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Abstract: The establishment of interphase region around nanoparticles accelerates the percolating
of carbon nanotubes (CNT) in polymer nanocomposites reinforced with CNT (PCNT), due to the
linking productivity of interphase district before the physical connecting of nanoparticles. Therefore,
the interphase is an important character in the networks of CNT in PCNT. Here, a simulation study is
presented to investigate the interphase connection in the mechanical possessions of PCNT including
tensile modulus and strength. A number of models comprising Takayanagi, Ouali, Pukanszky and
Callister are developed by the assumption of an interphase district in the CNT excluded volume.
The advanced models depict the optimistic influences of reedy and lengthy CNT besides dense
interphase on the stiffness and tensile power of nanocomposites. The Pukanszky calculations depict
that the interphase strength plays a more noteworthy role in the nanocomposites strength compared
to the CNT length.

Keywords: carbon nanotubes (CNT); polymer nanocomposites; interphase district; percolation onset;
mechanical possessions

1. Introduction

The carbon nanotubes (CNT) as ideal nanoparticles can add high stiffness and good electrical
conductivity to polymer matrices. Additionally, the nanoscale diameter and large aspect ratio of CNT
significantly improve the general properties of polymer CNT nanocomposites (PCNT) [1–17]. The van
der Waals attraction between nanotubes leads the aggregation/agglomeration in the nanocomposites,
which reduces the filler surface expanse and interrupts the networking level [18–20]. Additionally,
the interfacial communication/bond/area between the polymer medium and particles should be
acceptable for an effective load transfer from the polymer matrix to CNT. So, it is important to facilitate
the dispersion of nanoparticles at nanoscale and provide good interfacial properties through some
techniques of compatibilizing [21,22].

The conductivity of PCNT is found after the filler percolation onset in which the nanofiller
forms a network, which causes charge transport [23–25]. In addition to percolation threshold for
conductivity in nanocomposites, an abrupt improvement of modulus/stiffness was found called a
mechanical percolation [26–28]. The substantial level of shear modulus in the reinforced cellulose
whisker films was attributed to mechanical percolation [29]. Therefore, the network of nanoparticles
above a particular volume fraction as percolation onset causes a high increment in the mechanical
possessions. The vast interfacial region around the nanoparticles and the numerous nanoparticles
in a unit volume change the operative possessions of nanocomposites [30,31]. The interfacial area
around the nanoparticles produces an intermediate phase as interphase in nanocomposite samples.
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The interphase is hardly considered by experimental measurements, owing to the minor extent
and multifaceted style. Additionally, most available models on the mechanics cannot suppose the
interphase effects [18,32,33]. Therefore, several new and developed models were suggested to study
the interphase character in the mechanical behavior [34–36].

The interphase district around nanoparticles can facilitate the establishment of a networked
structure in nanocomposites at a low filler portion [37]. This occurrence declines the percolation
onset, due to the connection of interphase area. It was suggested that the interfacial communications
between the polymer medium and particles manage the percolation of particles with a high aspect
ratio and random orientation [38]. Nevertheless, the interphase percolation and its influences on the
mechanical possessions have not been considered in the previous works on the nanocomposites. Even
though the earlier articles have suggested the strengthening character of interphase, the interphase
percolation was not clarified, well. The interphase can quicken the filler percolation making a novel
tactic in the interphase and filler network in nanocomposites. In this article, the novel interphase
percolation surrounding nanoparticles is defined to progress the available models for nanocomposites
mechanical properties. This paper examines the effects of CNT size and interphase possessions on
the tensile modulus and strength by Takayanagi, Ouali, Pukanszky and Callister models assuming
interphase percolation. The outputs of this paper can conduct the investigators to understand the
role of interphase in the percolating of nanoparticles. Moreover, the present article indicates the
strengthening and percolating effects of interphase in nanocomposites.

2. Equations and Developed Models

The percolation onset in PCNT supposing the filler and interphase percolation was obtained [39] as:

φp =
πR2l + (4/3)πR3

32
3 π(R + t)3[1 + 3

4 (
l

R+t ) +
3

32 (
l

R+t )
2
]

(1)

where “R” and “l” show the CNT radius and length, correspondingly. In addition, “t” denotes the
interphase depth surrounding CNT.

Some authors [40] advanced the Takayanagi equation assuming the networking and dispersal of
CNT exceeding percolation onset as:

E =
φN(1−φ f )E f EN + φN(φ f −φN)EmEN + (1−φN)

2E f Em

(1−φ f )E f + (φ f −φN)Em
(2)

where “φ f ” and “φN” show the volume portions of CNT and nets, correspondingly. Additionally,
“Ef”, “EN” and “Em” denote the tensile moduli of detached nanofiller, net and polymer medium,
correspondingly. The nonappearance of net (φN = 0) condenses the advanced model to:

E =
E f Em

(1−φ f )E f + φ f Em
(3)

The percentage of percolated CNT can be roughly expressed [41] by:

f = 1− exp[−A(
φ f

φp
− 1)0.474] (4)

where “A” is constant depending to the net level. The volume portion of filler net is also estimated as:

φN =
fφ f

1− (1− f )φ f
� fφ f (5)
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By substituting Equations (4) and (5) into Equation (2), the tensile modulus of nanocomposites
predicted by Takayanagi model is correlated to the percolation threshold.

Ouali et al. [42] also added the percolation onset to the reverse rule of mixtures as:

E =
(1− 2ψ+ψφ f )EmE f + (1−φ f )ψE2

f

(1−φ f )E f + (φ f −ψ)Em
(6)

where “ψ” parameter depends on “φp” as:

ψ = φ f (
φ f −φp

1−φp
)

b

(7)

The “b” factor is a percolation exponent, which equals to 0.4 in 3D scheme [42]. Moreover,
the relative modulus is defined as E/Em.

There are two known models for tensile strength/power of nanocomposites including Pukanszky
and Callister. They do not include the “φp” parameter, but the aspect ratio of nanofiller (α) in these
models can be related to “φp” above the percolation threshold. As a result, they are expressed by “φp”
and the new form of “φp” (Equation (1)) develops them to show the interphase percolation.

Pukanszky [43] recommended a model for strength of composites as:

σR =
1−φ f

1 + 2.5φ f
exp(Bφ f ) (8)

where “σR” is relative strength as σc/σm; “σc” and “σm” show the tensile strength of composite and
polymer medium, correspondingly. In addition, “B” as an interfacial factor displays the extent of stress
flowing between polymer medium and filler. This model has been acceptably applied for strength of
polymer nanocomposites [44,45].

The “B” parameter depends on the thickness and strength of interphase by:

B = (1 + Acd f t) ln(
σi
σm

) (9)

where “Ac” and “df” show the specific surface area and density of nanofiller, in that order. Additionally,
“σi” is interphase strength. “Ac” for cylindrical rods such as CNT is formulated by:

Ac =
A
m

=
A

d f V
�

2πRl
d fπR2l

=
2

d f R
=

4α
d f l

(10)

where “A” and “m” show the filler surface area and mass, correspondingly. In addition, α = l/d, where
“d” is the diameter of particles.

Chatterjee [41] suggested a simple equation between “φp” and “α” as:

φp ≈
1
α

(11)

By replacing of “α” from Equation (11) into Equation (10), “Ac” can be given by:

Ac =
4

d f lφp
(12)

By substituting of “Ac” from Equation (12) into Equation (9), “B” is stated by percolation onset as:

B = (1 +
4

lφp
t) ln(

σi
σm

) (13)
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When “B” from above equation is considered in Equation (8), the relative strength is estimated by:

σR =
1−φ f

1 + 2.5φ f
exp

(
(1 +

4
lφp

t) ln(
σi
σm

)φ f

)
(14)

Callister [46] also projected the yield strength of polymer composites by interfacial properties as:

σR = 1 + (
αs
σm
− 1)φ f (15)

where “s” denotes the interfacial stress transferring. Even if this model was originally proposed for
short fiber composites, it can be effectively used for polymer nanocomposites [47,48].

The Callister model can be expanded by percolation onset (Equation (11)) as:

σR = 1 + (
s

φpσm
− 1)φ f (16)

which simply connects the nanocomposites strength to percolation onset. When the “φp” from
Equation (1) is replaced into Equation (16), the relative strength above the percolation onset is
represented as:

σR = 1 +

 s 32
3 π(R + t)3[1 + 3

4 (
l

R+t ) +
3
32 (

l
R+t )

2
]

[πR2l + (4/3)πR3]σm
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which explicitly correlates the strength of nanocomposites to matrix, nanoparticles and interphase
properties accounting for the interphase percolation.

3. Results and Discussion

The expressed models were utilized to investigate the filler and interphase belongings in the
mechanical properties of nanocomposites assuming the interphase percolation. In this regard, the
mechanical properties were studied as a function of many factors such as the particle size, interphase
thickness and strength as well as network modulus.

Figure 1 revealed the “R” and “t” roles in the tensile modulus of nanocomposite based on the
advanced Takayanagi model and interphase percolation at Em = 2 GPa, φ f = 0.02, Ef = 1000 GPa,
l = 5µm, A = 0.02 and EN = 2000 GPa. The high ranges of modulus were acquired by reedy nanoparticles
and dense interphase. As observed, ER = 3.2 was reported at R = 10 nm and t = 30 nm. However, the
high levels of “R” and small values of “t” negligibly progressed the modulus. Therefore, the modulus
of nanocomposites inversely related to the radius of nanoparticles, while the interphase thickness
caused a positive effect on the modulus.

The thin nanotubes could produce a large level of surface part, which grew the interfacial area.
As known, the big interfacial area at the polymer–nanoparticles interface promoted the interfacial
interaction and improved the modulus. Additionally, the small nanoparticles caused the robust
interfacial communications with the polymer medium, owing to the analogous scopes of polymer
chains and nanofillers [49]. So, the thin nanotubes caused the sturdy connections amid polymer
medium and nanoparticles, which increased the modulus. On the other hand, a denser interphase
yielded a superior modulus demonstrating the positive effect of interphase percolation on the modulus.
A thick interphase facilitated the connection between interfacial region and formation of the filler
network without the physical links between nanoparticles. Therefore, a thicker interphase caused a
better network, which caused a better modulus. Nevertheless, thick nanoparticles made a low aspect
ratio and small interfacial area. In addition, a thin interphase delayed the formation of a network in
the sample, which insignificantly increased the modulus. Accordingly, the thick nanotubes and thin
interphase could not enhance the modulus of nanocomposites.
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Figure 1. (a) 3D and (b) contour designs to show the relative modulus at dissimilar “R” and “t” ranges
according to advanced Takayanagi model (Em = 2 GPa, φ f = 0.02, Ef = 1000 GPa, l = 5 µm, A = 0.02 and
EN = 2000 GPa).

Figure 2 also shows the “l” and “EN” effects on the relative modulus by an advanced Takayanagi
model at Em = 2 GPa, φ f = 0.02, R = 10 nm, Ef = 1000 GPa, A = 0.02 and different thicknesses of
interphase. The modulus shows a low level at the poor values of “EN”. However, the uppermost
modulus was calculated by the top levels of “l” and “EN”. About 50% improvement in modulus was
observed at EN < 1200 GPa at t = 5 nm (Figure 2a), but nearly 400% growth in modulus was observed at
l = 7000 nm and EN = 5000 GPa at the same interphase. These observations show the desirable effects of
filler length and network modulus in the stiffness of nanocomposites. Clearly, lengthy CNT with a high
aspect relation and large interfacial area yielded a robust interfacial interaction with polymer media.
These factors facilitated the stress moving, which grew the nanocomposites modulus. Additionally,
a strong network of nanoparticles could stand the big stress, which caused a high stiffness in the
nanocomposite. The polymer matrix with low stiffness could not tolerate the stress loading, but the
network of nanoparticles with extraordinary modulus could significantly reinforce the polymer matrix
against the high stress.
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Figure 2. Contour plots for “l” and “EN” roles in the relative modulus by advanced Takayanagi model
at (a) t = 5 nm and (b) t = 15 nm (Em = 2 GPa, φ f = 0.02, R = 10 nm, Ef = 1000 GPa, A = 0.02).

Figure 2b displays the “l” and “EN” effects on the relative modulus at a thicker interphase as
t = 15 nm. The similar roles of these factors in the modulus were also obserevd in this illustration,
but the level of modulus increased when the interphase thickness rose. At the same levels of l = 7000 nm
and EN = 5000 GPa, the highest “ER” at t = 5 nm was obtained as 5, while the “ER” increased to 6 at
t = 15 nm. As a result, the formation of a denser interphase caused a greater modulus, due to the better
properties of network produced by interphase percolation.
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Figure 3 demonstrates the “R” and “t” influences on the relative modulus by the Ouali model at
Em = 2 GPa, φ f = 0.02, Ef = 1000 GPa and l = 5 µm. The relative modulus of about 3 was predicted at
low “R” and high “t”, while the smallest modulus (ER = 2.65) was detected at high “R” and minor “t”.
Hence, the relative modulus was inversely and straightly linked with the radius of nanoparticle and
thickness of interphase, respectively. These predictions were similar to those of developed Takayanagi
model, which confirmed the parameters’ roles in the total stiffness.
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(b) contour plots.

The thin nanotubes show the acceptable dispersion of nanoparticles at the nanoscale in the
polymer matrix, because some unwanted occurrences such as an accumulation increase of the radius
of particles [50]. On the other hand, a dense interphase can hasten the development of filler net in the
nanocomposites, which largely progresses the modulus. Consequently, the Ouali model suitably shows
the “R” and “t” roles in the relative modulus accounting the percolating of interphase. In addition
to the percolating effect of interphase, the good reinforcing efficiency of interphase has been well
reported [51,52], due to its higher modulus compared to polymer matrix.

Figure 4 illustrates the “R” and “t” influences on the relative strength according to Pukanszky
model at σm = 40 MPa, φ f = 0.02, σi = 100 MPa and l = 5 µm. This model predicted σR < 1 (the
poorer strength of the nanocomposite than the polymer matrix) at high “R” and small values of
“t”. This occurrence demonstrates that the strength of nanocomposites did not improve by big
nanoparticles and a thin interphase. However, the improvement of strength started by decreasing
in “R” and increasing in “t”. The highest strength based on the Pukanszky model as σR = 2.4 was
observed by the smallest nanoparticles and the thickest interphase. Hence, the extents of both particles
and interphase significantly changed the nanocomposites strength.

Thin nanoparticles provided a high strengthening role in the nanocomposites, because they
made a huge specific surface extent (Equation (10)), which significantly increased the interfacial
communications. It was indicated that the high surface area of nanoparticles and strong interfacial
interaction/adhesion are essential to realize an extraordinary strength in the nanocomposites [44,53,54].
On the other hand, a dense interphase caused a high excluded volume and low percolation onset
in the nanocomposites, which accelerated the formation of net by large interfacial region. As a
result, the strength of nanocomposites improved by the assumption of interphase percolation in
the nanocomposites. Beside the percolation of interphase, a thick interphase (great t) significantly
improved the strength of nanocomposites by its strengthening nature as shown in the Pukanszky
model (Equation (14)).
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Figure 4. The influences of “R” and “t” terms on the relative strength assuming the percolating
interphase based on the Pukanszky model at (a) 3D and (b) contour illustrations (σm = 40 MPa,
φ f = 0.02, σi = 100 MPa and l = 5 µm).

Figure 5 also displays the Pukanszky predictions at changed “l” and “σi” levels (σm = 40 MPa,
φ f = 0.02, R = 10 nm and t = 5 and 15 nm). As observed, the “σi” parameter played a dominant character
in the nanocomposites strength. The level of interphase strength directly controlled the strength for
nanocomposites, while the CNT length did not affect the nanocomposites power in Figure 5a (t = 5 nm).
Consequently, the role of interphase strength in the nanocomposites strength was more important than
that of the nanotubes length. It demonstrated that the properties of interphase played a chief character
in the strength. However, it should be noted that the poor levels of “σi” smaller than 125 MPa could
not progress the relative strength. Accordingly, the deprived strength of samples might be related to
the low strength of interphase.
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Figure 5b also displays the important character of interphase power in the relative strength,
but the nanotubes length can slightly affect the strength at the high ranks of “σi”. Furthermore, the
highest level of relative strength was obtained as 1.9 at σi = 350 and t = 15 nm (Figure 5b), while the
highest relative strength of 1.1 was obtained at the same interphase strength and t = 5 nm (Figure 5a).
As a result, the thickness of interphase had a positive effect on the tensile power. As mentioned,
the interphase could decrease the percolation volume fraction of nanoparticles in the specimens by
contacting of interphase area around the nanoparticles without the direct joining of nanoparticles.
Additionally, the interphase induced a strengthening role in the nanocomposites, as reflected in the
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literature [27,55]. Therefore, the interphase undoubtedly promoted the strength of nanocomposites
through strengthening effect and altering the percolation point.

The influences of nanoparticles radius and interphase thickness on the relative strength are shown
in Figure 6 utilizing the Callister model and interphase percolation. The Callister model calculates
the worst strength of nanocomposites at high “R” levels. As indicated, the high levels of “R” decline
the reinforcing effect of nanoparticles through decreasing the specific surface area and weakening the
interfacial interaction. As detected in Figure 6, the uppermost strength was seen at the least “R” and the
highest “t”. A great level of “t” displays the robust interfacial interaction/adhesion [18,43]. Moreover,
a thick interphase easily produced a large net at low concentration of nanofiller. Consequently,
the interphase is a vital factor in the possessions of nanocomposites.
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expending the Callister model (σm = 40 MPa, φ f = 0.02, s = 1 MPa and l = 5 µm).

Figure 7 also illustrates the “l” and “s” roles in the relative strength based on Equation (17) at
σm = 40 MPa, φ f = 0.02, R = 10 nm and t = 5 and 15 nm. The highest relative strength is acquired
by the uppermost levels of “l” and “s” factors. Therefore, these parameters positively control the
relative strength. It is expected, since the nanotubes length as a material parameter determines the
levels of aspect ratio and interfacial area. In addition, a high “l” parameter increased the level of
excluded volume, which decreased the percolation threshold of nanoparticles in the nanocomposites
(see Equations (6) and (7)). Furthermore, the “s” parameter shows the stress transfer as a function of
interfacial interaction/adhesion at the interface. Clearly, a high “s” creates an excessive strength in
the nanocomposites.
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The “l” and “s” parameters analogously changed the strength of nanocomposites in Figure 7a,b,
but the level of improved strength was different depending on the interphase thickness. The relative
strength improved from 1.03 to 1.8 in Figure 7a at t = 5 nm, while it grew from 1.06 to 2.4 in Figure 7b
at t = 15 nm. Therefore, a more interphase thickness produced better strength in the nanocomposites.
According to the mentioned remarks, the interphase advanced the strengthening effect and percolating
of nanofillers, which increased the strength of nanocomposites.

Figure 8 shows the experimental and theoretical relative modulus by an advanced Takayanagi
model (Equation (2)) for epoxy/multi wall CNT (MWCNT) nanocomposites [56]. Em = 0.52 GPa as
well as average R = 25 nm and l = 50 µm were reported in that paper. In addition, Ef = 1000 GPa
and A = 0.02 were considered for calculations. As observed, the experimental and theoretical data
show good agreement at all CNT concentrations. This agreement confirms the predictability of the
advanced Takayanagi model assuming a percolation threshold. In fact, this model considered the roles
of interphase thickness, network modulus and percolation onset in the modulus of nanocomposites.
Accordingly, t = 5 nm and EN = 2100 GPa were obtained producing the percolation threshold of 0.0004
for this sample. These results indicate that this epoxy/MWCNT sample included the interphase region
and CNT network based on the suggested equations.
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4. Conclusions

The interphase district was assumed in the percolation onset of the nanofiller to develop the
Takayanagi, Ouali, Pukanszky and Callister models for tensile properties. These models investigated
the effects of some factors attributed to nanoparticles and interphase on the tensile modulus and
strength. Both Takayanagi and Ouali models predicted the high ranges of relative modulus by reedy
nanoparticles and dense interphase, because reedy CNT cause a big interfacial area and robust interfacial
communications with polymer medium. Moreover, a thick interphase facilitates the formation of
filler net at lower nanofiller concentration without the filler physical links. The Takayanagi model
also revealed the optimistic effects of nanotubes length and net modulus on the tensile modulus.
Pukanszky and Callister models predicted the poor strength for nanocomposites at high levels of
nanoparticles radius and small values of interphase thickness. However, the highest strength was
observed by the smallest nanoparticles and the thickest interphase. The interphase strength played
a more significant role in the nanocomposites strength in comparison to CNT length supposing the
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Pukanszky calculations. Conclusively, the tensile belongings of nanocomposites generally increase
through the reinforcing effect of interphase and decreasing the percolation point by interphase area.
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