blue arrows indicate activation of gene
expression by the protein and red arrows indicate inhibition. The red
stop symbol indicates that KDM5B is a known inhibitor of E2F1
expression and the green cross that E2F1 is a known activator of
NEUROG3 expression. (B) The IL6, SOCS3 and STAT3 pathway. All details
as for (A). (C) A network of causal drivers for gene expression changes
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committed endocrine cells, was also significantly induced, indicat-

ing that IL-6 was sufficient to drive the endocrine program and

suggests an increase in the number progenitor cells differentiating

into endocrine cells.

However because the aggregates in these cultures are a mixture

of both pancreatic progenitor cells and newly differentiated

endocrine cells (Figure S1), it is impossible to know which cell

type is responding to IL-6 to induce NKX2.2 expression. This

enhanced expression could either represent an increase in the total

number of cells in the culture that have become endocrine and are

now expressing NKX2.2, or alternatively it could simply reflect an

increase in expression within cells that are currently expressing the

gene. To address this question, we took advantage of the inherent

physical differences between pancreatic epithelial cells and their

endocrine cell progeny.

Pancreatic progenitor cells exist as tightly connected cords of

epithelial cells that require extensive cell-cell contact for survival

and function, and disruption of these contacts leads to apoptosis/

anoikis. In contrast, immature pancreatic endocrine cells are by

nature migratory and require minimal cell-cell contact, and are

thus refractile to anoikis. By enzymatically dissociating our culture

into single cells and placing these cells back into culture, the

progenitor cells die off and the remaining endocrine cells will

survive and self-organize into spheroid clusters. Using this method,

we can achieve enrichment of the endocrine cells to .90% purity

(Figure S9), and can thus address the effect of IL-6 on the

endocrine cells with minimal mRNA contribution from the

pancreatic progenitor fraction.

As described above, stage 4 pancreatic cells were dissociated

and allowed to spontaneously re-form into islet like endocrine

clusters. The following day, these endocrine clusters were treated

with either DMSO or IL-6 and gene expression analyzed 48 hours

later (Figure 9(B)). Intact aggregates containing both pancreatic

progenitors and endocrine cells were treated in parallel as a

control.

As seen in the previous experiment, addition of IL-6 to the

mixed culture of pancreatic progenitors and endocrine cells

(aggregates) induced NKX2.2 expression, however no change was

seen in the purified endocrine cells. This supports the hypothesis

that IL-6 is acting on pancreatic progenitor cells to induce new

endocrine cell formation. Interestingly, changes in the expression

of a number of additional genes were detected in purified

endocrine population, including the secreted hormones IAPP

and somatostatin (though not insulin), supporting the previously

reported effect of IL-6 on islet cell function [74], and indicating

that IL-6 may play multiple roles in the specification and

maturation of embryonic endocrine cells.

Discussion

The aim of this study was to better understand and predict the

pathways involved in endocrine development and use a novel

causal reasoning approach to identify new opportunities toward

the development of efficient islet cell replacement therapy. Due to

the limited supply of available human islet cells, the production of

pancreatic endocrine cells from an alternative source would be

required for efficient cellular replacement therapy. Currently,

several groups have reported generating these cells from human

embryonic stem cells, although the true functionality of the cells

created by many of these protocols remains open to question [75].

The most successful of these methods succeeded in creating

immature human pancreatic endoderm that, when transplanted

into a rodent diabetes disease model, matured into functional

hormone-producing endocrine tissue and fully restored the normal

glycemic state of a diabetic animal [4]. This process, however,

takes more than 8 weeks and is not well defined due to the

maturation occurring in vivo. Using this same model system as a

platform, we sought to further understand the gene expression

changes that contribute to pancreatic endocrine cell formation.

The high cell purity, coupled with the synchronous response of

these cells to the inductive cues provided in the protocol make it

particularly amenable to detailed transcriptome analysis at each

stage from pluripotent cell through the early endoderm and

foregut stages.

We showed that this protocol is highly reproducible and can

produce pancreatic endocrine precursor cells that show appropri-

ate gene expression. Integration of epigenetic data showed that

changes in H3K4me3 levels can account for a large percentage of

the gene expression changes observed, though clearly many other

such histone and direct DNA marks will also have important roles

to play. Controlled modulation of the enzymes responsible for the

addition and removal of such marks along with the targeting

machinery that lead them to their correct sites of action in the

genome is likely to be a key research goal for directed

differentiation studies in many therapeutic areas. We identify

one histone demethylase, KDM5B, as a potential target for

modulation in the context of endocrine beta cell production due to

its modulation of E2F1 and NEUROG3.

The complexities of biological regulation at the epigenetic and

transcriptional levels are made clear by Figure 2. Unlike the

majority of genes, the expression of insulin, as well as other

endocrine hormones, appears not to be regulated epigenetically, at

least in terms of H3K4me3 levels. Whether this is an artifact of the

precursor nature of these cells is not clear from our in vitro data,

but a similar observation was made recently using islet cells [14].

Clarification of this will require the determination of the precise

chromatin structure around these genes in precursors as well as

mature beta cells.

The role of canonical signaling pathways in beta cell

development has been well studied and, as shown in Figure 3,

our analysis agrees with the consensus opinion of the importance,

timing and role of these pathways. The two exceptions to this are

Jak-STAT signaling and cholesterol mediated signaling. In the

latter case, the evidence for a role comes from apparently highly

coordinated changes in the levels of cholesterol producing enzymes

as well as other genes involved in cholesterol homeostasis, such as

the miRNA mir-33. The obvious point for cholesterol to feed into

the developmental decision making machinery is via Hedgehog

signaling as it is a known post-translational modification of the

Sonic Hedgehog protein. Further investigation of the links

between cholesterol metabolism, Hedgehog signaling and pancre-

atic development seem warranted.

The importance of JAK-STAT signaling in the later stages of

the protocol, particularly via IL-6, was also detected by our causal

reasoning approach. Causal reasoning is beginning to be

recognised as an important tool within the field of drug discovery.

Another study has used this approach to identify common

mechanisms activated within drug-treated cell lines in an

oncology-related programme [76], which highlights the generation

of similar types of biological networks to those, described here.

Here we relied on a specific implementation of the approach that

between day 8 and day 11. Species predicted to have increased activity
at day 11 are given in yellow boxes, species predicted to have
decreased activity are given in purple. The two pathways discussed in
the text are highlighted by dashed lines and red arrows. Grey arrows
indicate known regulatory interactions between species (both activat-
ing and inhibiting).
doi:10.1371/journal.pone.0056024.g008
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provides an accurate statistical quantification of significance for

predicted upstream drivers.

Whilst the nature of the causal reasoning analysis means that no

single link can ever be truly novel, bringing several links together

can reveal novel pathways. For instance, the links between the

histone demethylase KDM5B and the transcription factors E2F1

and NEUROG3 have only recently been established in isolation.

Our analysis brings them together in a new light and suggests an

important new pathway for the regulation of beta cell prolifera-

tion.

We then tested our CRE approach using the top-ranked

prediction of IL-6 as a positive regulator of endocrine cell

formation. We showed that addition of exogenous IL-6 to our

pancreatic precursor population resulted in a significant increase

in NEUROG3 and NKX2.2 expression in these cells. Interest-

ingly, upon separating out the precursor population and a purified

endocrine population our results demonstrated that the effect was

only observed in the pancreatic precursors indicating that more

cells have become committed to the endocrine lineage. Further

experiments will be required to fully validate the CRE based

predictions as well as the other observations made relating to

miRNA and epigenetic regulation of differentiation.

In conclusion, we have uncovered novel pancreatic endocrine

maturation pathways based on genomic profiling and pathway

analysis. In particular, the causal reasoning approach in conjunc-

tion with more traditional pathway analysis methods seems to be a

promising emerging tool to point at concise molecular hypotheses

driving observed transcriptional changes and lends itself well to

direct experimental follow-up. Beyond the several well-known

drivers of pancreatic differentiation and the now validated IL-6

hypotheses, the approach predicted a number of other strong

drivers. These hypotheses should be investigated further in future

studies to get a more concise picture of the pathways involved in

pancreatic cell differentiation.

Materials and Methods

Cell Culture Methods
CyT49 (licensed from Viacyte Inc., proprietary male hESC line,

normal karyotype) was grown as a monolayer culture by their

standard methods [K. D’Amour, personal communication].

Briefly, cells were thawed at 10610‘6 cells per T175 flask and

grown in DMEM/F12 media (Gibco), 10% Xenofree Knockout

Serum Replacement (Gibco), 16 non-essential amino acids

(Gibco), 1% Glutamax (Gibco), 1% penicillin/streptomycin plus

10 ng/ml activin A and Heregulin b1 at 37uC and 8% CO2. Prior

to initiating cellular differentiation, formation of cellular aggre-

gates was achieved by placing the single cell suspension of

undifferentiated ESCs into a rotational culture in 6-well, low

attachment tissue culture plates in ESC growth media. Plates were

rotated at 95 rpm overnight. The differentiation was also

performed in rotating suspension culture and plates were rotated

at 95 rpm days 0–3 and 11–12 and 110 rpm days 4–10 at 37uC
and 8% CO2. For initiation of differentiation (as described in [23]),

the aggregates were pooled and washed with PBS prior to

resuspending in day 0 differentiation media of RPMI, ITS

(1:1000), activin A (100 ng/ml) and Wnt3a (50 ng/ml) Thereafter,

media was changed daily according to the schedule (day 1– RPMI

with 0.2% vol/vol FBS, ITS (1:1000) and activin A (100 ng/ml),

day 2– RPMI with 0.2% FBS, ITS (1:1000), KGF (25 ng/ml) and

TBF inhibitor IV (2.5 mM), day 3 - RPMI with 0.2% FBS, ITS

(1:1000) and KGF (25 ng/ml), day 5– DMEM (HiGlucose) with

1% B27 supplement, KAAD-cyclopamine (0.25 mM), TTNPB

(3 nM), KGF (50 mg/ml), EGF (50 ng/ml) and noggin (50 ng/

ml), day 8– DMEM (HiGlucose) with 1% B27 supplement, KGF

(50 mg/ml), EGF (50 ng/ml) and noggin (50 ng/ml) by gentle

aspiration from the well of L media volume and replacement.

Cells were removed for Illumina microarrays on days described in

the text (56106 cells for d0 time-point or 2000 aggregates for day

1–11) and stored as frozen cell pellets. RNA was prepared using

Qiagen RNAeasy kit according to manufacturer’s instructions.

10610‘6 day 0 cells and 3000 aggregates (day 1–11) were fixed in

11% formaldehyde for ChIP-seq as described http://www.

genpathway.com/support/fixation.html.

Endocrine purification - On day 13, PE aggregates were

pelleted into a 50 ml conical tube, the supernatant was aspirated,

15 ml pre-warmed accutase added to the tube, and incubated at

37uC until fully dissociated. The single cells suspension was

transferred to another tube and quenched with 25 ml of media.

Cells were spun@1000 rpm for 5 min and resuspended in 10 ml

of db-K50E50N50 media. Approximately 6 million cells were

added in 5.5 ml media to each well in a low-binding 6 well plate

on a shaker @95 rpm and allowed to spontaneously re-aggregate.

Intraperitoneal Glucose Tolerance Test in SCID-bg Mice
All animal procedures were approved by the Pfizer Institutional

Animal Care and Use Committee. Eight weeks post hESC-derived

progenitor cell implantation, SCID-bg mice were fasted overnight.

Starting at ,9:00 AM, basal glucose values were recorded and a

basal blood sample was obtained for human C-peptide analysis.

Mice were then dosed i.p. with a 30% glucose solution at 10 ml/kg

for a 3 g/kg glucose load. At 60 minutes post-glucose load glucose

values were recorded and a second blood sample was obtained for

human C-peptide analysis. Blood samples were collected into

serum separator tubes, spun at 4uC and serum was assayed the

same day for human C-peptide using the Mercodia Ultrasensitive,

human selective, C-peptide ELISA.

Microarray Hybridization and HTS-Seq Methods
The Illumina analysis was carried out by GeneLogic according

to manufacturer’s instructions. ChIP-seq was carried out by

GenPathway utilising a proprietary immuno-precipitation method

with the H3K4me3 antibody (ab6000) and their HistonePath

technology.

Data Normalization and Analysis
The mRNA, miRNA and ChIP-Seq profiling data sets are

available through ArrayExpress (accessions: E-MTAB-817, E-

MTAB-818, E-MTAB-821 respectively). Normalised datasets are

Figure 9. IL6, the top CRE prediction, has effects on expression of endocrine markers. (A) Treatment of pancreatic aggregates with IL-6
induces de novo gene expression of the pro-endocrine transcription factors NEUROG3 and NKX2.2, indicating commitment of pancreatic progenitor
cells into the endocrine lineage. Noggin induction of these genes resulted in 8-fold increases (data not shown) (B) Gene expression in response to IL-6
was compared between whole aggregates (mixture of pancreatic progenitors and endocrine cells) and cultures of enriched endocrine cells (depleted
of pancreatic progenitors). Induction of NKX2.2 expression was only seen in whole aggregates, consistent with the role of IL-6 in converting
pancreatic progenitors into new endocrine cells. Enhanced expression of NEUROD1, IAPP, and SOMATOSTATIN seen in response to IL-6 in purified
endocrine cells, suggesting IL-6 has additional roles in committed endocrine cells. No significant differences seen in INSULIN or GCG gene expression.
Statistical testing using a standard t-test was performed.
doi:10.1371/journal.pone.0056024.g009
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also available in supplementary tables 4–6. All microarray data

was log. base 2 transformed and quantile normalized using the

beadarray [77] package in Bioconductor [78]. Probes detected in

less than 3 samples (Detection P,0.01) were excluded. H3K4me3

ChIP-Seq reads were aligned to the hg18 reference human

genome with Eland and processed using the ShortRead [79]

package. Reads were filtered by base and alignment quality.

Coverage was calculated in 5 kbp windows around TSSs defined

by Ensembl [80] and normalized to reads per kilobase per million

(RPKM). MAC [32] was used to detect H3K4me3 ChIP peaks at

each time point relative to a control sample using the same

parameters as Stitzel et al [14].

Differential gene expression was performed using limma.

Criteria for differential expression were as described in the main

text. Gene set analysis was performed using gene sets defined by

GO [81] and either the limma or GOstats packages. SPIA [48]

analysis was performed on KEGG [47] signaling pathways.

Causal Reasoning Engine Algorithm
The Causal Reasoning Engine (CRE) follows the general data

model introduced in Pollard et al. [61]. The CRE algorithm used

in this article was introduced by Chindelevitch et al. [82] and

provides novel statistical measures to assess relevance of uncovered

upstream regulators to plausibly interpret the observed expression

changes. Briefly, the approach relies on a large collection of

curated causal statements of the form:

A [increases or decreases] B, where A and B are measurable

biological entities.

The biological entities can be of different types (e.g. phosphor-

ylated proteins, transcript levels, biological process and compound

exposure) and each statement is tied to accessible, peer-reviewed

articles. For this work, we licensed approximately 450,000 causal

statements from commercial sources (Ingenuity Systems and

Selventa).

Each biological entity in the network and its assumed mode of

regulation is a potential hypothesis (e.g. predicted decrease in PPARG

transcription activity). For each hypothesis, we can now compare all

possible downstream transcriptional changes in the knowledge

base with the observed transcriptional changes in the experiment.

We consider two metrics to quantify the significance of a

hypothesis with respect to our experimental data set, namely

enrichment and correctness. The Enrichment p-value for a

hypothesis h quantifies the statistical significance of finding

(#incorrect+#correct) transcripts within the set of all transcripts

downstream of h. The exact p-value can be computed by a

Fisher’s exact test. This is a standard approach in gene set

enrichment methods and does not take the direction of regulation

into account [83].

The Correctness p-value is a measure of significance for the score

of a hypothesis h defined as (#correct – #incorrect). As desired, this

score is high, if the number of correct prediction exceeds the

number of incorrect predictions. To ensure statistical significance

under a null model of randomly re-assigning up- and down-

regulated transcripts to arbitrary nodes, we compute the distribu-

tions for this score and derive appropriate p-values. Surprisingly,

the distributions can be computed analytically in polynomial time

using combinatorial programming approaches.

The Causal Reasoning Engine is implemented in the statistical

programming language R and uses the igraph package for

representation of the network of causal assertions.

Literature Analysis
To assess prior literature associations of top CRE hypotheses,

we applied an internally developed text-mining algorithm that

detects relevant co-occurrence patterns between protein and gene

mentions and other biomedical concepts of interest (e.g. diseases,

cell lines) in Medline abstracts. Briefly, the method detects entity

occurrences based on synonym dictionaries. It assesses relevance of

a co-occurrence pattern using a rule-based approach. Rules

indicating relevance of a particular co-occurrence include the

number of mentions of each entity or its synonyms in the text,

whether the entities are mentioned in the title as well as the

proximity of occurrence, e.g. within one sentence (Roberts et al.,

manuscript in preparation).

We applied this method to detect relevant co-occurrences in all

Medline abstracts as of January 2011. We focused on the ,7800

protein entries used in the CRE method and present in our

internal dictionary co-occurring with the term ‘‘pancreatic beta

cells’’ (synonyms used: pancreatic beta cell, pancreatic beta cells,

islet-beta cells, islet-beta cell, beta cell differentiation, pancreatic

differentiation, beta-cell regeneration, insulin-expressing cell,

insulin-expressing cells, islet cell formation, islet cell differentiation,

mature islets, mature islet cells).

Supporting Information

Figure S1 (A) Cell composition at selected stages of
differentiation. Cell aggregates were dissociated into single cells

and analyzed by fluorescent activated cell counting. Aggregates at

day 0, prior to the initiation of differentiation, were uniformly

OCT-4 positive. As the cells progress through the differentiation

into to definitive endoderm and through the foregut endoderm

stage, .95% of the culture expresses CXCR4 (day 2) and FOXA2

(day 5). Transition through these stages was also confirmed by

qRT-PCR (data not shown). By the end of the differentiation at

stage 5, the majority of the culture consists of either endocrine cells

(Chromogranin A-positive), or pancreatic progenitors (PDX1/

NKX6.1 co-positive, ChromograninA-negative). A variable pro-

portion of the culture (between 2–20%) will consist of cells outside

of these two primary cell fates but still restricted to the endoderm/

foregut lineage. (B) Cell diversity at end of Stage 4. At the end of

the 14 day differentiation procedure, the culture consists of a

variety of cell lineages. FACS analysis of the bulk culture

demonstrates that approximately 50% of the express the pan-

endocrine marker ChromograninA. Analysis of cells expressing

insulin and glucagon within this ChromograninA population

demonstrates a variety of endocrine subtypes, with approximately

13% of the cells in the ChromograninA population that co-express

insulin and glucagon. Gene expression analysis of these day 14

cultures reveals the expression of the other endocrine hormones

(log scale). Low off target differentiation into intestine (CDX2) liver

(ALBUMIN), anterior endoderm (FOXE1) or mesoderm

(MEOX1) can also be seen by RNA analysis of the day 14

cultures. (C) In vivo function of implanted pancreatic progenitors.

Cell aggregates used in the in vitro gene expression analysis were

allowed to differentiate in vivo and were subjected to glucose

tolerance tests (3 g/kg i.p.) at 8 weeks and 6 months post-implant.

By 8 weeks basal human C-peptide was detectable, with significant

stimulation in response to glucose challenge. By 16 week post-

implant, implanted cell grafts will typically secrete human C-

peptide greater than 2,000 pM and are considered functionally

mature. As can be seen in this cohort at 6 months, the implanted

grafts secreted greater than 3,000 pM C-Peptide by 30 minutes

post-glucose challenge.

(PDF)

Figure S2 (A) Genome wide miRNA expression correla-
tion heatmap between samples. Samples are clustered by the

Euclidean distance between rows/columns and single linkage
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clustering. The colored bar along the top of the heatmap indicates

the timepoint at which the sample was taken (pink: day 0, maroon:

day 11). (B) Genome wide H3K4me3 level correlation heatmap

between samples. All details as (A).

(PDF)

Figure S3 Plot of each sample on the first two compo-
nents from principal component analysis (PCA) based
on gene expression (A), miRNA expression (B) and
H3K4me3 levels (C).
(PDF)

Figure S4 Plot of gene expression data as measured by
array (green) and qPCR (orange) for NANOG (A),
POU5F1 (B), NKX2-2 (C) and SOX17 (D). All data is

normalized such that D0 expression equals 1.

(PDF)

Figure S5 Histogram of the correlation coefficients (R)
for each gene between expression levels measured by
arrays and qPCR.
(PDF)

Figure S6 Plot of H3K4me3 read density around tran-
scriptional start sites (TSS) as defined using Ensembl.
(PDF)

Figure S7 Gene expression (blue) and H3K4me3 levels
(red) at each timepoint for IL-8.
(PDF)

Figure S8 The proportion of CRE hypotheses linked in
the literature to beta cell development as a function of
the rank cutoff. Genome wide the proportion is ,5%.
FACS of purified endocrine cell population compared to PE

aggregates.

(PDF)

Figure S9                            FACS              of                 purified                 endocrine                 cell                population

(PDF)

Table S1 List of 113 genes tested by qRT-PCR. All primer

pairs used were human specific except where denoted M for

murine specific.

(PDF)

Table S2 Top 20 differentially expressed genes: List of
the 20 genes showing the most significant expression
changes at each time interval (D0–D1, D1–D2, D2–D5,
D5–D8 and D8–D11). Illumina probe and target IDs are given

along with the log base 2 fold change (‘logFC’), t statistic (‘t’), raw P

value (‘P.Value’) and Benjamini-Hochberg corrected P value

(‘adj.P.Val’). All other columns are standard output from limma.

(XLS)

Table S3 Top 20 differentially expressed miRNAs: List
of the 20 miRNAs showing the most significant expres-
sion changes at each time interval (D0–D1, D1–D2, D2–
D5, D5–D8 and D8–D11). Illumina probe IDs are given along

with the log base 2 fold change (‘logFC’), t statistic (‘t’), raw P value

(‘P.Value’) and Benjamini-Hochberg corrected P value (‘ad-

j.P.Val’). All other columns are standard output from limma.

(XLS)

Table S4 Normalised data for mRNA: The full mRNA
expression dataset giving expression levels for the
indicated Illumina probes after log2 transformation
and quantile normalization as described in the Materi-
als and Methods. Column headers indicate the day (‘D0’),

biological replicate (A–C) and technical replicate (1/2).

(TXT)

Table S5 Normalised data for miRNA: The full miRNA
expression dataset giving expression levels for the
indicated Illumina probes after log2 transformation
and quantile normalization as described in the Materi-
als and Methods. Column headers indicate the day (‘D0’),

biological replicate (A–C) and technical replicate (1/2).

(TXT)

Table S6 Normalised data for ChIP-seq: Total
H3K4me3 ChIP-Seq read counts within 5 kbp of the
TSS of each human gene for each time point. The read

count for the control sample (without H3K4me3 antibody) is given

as ‘CTRL’.

(TXT)
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21. Liechti R, Csárdi G, Bergmann S, Schütz F, Sengstag T, et al. (2010) EuroDia: a

beta-cell gene expression resource. Database (Oxford) 2010: baq024.

22. Sarkar SA, Lee CE, Tipney HR, Karimpour-Fard A, Dinella JD, et al. (2012)

Synergizing Genomic Analysis With Biological Knowledge to Identify and

Validate Novel Genes in Pancreatic Development. Pancreas.

23. Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, et al. (2012) A

scalable system for production of functional pancreatic progenitors from human

embryonic stem cells. PLoS ONE 7: e37004.

24. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, et al. (2004) A pancreatic

islet-specific microRNA regulates insulin secretion. Nature 432: 226–230.

25. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, et al. (2009) miR-375

maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci USA

106: 5813–5818.

26. Bravo-Egana V, Rosero S, Molano RD, Pileggi A, Ricordi C, et al. (2008)

Quantitative differential expression analysis reveals miR-7 as major islet

microRNA. Biochem Biophys Res Commun 366: 922–926.

27. Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, et

al. (2006) MicroRNA-9 controls the expression of Granuphilin/Slp4 and the

secretory response of insulin-producing cells. J Biol Chem 281: 26932–26942.

28. Bolmeson C, Esguerra J, Salehi A, Speidel D, Eliasson L, et al. (2011)

Differences in islet-enriched miRNAs in healthy and glucose intolerant human

subjects. Biochem Biophys Res Commun 404: 16–22.

29. Pan G, Tian S, Nie J, Yang C, Ruotti V, et al. (2007) Whole-genome analysis of

histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells.

Cell Stem Cell 1: 299–312.

30. Byrd K, Shearn A (2003) ASH1, a Drosophila trithorax group protein, is

required for methylation of lysine 4 residues on histone H3. Proc Natl Acad

Sci U S A 100: 11535–11540.

31. Nagy P, Griesenbeck J, Kornberg R, Cleary M (2002) A trithorax-group

complex purified from Saccharomyces cerevisiae is required for methylation of

histone H3. Proc Natl Acad Sci U S A 99: 90–94.

32. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, et al. (2008) Model-based

analysis of ChIP-Seq (MACS). Genome Biology 9: R137.

33. Liu C, Kaplan T, Kim M, Buratowski S, Schreiber S, et al. (2005) Single-

nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3:

e328.

34. Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG

(2009) The database of experimentally supported targets: a functional update of

TarBase. Nucleic Acids Res 37: D155–158.

35. Friedman RC, Farh KK-H, Burge CB, Bartel DP (2009) Most mammalian

mRNAs are conserved targets of microRNAs. Genome research 19: 92–105.

36. Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, et al. (2005) Combinatorial

microRNA target predictions. Nat Genet 37: 495–500.

37. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for

microRNA genomics. Nucleic Acids Res 36: D154–158.

38. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets.

Nat Struct Mol Biol 17: 1169–1174.

39. Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental

timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the

initiation of translation. Dev Biol 216: 671–680.

40. Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, et al. (2011) Sirt1 and

mir-9 expression is regulated during glucose-stimulated insulin secretion in

pancreatic b-islets. FEBS J 278: 1167–1174.

41. Kobayashi M, Ohnishi H, Okazawa H, Murata Y, Hayashi Y, et al. (2008)

Expression of Src homology 2 domain-containing protein tyrosine phosphatase

substrate-1 in pancreatic beta-Cells and its role in promotion of insulin secretion

and protection against diabetes. Endocrinology 149: 5662–5669.

42. Higuchi Y, Shiraki N, Yamane K, Qin Z, Mochitate K, et al. (2010) Synthesized

basement membranes direct the differentiation of mouse embryonic stem cells

into pancreatic lineages. Journal of Cell Science 123: 2733–2742.

43. Shen S, Yu Y, Wu Y, Cheng J, Wang L, et al. (2010) Downregulation of

ANP32B, a novel substrate of caspase-3, enhances caspase-3 activation and

apoptosis induction in myeloid leukemic cells. Carcinogenesis 31: 419–426.

44. Dey BK, Gagan J, Dutta A (2011) miR-206 and -486 induce myoblast

differentiation by downregulating Pax7. Molecular and Cellular Biology 31:

203–214.

45. Winbanks CE, Wang B, Beyer C, Koh P, White L, et al. (2011) TGF-{beta}
Regulates miR-206 and miR-29 to Control Myogenic Differentiation through

Regulation of HDAC4. J Biol Chem 286: 13805–13814.

46. Champeris Tsaniras S, Jones PM (2010) Generating pancreatic {beta}-cells from
embryonic stem cells by manipulating signaling pathways. The Journal of

endocrinology.

47. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. (2008) KEGG for

linking genomes to life and the environment. Nucleic Acids Res 36: D480–484.

48. Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, et al. (2009) A novel
signaling pathway impact analysis. Bioinformatics 25: 75–82.

49. Cervantes S, Yamaguchi TP, Hebrok M (2009) Wnt5a is essential for intestinal
elongation in mice. Developmental Biology 326: 285–294.

50. Listyorini D, Yasugi S (2006) Expression and function of Wnt5a in the

development of the glandular stomach in the chicken embryo. Dev Growth
Differ 48: 243–252.

51. Kapasa M, Arhondakis S, Kossida S (2010) Phylogenetic and regulatory region

analysis of Wnt5 genes reveals conservation of a regulatory module with putative
implication in pancreas development. Biol Direct 5: 49.

52. Liu F, Matsuura I (2005) Inhibition of Smad antiproliferative function by CDK
phosphorylation. Cell Cycle 4: 63–66.

53. Kushner JA, Ciemerych MA, Sicinska E, Wartschow LM, Teta M, et al. (2005)

Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Mol
Cell Biol 25: 3752–3762.

54. Fiaschi-Taesch N, Bigatel TA, Sicari B, Takane KK, Salim F, et al. (2009)
Survey of the human pancreatic beta-cell G1/S proteome reveals a potential

therapeutic role for cdk-6 and cyclin D1 in enhancing human beta-cell

replication and function in vivo. Diabetes 58: 882–893.

55. Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, et al. (2010)

MicroRNA-33 and the SREBP host genes cooperate to control cholesterol
homeostasis. Science 328: 1566–1569.
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59. Baeyens L, Bonné S, German MS, Ravassard P, Heimberg H, et al. (2006) Ngn3

expression during postnatal in vitro beta cell neogenesis induced by the JAK/
STAT pathway. Cell Death and Differentiation 13: 1892–1899.

60. Gysemans C, Callewaert H, Overbergh L, Mathieu C (2008) Cytokine signalling
in the beta-cell: a dual role for IFNgamma. Biochem Soc Trans 36: 328–333.

61. Pollard J, Butte AJ, Hoberman S, Joshi M, Levy J, et al. (2005) A computational

model to define the molecular causes of type 2 diabetes mellitus. Diabetes
Technol Ther 7: 323–336.

62. Chindelevitch L, Ziemek D, Enayetallah A, Randhawa R, Sidders B, et al.
(2012) Causal reasoning on biological networks: interpreting transcriptional

changes. Bioinformatics 28: 1114–1121.

63. Gradwohl G, Dierich A, LeMeur M, Guillemot F (2000) neurogenin3 is required
for the development of the four endocrine cell lineages of the pancreas. Proc Natl

Acad Sci USA 97: 1607–1611.

64. Schwitzgebel VM, Scheel DW, Conners JR, Kalamaras J, Lee JE, et al. (2000)
Expression of neurogenin3 reveals an islet cell precursor population in the

pancreas. Development 127: 3533–3542.

65. Kim SY, Rane SG (2011) The Cdk4-E2f1 pathway regulates early pancreas

development by targeting Pdx1+ progenitors and Ngn3+ endocrine precursors.

Development.

66. Grouwels G, Cai Y, Hoebeke I, Leuckx G, Heremans Y, et al. (2010) Ectopic

expression of E2F1 stimulates beta-cell proliferation and function. Diabetes 59:
1435–1444.

67. Inoshita S, Terada Y, Nakashima O, Kuwahara M, Sasaki S, et al. (1999)

Regulation of the G1/S transition phase in mesangial cells by E2F1. Kidney Int
56: 1238–1241.

68. Hayami S, Yoshimatsu M, Veerakumarasivam A, Unoki M, Iwai Y, et al. (2010)
Overexpression of the JmjC histone demethylase KDM5B in human

carcinogenesis: involvement in the proliferation of cancer cells through the

E2F/RB pathway. Mol Cancer 9: 59.

69. Rezende LF, Vieira AS, Negro A, Langone F, Boschero AC (2009) Ciliary

neurotrophic factor (CNTF) signals through STAT3-SOCS3 pathway and
protects rat pancreatic islets from cytokine-induced apoptosis. Cytokine 46: 65–

71.

70. Mwangi S, Anitha M, Mallikarjun C, Ding X, Hara M, et al. (2008) Glial cell
line-derived neurotrophic factor increases beta-cell mass and improves glucose

tolerance. Gastroenterology 134: 727–737.

71. Wong WPS, Tiano JP, Liu S, Hewitt SC, Le May C, et al. (2010) Extranuclear

estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and

favors insulin synthesis. Proc Natl Acad Sci USA 107: 13057–13062.

72. Gu C, Stein GH, Pan N, Goebbels S, Hörnberg H, et al. (2010) Pancreatic beta

cells require NeuroD to achieve and maintain functional maturity. Cell Metab
11: 298–310.

73. Miyatsuka T, Kosaka Y, Kim H, German MS (2011) Neurogenin3 inhibits

proliferation in endocrine progenitors by inducing Cdkn1a. Proceedings of the
National Academy of Sciences 108: 185–190.

CRE Targets for Maturation of Endocrine Precursors

PLOS ONE | www.plosone.org 17 February 2013 | Volume 8 | Issue 2 | e56024



74. Ellingsgaard H, Ehses JA, Hammar EB, Van Lommel L, Quintens R, et al.

(2008) Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc Natl
Acad Sci USA 105: 13163–13168.

75. Mfopou JK, Chen B, Mateizel I, Sermon K, Bouwens L (2010) Noggin,

retinoids, and fibroblast growth factor regulate hepatic or pancreatic fate of
human embryonic stem cells. Gastroenterology 138: 2233–2245, 2245.e2231–

2214.
76. Kumar R, Blakemore SJ, Ellis CE, Petricoin EF, Pratt D, et al. (2010) Causal

reasoning identifies mechanisms of sensitivity for a novel AKT kinase inhibitor,

GSK690693. BMC Genomics 11: 419.
77. Dunning MJ, Smith ML, Ritchie ME, Tavaré S (2007) beadarray: R classes and
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