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MicroRNA-125b-5p mimic inhibits acute liver
failure
Dakai Yang1,2, Qinggong Yuan2,3, Asha Balakrishnan2,3, Heike Bantel2, Jan-Henning Klusmann4,

Michael P. Manns2, Michael Ott2,3, Tobias Cantz2,5 & Amar Deep Sharma1,2

The lack of broad-spectrum anti-acute liver failure (ALF) therapeutic agents contributes to

ALF-related mortality. MicroRNAs (miRNAs) are suggested to be potent serum biomarkers

for ALF, but their functional and therapeutic relevance in ALF are unclear. Here we show an

unbiased approach, using two complementary miRNA screens, to identify miRNAs that can

attenuate ALF. We identify miR-125b-5p as a regulator of cell death that attenuates

paracetamol-induced and FAS-induced toxicity in mouse and human hepatocytes.

Importantly, administration of miR-125b-5p mimic in mouse liver prevents injury and

improves survival in models of ALF. Functional studies show that miR-125b-5p ameliorates

ALF by directly regulating kelch-like ECH-associated protein 1, in turn elevating expression of

nuclear factor-E2-related factor 2, a known regulator in ALF. Collectively, our findings

establish miR-125b-5p as an important regulator of paracetamol-induced and FAS-induced

cell death. Thus, miR-125b-5p mimic may serve as a broad-spectrum therapeutic attenuator

of cell death during ALF.
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A
cute liver failure (ALF) is a rare multi-organ-failure
disease that is usually caused by viral hepatitis or drug
toxicity1,2. ALF patients often undergo orthotopic liver

transplantation or otherwise die due to shortage of donor livers3.
One of the major obstacles in treatment of ALF is the lack of both
suitable mechanistic biomarkers and broad-spectrum anti-ALF
agents4. During the last decade, microRNAs (miRNAs) have been
suggested as potential biomarkers for various life-threatening
diseases, including ALF5–10. For example, miR-122, the most
abundant miRNA in the liver, has been identified as a biomarker
of ALF in mice and humans5,7,11. Similarly, miR-125b-5p has
been reported as one of several miRNAs that have elevated
expression in cases of paracetamol overdose10. Circulating
miRNAs in plasma may even be better biomarkers than
classical parameters, such as alanine transaminase (ALT) and
aspartate transaminase (AST), as miRNAs precede the injury,
whereas ALT and AST follow the injury9. In contrast to their use
as biomarkers, miRNAs are only now beginning to be explored as
therapeutic agents12,13. An important determinant for the use of
miRNAs as ALF biomarkers in the clinic is a clear, mechanistic
understanding of their functional roles in liver tissue.
Furthermore, identification of miRNAs as broad-spectrum anti-
ALF agents, which are capable of attenuating cell death, would
have the potential to reduce the mortality rate.

Results
Functional miRNA screens identify miR-125b-5p as a reg-
ulator of ALF. We undertook an unbiased screening approach to
identify miRNAs that are capable of inhibiting cell death during
ALF. We screened for 302 miRNAs from a mimic library,
representing the maximum number of completely conserved
miRNAs between human and mouse from miRbase version 20.0.
First, we functionally screened miRNAs in primary mouse
hepatocytes mimicking ALF, induced by paracetamol, also known
as acetaminophen or N-acetyl-p-aminophenol (APAP), the most
commonly reported liver toxicity due to drug overdose. Primary
hepatocytes were transfected with 25 nM miRNA mimic before
onset of APAP-induced toxicity (Fig. 1a). We evaluated all 302
conserved miRNAs and examined cell viability in response to
APAP-induced toxicity (Fig. 1b). The hepatoprotective miRNAs
were selected based on the following two criteria: (a) an miRNA
should provide protection by more than 20% and (b) the miRNA
must have high or at least a modest expression in normal human
liver10. We found seven miRNAs fulfilling these two criteria:
miR-194-5p, miR-125b-5p, miR-21-5p, let-7a-5p, miR-122-5p,
miR-30c-5p and miR-193a-3p (Fig. 1c). Next, we validated
all seven miRNAs in three independent experiments, which
confirmed protection against APAP by all seven miRNA mimics,
except miR-193a-3p (Supplementary Fig. 1A). We then examined
whether inhibition of those seven miRNAs reverses the protective
effect against APAP. Inhibition of three miRNAs, let-7a-5p,
miR-125b-5p and miR-122-5p, showed lower cell viability
compared with control (Supplementary Fig. 1B). Thus, gain-
and loss-of-function of let-7a-5p, miR-125b-5p and miR-122-5p
inversely influences APAP-induced hepatocyte cell death.

Glutathione (GSH) depletion is one of the hallmarks of
APAP-induced hepatotoxicity, which can be detected by
measuring the ratio of hepatocyte GSH and glutathione disulfide
(GSSG). Hence, to test whether the short-listed seven miRNAs
inhibit APAP-induced toxicity specifically, we measured
GSH/GSSG ratio in primary hepatocytes transfected with either
miRNA mimics or inhibitors. Although we found that mimics of
miR-125b-5p, miR-194-5p miR-21-5p and miR-122-5p restored
GSH levels significantly (Fig. 1d), inhibitors of only miR-125b-5p
and miR-122-5p led to significant reduction in GSH levels

(Fig. 1e). Together, miRNA screening and subsequent validation
revealed that miR-125b-5p and miR-122-5p protect against
APAP-induced hepatocyte toxicity.

Apoptosis is a substantial contributor to ALF, especially in ALF
associated with viral hepatitis and acute Wilson’s disease14,15.
Therefore, we complemented our APAP-induced ALF miRNA
screening with an apoptosis-driven ALF miRNA screening, using
a model of FAS/CD95 receptor-induced apoptosis. To induce
apoptosis, hepatocytes transfected with miRNA mimics were
cultured in the presence of FAS-agonist antibody (anti-CD95 and
clone CD95) (Fig. 1f). FAS antibody causes massive apoptosis
in vitro and in vivo, leading to ALF. Likewise, we screened the
library of 302 conserved miRNAs in primary mouse hepatocytes,
to identify miRNAs that inhibit apoptosis-induced ALF (Fig. 1g).
Our screen identified five miRNAs, miR-130a-3p, miR-125b-5p,
miR-29c-3p, miR-16-5p and miR-23b-3p, whose mimics
suppressed FAS-induced apoptosis in primary hepatocytes
(Fig. 1h). The criteria for selection of these five miRNAs were
the same as mentioned for the miRNA screening in APAP-
induced ALF model. We then validated these five miRNAs in
three independent experiments using miRNA mimics and
inhibitors. Our cell viability assay showed hepatoprotection by
all miRNAs, except miR-16-5p (Supplementary Fig. 2A,B).
However, terminal deoxynucleotidyl transferase-mediated dUTP
nick-end labelling (TUNEL) assay confirmed hepatoprotection by
miR-125b-5p and miR-29c-3p, indicating that only these two
miRNAs exhibit the ability to suppress FAS-induced apoptosis
(Fig. 1i,j). Based on our complementary miRNA screenings in two
different models of ALF, we identified miR-125b-5p as a common
miRNA that protected primary hepatocytes in vitro against both
APAP-induced ALF and FAS-induced ALF. We then tested the
dose-dependent effect of miR-125b-5p and found that mimic at
the concentration of 25 nM or higher provides significant
protection against APAP- and FAS-induced ALF in vitro
(Supplementary Fig. 3). In addition, we analysed whether
APAP influences miR-125b-5p expression and found that
miR-125b-5p expression reduces in a dose- and time-dependent
manner on ALF induction in vitro (Supplementary Fig. 4). Thus,
on the basis of our screens and in vitro experiments, we selected
miR-125b-5p for further studies.

Administration of miR-125b-5p ameliorates ALF in vivo. To
examine the therapeutic relevance of miR-125b-5p in ALF, we
investigated whether miR-125b-5p protects hepatocytes against
APAP-induced ALF in male BALB/c mice (Fig. 2a). At first, we
determined an optimal dose by injecting BALB/c mice with
various doses of APAP ranging from 150 to 800 mg kg� 1. We
found that administration of 350 mg kg� 1 APAP or a higher dose
leads to 100% lethality in mice. Therefore, we used 350 mg kg� 1

APAP as a lethal dose in BALB/c mice for further experiments
(Supplementary Fig. 5). To overexpress miR-125b-5p in the
mouse liver, we cloned pri-miR-125b-5p under the transcrip-
tional control of the hepatocyte-specific promoter transthyretin
(Ttr) in an adeno-associated virus (AAV) plasmid and subse-
quently prepared high-titre AAV serotype 8 encoding miR-125b-
5p (henceforth referred to as AAV-Ttr-miR-125b-5p). The suc-
cessful overexpression of miR-125b-5p was confirmed in BALB/c
mice administered with 1� 1010 AAV-Ttr-miR-125b-5p virions
via the tail vein (Fig. 2b). We then tested efficacy of miR-125b-5p
in an in vivo ALF mouse model using BALB/c mice injected with
350 mg kg� 1, a lethal dose of APAP, intraperitoneally. We
observed significantly higher survival in mice injected with AAV-
Ttr-miR-125b-5p than in mice injected with a control AAV
(Fig. 2c). Surviving mice in AAV-Ttr-miR-125b-5p group were
monitored and kept alive for 6 months after the induction of
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APAP toxicity. Hence, the survival study indicates that miR-
125b-5p overexpression in mouse liver renders resistance against
APAP-induced ALF and thus improves survival.

Next, we examined whether higher survival observed in mice is
indeed due to specific inhibition of APAP toxicity. To address
this, a different set of miR-125b-5p-overexpressing mice and
control mice was killed 6 h after APAP injection. First, we
detected lower levels of alanine transaminase (ALT) and aspartate
transaminase (AST) (Fig. 2d), and reduced hepatic injury (Fig. 2e)
in miR-125b-5p-overexpressing mice compared with their
respective controls. Importantly, decreased serum glutamate
dehydrogenase (GDH) levels, elevated GSH/GSSG levels and
decreased serum mitochondrial DNA (mtDNA) in miR-125b-5p-
overexpressing mice confirmed the specific inhibition of APAP-
induced ALF (Fig. 2f–h). It is noteworthy to mention that serum
GDH and mtDNA not only confirm ALT and AST values but also
represent mechanistic biomarkers for mitochondrial damage as
reported previously in mice and humans during APAP-induced
liver injury16. Thus, miR-125b-5p overexpression improves
survival of mice in APAP-induced ALF model.

We then evaluated the protective effect of miR-125b-5p in
FAS-induced ALF (Fig. 2i). First, we overexpressed miR-125b-5p
in mouse liver by administering AAV-Ttr-miR-125b-5p in
BALB/c mice (Fig. 2j) and subsequently injected them with a
lethal dose of FAS antibody. Similar to APAP-induced ALF,
we observed significantly higher survival of mice injected with
AAV-Ttr-miR-125b-5p than their respective controls (Fig. 2k).
Furthermore, serum ALT and AST levels, haematoxylin and eosin
staining, caspase-3/7 activity assay, TUNEL assay (Fig. 2l–p),
cleaved caspase-3 staining and caspase-7 staining (Supplementary
Fig. 6A,B) provided evidence that miR-125b-5p overexpression in
mice inhibited ALF and hence improved survival.

Notably, a one-time injection of 1� 1010 AAV virions did not
exert any effect on the survival of mice. However, when we
administered 2� 1010 AAV virions once, we observed
improved survival and inhibition of APAP- or FAS-induced
ALF (Supplementary Fig. 7). We then investigated whether
overexpression of miR-125b-5p influences proliferation in
APAP-induced ALF. Our Ki67 staining and quantification
revealed the absence of contribution of increased proliferation
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Figure 1 | miRNA mimic screening in APAP- or FAS-induced cell death. (a) Schematic of miRNA screening in APAP-induced toxicity in primary mouse

hepatocytes. (b) Cell viability is shown as fold change of each miRNA transfection to scramble control transfection. (c) List of miRNAs that are expressed in

the liver, either at high or at least moderate levels, and showed more than 20% protection against APAP-induced toxicity compared with scramble control.

(d,e)GSH/GSSG assay of mouse primary hepatocytes transfected with each candidate miRNA mimic (d) or inhibitor (g), followed by APAP treatment.

*Po0.05, one-way analysis of variance (ANOVA). (f) Schematic of miRNA screening in FAS-induced hepatocyte toxicity. miRNAs were transfected to

primary mouse hepatocytes, followed by treatment of FAS-induced hepatocyte toxicity. (g) Cell viability is shown as fold change of each miRNA

transfection to scramble control transfection. (h) List of miRNAs that are expressed in the liver either at high or at least moderate levels and showed more

than 20% protection against FAS-induced hepatocyte toxicity, compared with scramble control. (i) Representative photographs (� 200 magnification) of

TUNEL assay on mouse primary hepatocytes transfected with each candidate miRNA mimic or inhibitor, followed by FAS treatment. Scale bars, 100mm.

(j) Quantification of TUNEL staining shown in i *Po0.05, one-way ANOVA. Data are presented as mean±s.e.m. (n¼4 per group).
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in APAP-induced ALF (Supplementary Fig. 8A,B). Thus,
miR-125b-5p inhibits ALF by suppressing cell death rather than
directly effecting proliferation.

AAV-based overexpression in ALF would remain a
prophylactic approach; therefore, to test whether miR-125b-5p
delivery may serve as a treatment option, we examined the effect
of miR-125b-5p in ALF models when injury has already begun.
To examine this, we first injected BALB/c mice with 350 mg kg� 1

APAP. One hour after APAP injection, these mice were
administered with stabilized 10 mg miRIDIAN miR-125b-5p
mimic (Fig. 3a). We first confirmed the overexpression of miR-
125b-5p in mouse liver after administration of miR-125b-5p
mimic (Fig. 3b). Our Kaplan–Meier survival curve analyses
revealed that miR-125b-5p administration after APAP injection
significantly improved the survival of mice (Fig. 3c). Analyses of

indicators of APAP-induced ALF revealed reduced ALT and AST
levels, reduced hepatic injury, lower serum GDH levels, higher
GSH/GSSG ratio and reduced serum mtDNA, suggesting that
improved survival was indeed due to inhibition of APAP-induced
ALF (Fig. 3d–h). Likewise, we investigated the effect of
administration of stabilized 10 mg miRIDIAN miR-125b-5p
mimic 1 h after onset of FAS-induced ALF (Fig. 3i). We again
confirmed the overexpression of miR-125b-5p expression
(Fig. 3j). Importantly, we observed significantly improved
survival (Fig. 3k) due to suppressed apoptosis as shown by lower
ALT and AST levels, reduced injury, lower caspase-3/7
activity and decreased TUNEL staining in mice injected with
stabilized 10 mg miRIDIAN miR-125b-5p mimic (Fig. 3l–p).
Thus, these experiments suggest that delivery of miR-125b-5p
after onset of ALF is capable of suppressing ALF, and
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hence leads to improved survival. Therefore, miR-125b-5p
mimic delivery may have a therapeutic relevance for
treating ALF.

MiR-125b-5p regulates Keap1 at the post-transcriptional level.
The major mechanism by which miRNAs regulate cellular pro-
cesses is via posttranscriptional regulation by binding to the 30-
untranslated region (30-UTR) of target messenger RNAs.

Therefore, to find a mechanism for the protective effect of miR-
125b-5p against ALF, we performed in-silico analyses on
key regulators of ALF, to find a novel target of miR-125b-5p.
We found that miR-125b-5p is predicted to target 30-UTR
of kelch-like ECH-associated protein1 (Keap1) (Fig. 4a).
Hepatocyte-specific deletion of KEAP1 has been shown to
attenuate ALF, indicating that KEAP1 is an important
regulator of ALF17. Indeed KEAP1 protein levels decreased in
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miR-125b-5p-overexpressing mice, indicating that miR-125b-5p
regulates KEAP1 expression (Fig. 4b and Supplementary
Fig. 10a). In contrast, we did not find significant difference in
mRNA levels of miR-125b-5p-overexpressing mice and control
mice (Fig. 4c). We then investigated whether miR-125b-5p
regulates KEAP1 by binding to the 30-UTR of Keap1. To validate
predicted binding sites of miR-125b-5p in the 30-UTR of Keap1
mRNA, we cloned the 30-UTR of Keap1 in a luciferase reporter
vector and co-transfected miR-125b-5p and reporter vector
in primary mouse hepatocytes. Luciferase reporter assay
demonstrated that miR-125b-5p binds to the 30-UTR and thus
regulates KEAP1 directly (Fig. 4d). To further confirm the
binding of miR-125b-5p with 30-UTR of Keap1 mRNA, we
performed the luciferase reporter assay using the mutated 30-UTR
of Keap1 mRNA (Fig. 4e). Unchanged levels of luciferase activity
in the presence of mutated 30-UTR confirmed that miR-125b-5p
regulates the Keap1 expression at posttranscriptional level
(Fig. 4f). Thus, we identified Keap1 as a novel target of
miR-125b-5p.

Next, we examined whether direct regulation of KEAP1 by
miR-125b-5p affects subsequent signalling involved in progres-
sion of ALF. KEAP1 facilitates degradation of nuclear factor
(erythroid-derived 2)-like2 (NRF2) by acting as an adapter for
cullin3, a subunit of E3 ubiquitin ligase18. KEAP1-NRF2
signalling has been reported to govern key regulatory functions

during ALF17,19. We therefore determined the expression of
NRF2 by western blotting. In fact, we found elevated levels
of NRF2 in miR-125b-5p-overexpressing mice (Fig. 4g and
Supplementary Fig. 10b). Furthermore, the expression of NRF2
target genes such as Ugt1a6, Gclc, Nqo1 and Gsta2 increased in
mice injected with AAV-Ttr-miR-125b-5p (Fig. 4h). Thus,
miR-125b-5p directly regulates Keap1, which leads to enhanced
NRF2 signalling and hence inhibits APAP-induced ALF.

A single miRNA often regulates multiple targets simulta-
neously. Therefore, we asked the question up to what extent does
miR-125b-5p exert an anti-ALF effect via KEAP1. To answer
this question, we co-transfected primary mouse hepatocytes
with miR-125b-5p inhibitor and Keap1 small interfering
RNA (siRNA). We first confirmed the efficacy of Keap1 siRNA
by determining KEAP1 protein levels after transfection of
hepatocytes with Keap1 siRNA alone or in combination with
miR-125b-5p inhibitors (Fig. 5a,b and Supplementary Fig. 10c).
Importantly, we observed significant inhibition of APAP-induced
injury as shown by elevated GSH/GSSG ratio, increased
cell viability and reduced TUNEL staining in hepatocytes
transfected with siRNA alone compared with respective controls
(Fig. 5c–f). Notably, hepatocytes co-transfected with siRNA
and miR-125b-5p inhibitors had significantly increased APAP-
induced injury compared with hepatocytes that were transfected
with Keap1 siRNA alone (Fig. 5c-f). We further investigated
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whether suppression of APAP-induced injury via miR-125b-5p
affects NRF2 levels and NRF2-responsive genes. Indeed,
western blot and quantitative reverse transcriptase—PCR results
confirmed that NRF2 protein levels and mRNA levels of Ugt1a6,
Gclc, Gsta2 and Nqo1, respectively, were elevated on transfection
of Keap1 siRNA alone or together with miR-125b-5p inhibitor
(Fig. 5g–i and Supplementary Fig. 10d).

Likewise, we examined the contribution of KEAP1 in
suppression of FAS-induced apoptosis by miR-125b-5p. To this
end, we transfected hepatocytes with Keap1 siRNA alone or in the
presence of the miR-125b-5p inhibitor before the induction of
apoptosis. Similar to APAP-induced toxicity, we observed
inhibition of FAS-induced apoptosis as shown by reduced
caspase-3/7 activity, increased cell viability and reduced TUNEL
staining in hepatocytes transfected with Keap1 siRNA alone
(Fig. 5j–m). Importantly, hepatocytes co-transfected with the
Keap1 siRNA and miR-125b-5p inhibitor had significantly higher
FAS-induced injury compared with hepatocytes transfected with
Keap1 siRNA alone (Fig. 5j–m). It is important to mention that
the inhibition of toxicity by Keap1 siRNA remained less
pronounced compared with the miR-125b-5p mimic (Fig. 1).
Importantly, hepatocytes co-transfected with miR-125b-5p
inhibitor and Keap1 siRNA showed significantly lower toxicity

than hepatocytes transfected with miR-125b-5p inhibitor alone
(Fig. 5c–m). Hence, KEAP1 contributes significantly to the
anti-ALF effects of miR-125b-5p.

To test whether miR-125b-5p regulates human KEAP1 as well,
we transfected primary human hepatocytes with miR-125b-5p
mimic. We observed significant downregulation of KEAP1 levels
in miR-125b-5p mimic-transfected primary human hepatocytes
(Fig. 6a,b and Supplementary Fig. 10e). KEAP1 mRNA levels
remained unchanged, further suggesting posttranscriptional
regulation of KEAP1 by miR-125b-5p (Fig. 6c). We then
confirmed direct binding of miR-125b-5p with 30-UTR of human
KEAP1 but not with mutated 30-UTR by luciferase assay
(Fig. 6d–f), indicating that miR-125b-5p regulates human KEAP1
at the posttranscriptional level. Subsequently, we showed the
miR-125b-5p transfection in primary human hepatocytes leads
to significant upregulation of NRF2 protein levels and NRF2-
responsive genes such as UGT1A6, GCLC, NQO1 and GSTA2
(Fig. 6g–i and Supplementary Fig. 10f). Thus, miR-125b-5p
regulates KEAP1 and subsequent NRF2 signalling in primary
human hepatocytes similar to mouse hepatocytes.

Next, we sought to investigate whether miR-125b-5p can
protect human hepatocytes against APAP- and FAS-induced
ALF. We transfected miR-125b-5p in primary human hepatocytes
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that were subsequently exposed to APAP. GSH/GSSG ratio
and TUNEL assay revealed that miR-125b-5p alleviates APAP-
induced hepatocyte toxicity (Fig. 6k,l). Likewise, transfection of
miR-125b-5p inhibited FAS-induced apoptosis in primary
human hepatocytes as demonstrated by reduced caspase-3/7
activity and TUNEL assay (Fig. 6m–o). Thus, gain of
miR-125b-5p attenuates APAP- and FAS-induced ALF in human
hepatocytes as well.

The circulating level of miR-125b-5p has been reported to be
elevated in patients with APAP overdose10. We therefore
measured the levels of miR-125b-5p in sera, isolated
hepatocytes and liver of mice injected with 350 mg kg� 1 APAP.
We confirmed the elevated levels of miR-125b-5p in mice sera

(Supplementary Fig. 9). In addition, we observed decreased
miR-125b-5p levels in hepatocytes and in liver tissue of APAP- or
FAS-injected mice (Supplementary Fig. 9). Thus, miR-125b-5p
levels follow an inverse correlation between serum and
hepatocytes or the liver.

MiR-125b-5p-KEAP1-NRF2 signaling in ALF patients. Finally,
we addressed whether miR-125b-5p expression is deregulated
during ALF in human patients. Upregulation of miR-125b-5p in
sera of ALF patients has been recently reported10. We also
confirmed elevated levels of miR-125b-5p in sera of ALF patients
(Fig. 7a). Furthermore, we analysed miR-125b-5p expression in
liver biopsies obtained from ALF patients. We found reduced
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transfection. *Po0.05, one-way analysis of variance (ANOVA). (e) Mutated two nucleotides in human KEAP1 30-UTR are indicated in red. (f) Luciferase

reporter assay using mutated 30-UTR of KEAP1 demonstrates unchanged luciferase activity. Not significant (NS), one-way ANOVA. (g) Western blot

analysis of NRF2 in primary human hepatocytes transfected with miR-125b-5p mimic. Vinculin was used as a loading control. (h) Quantification of western

blotting is shown in g. *Po0.05, two-tailed Student’s t-test. (i) qRT–PCR analysis of UGT1A6, GCLC, NQO1 and GSTA2 expression in primary human

hepatocytes transfected with miR-125b-5p mimic or inhibitor. *Po0.05, **Po0.01, two-tailed Student’s t-test. (j) GSH/GSSG assay and (k) TUNEL assay

revealed reduced hepatocyte damage in miR-125b-5p mimic-treated human hepatocytes after APAP-induced hepatic toxicity. Scale bars, 200 mm.

*Po0.05, one-way ANOVA. (l) Quantification of TUNEL staining shown in k. *Po0.05, one-way ANOVA. (m) Caspase-3/7 activity assay and

(n) TUNEL assay showed less apoptotic cells in miR-125b-5p mimic-treated human hepatocytes after FAS-induced hepatic damage. Scale bars, 200mm.

*Po0.05, **Po0.01, one-way ANOVA. (o) Quantification of TUNEL staining shown in n. *Po0.05, **Po0.01, one-way ANOVA. Data are presented as

mean±s.e.m. from at least three independent experiments.
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levels of miR-125b-5p in biopsies compared with control livers
(Fig. 7b). Consistent with our mouse data, we observed increased
protein levels of KEAP1 and reduced protein levels of NRF2 in
ALF patients’ liver biopsies (Fig. 7c,d). In addition, NRF2-
responsive genes such as UGT1A6 and GCLC were expressed at
lower levels, thus indicating reduced NRF2 signalling in liver
biopsies from ALF patients compared with respective controls
(Fig. 7e). Taken together, the loss of hepatic miR-125b-5p
expression during ALF, increased levels of serum miR-125b-5p in
ALF patients and the alleviation of ALF on miR-125b-5p
supplementation in mouse liver indicate that miR-125b-5p is a
key regulator of ALF.

Discussion
The development of novel therapeutic agents to attenuate ALF is
needed especially in cases of indeterminate, idiosyncratic and
other ALF when N-acetylcysteine is ineffective. One of the
prerequisites for such an agent is to suppress necrosis and
apoptosis, two major cell death modes involved in the progression
of ALF. Based on two complementary miRNA screenings in
primary hepatocytes, we identified miR-125b-5p as a novel
regulator of ALF and uncovered its hepatoprotective function in
ALF. Our results demonstrate that miR-125b-5p overexpression
attenuates APAP-induced necrosis and FAS-induced apoptosis
in vitro, as well as ALF, in vivo.

Our findings that miR-125b-5p functions as an attenuator of
ALF were somewhat unexpected, especially in light of previously
reported tumour suppressor functions of miR-125b-5p in liver
cancer20,21. Therefore, our results highlight the fact that an
miRNA, such as miR-125b-5p in the liver, may have diverse
functions depending on whether liver damage is acute or chronic.

MiR-125b-5p ameliorates APAP-induced ALF via post-
transcriptional regulation of Keap1 mRNA. As a result, NRF2
protein levels are elevated and it translocates to the nucleus to
regulate transcription of key genes. Indeed, our results revealed
that miR-125b-5p overexpression elevates not only NRF2 levels
but also the expression of NRF2-responsive genes such as Ugt1a6,
Gclc, Nqo1 and Gsta2. Therefore, miR-125b-5p regulates
GSH levels and hence APAP-induced ALF by modulation of
KEAP1-NRF2 signalling. Likewise, apoptosis, which is another
mode of cell death, was also inhibited in vitro and in vivo by anti-
apoptotic function of miR-125b-5p via KEAP1-NRF2 signalling.
Notably, NRF2 has also been reported to inhibit FAS-induced
ALF in mice22. On one hand, reduced levels of miR-125b-5p
causes NRF2 downregulation via Keap1 signalling but, on the

other hand, it is plausible that NRF2 may also contribute to the
further changes in miR-125b-5p levels via a feedback loop as
reported previously23,24. It is important to mention that other
miR-125b-5p targets in addition to KEAP1 may also contribute to
the observed attenuation of ALF, especially in light of our results,
demonstrating only partial rescue of the observed effect on
blockade of Keap1 expression using siRNA. Thus, miR-125b-5p
acts as an anti-ALF therapeutic agent as demonstrated by our
study in two different mouse models of ALF.

In addition to our current findings of protective role of
miR-125b-5p during ALF, miR-125b-5p has been previously
reported as one of the circulating miRNAs upregulated during the
early phase of ALF, at the time when classical markers such as
ALT remain low10,25. We were able to confirm the elevated levels
of miR-125b-5p as reported in APAP-overdose patients10. The
precise mechanism of upregulation of circulating miRNAs in
human serum during ALF is currently ambiguous25. There are
many possibilities that may lead to miR-125b-5p release into
serum. MiR-125b-5p may be released from hepatocytes via
exosomes or microvesicles or via apoptotic bodies or by random
release on cell lysis. It is reasonable to speculate that release via
exosomes or microvesicles is the most probable way that can
explain miR-125b-5p elevation in serum in the initial stages of
ALF10. In light of our data demonstrating decrease in hepatic
miR-125b-5p levels in biopsies of ALF patients and amelioration
of ALF on its overexpression, miR-125b-5p may prove to be a
potent ALF regulator and useful mechanistic serum biomarker for
the diagnosis and prognosis of ALF.

In summary, based on miRNA screenings, we identified
miR-125b-5p as a novel regulator of ALF. Our in vivo studies
established miR-125b-5p as an anti-ALF miRNA that possesses
the capability to inhibit ALF progression. Hence, miR-125b-5p
supplementation may serve as therapeutic agent to attenuate ALF.

Methods
Mice. All mouse experiments were granted permission and performed according
to the guidelines of the Hannover Medical School, Germany. Eight- to 10-week-old
male BALB/c mice were purchased from Charles River Laboratories (Germany).

miRNA mimic library screening. Mouse primary hepatocytes were seeded in
96-well cell culture plates pre-coated with collagen and transfected with mouse
miRNA mimic library (Thermo Scientific, Germany) at a final concentration
of 25 nM.

In vitro and in vivo APAP- and FAS-induced hepatocyte damage. For
APAP-induced hepatocyte damage, hepatocytes were treated with 3 mg ml� 1
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Figure 7 | Determination of miR-125b-5p levels in ALF patients. (a) Quantitative reverse transcriptase–PCR (qRT–PCR) analyses revealed elevated

miR-125b-5p levels in sera of spontaneously recovered compared with non-spontaneously recovered ALF patients. *Po0.05, two-tailed Student’s t-test.

(b) Decreased endogenous level of miR-125b-5p in liver biopsies obtained from ALF patients, compared with respective controls. The aetiology of ALF

patients (n¼8) was unknown, except for one patient who had mushroom intoxication. *Po0.05, two-tailed Student’s t-test. (c) Immunofluorescence

staining for KEAP1 and NRF2 in liver sections from ALF patients and respective controls. Scale bars, 100 mm. (d) ImageJ-based quantification of staining

shown in c. **Po0.01, two-tailed Student’s t-test. (e) qRT–PCR analysis of UGT1A6 and GCLC in ALF patients and respective controls. **Po0.01, two-tailed

Student’s t-test. Data are presented as mean±s.e.m.
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APAP (Sigma) at 24 h after miRNA transfection. Likewise, for FAS-induced
hepatocyte damage, hepatocytes were treated with 1 mg ml� 1 Hamster anti-mouse
CD95 antibody, clone Jo2 (BD Pharmingen) for (mouse hepatocytes) or mouse
anti-human CD95 antibody, clone Dx2 (BD Pharmingen) (for human hepatocytes)
at 24 h after miRNA transfection. The cell viability was measured by WST-1 assay
(Roche, Switzerland) at 6 h after CD95 or APAP treatment. Absorbance was
measured at 440 nm. In vivo ALF was induced by intraperitoneal injection of
350 mg kg� 1 APAP (Sigma) in 8- to 10-week-old BALB/c mice. Likewise, for
FAS-induced ALF, 0.5 mg per gram body weight Hamster anti-mouse CD95
antibody (BD Pharmingen) was injected intraperitoneally. Mice were either
monitored for survival or killed 6 h after injection. Liver tissues were harvested and
immediately snap frozen in liquid nitrogen and fixed in 4% paraformaldehyde
(Sigma).

Hepatocyte transfection. Freshly isolated primary human hepatocytes were pur-
chased from Cytonet GmBH. Primary hepatocytes from mouse liver were isolated as
described26. Briefly, mice were anaesthetized and perfused with Liberase (Roche).
After perfusion, livers were disintegrated mechanically before collecting hepatocytes
by low-speed centrifugation. Non-parenchymal cells were removed by discarding the
supernatant. For all in vitro transfection experiments, we used Percoll density
gradient-purified mouse hepatocytes to achieve high transfection efficiency. Ten
thousand primary hepatocytes per well of a collagen-coated 12-well plate (BD) were
seeded. Twelve hours after seeding, hepatocytes were transfected with 25 nM miR-
125b-5p mimic, miR-125b-5p inhibitor or control scramble (Qiagen), using the
Targefect reagent in the presence of virofect enhancer (Targeting Systems).
Transfected hepatocytes were cultured in Hepatocyte Culture Medium (Lonza).

Immunofluorescence and immunohistochemical staining. Hepatocytes
were fixed in 4% paraformaldehyde for 15 min at room temperature. Cleaved
caspase-3 (Cell Signaling, catalogue number: 9661, 1:400 dilution), cleaved caspase-
7 (Cell Signaling: catalogue number: 8438, 1:400 dilution) and Ki67 (Labvision,
catatalogue number: RM9106, 1:400 dilution) staining were performed on 10 mm
cryosections from mouse liver tissue. AlexaFluor-conjugated secondary antibodies
were used for signal detection. For TUNEL staining, a TUNEL assay kit (Merck
Millipore) was used according to the manufacturer’s guidelines. For haematoxylin
and eosin staining, liver tissues were fixed with 4% formalin, embedded in paraffin
and cut into 5-mm-thick sections for histochemical analysis.

Serum parameter analysis. To analyse serum ALT and AST, 0.1 ml blood was
collected from each mouse. After 30 min of incubation at room temperature, serum
was prepared by centrifuging the samples at 8,000 g for 8 min. The clear super-
natant was collected and sent to a routine clinical lab for measuring ALT and AST
by fully automated Olympus AU 400 analyser (Beckman Coulter, Inc.).

Gene expression analyses. For gene expression analysis, 1,000 ng total RNA was
used for first-strand complementary DNA synthesis (Applied Biosystems). For
miRNA expression, 50 ng total RNA was used for miR-cDNA synthesis (Taqman
miRNA RT kit, Applied Biosystems). Taqman Universal Real Time PCR kit and
SYBR green PCR master mix were purchased from Applied Biosystems. Primers
for mouse Ugt1a6, Gclc, Nqo1 and Gsta2, and b-actin (Actb) were purchased from
Qiagen. Gene expression was normalized to Actb. miRNA expression was
normalized to U6. Data were analysed according to the DDCt method.

Mouse cytochrome c oxidase subunit III forward:
50-ACCAAGGCCACCACACTCCT-30 .
Mouse cytochrome c oxidase subunit III reverse:
50-ACGCTCAGAAGAATCCTGCAAAGAA-30 .

AAV serotype 8 preparation. AAV8-Ttr-miR-125b-5p vector and control vector
(AAV8-Ttr-Cre) were prepared as described27,28. Briefly, A-293 cells were transfected
with transgene plasmid and pDP8.ape (Plasmid Factory) using calcium-phopsphate
transfection method. Three days after transfection, cells were harvested and virus was
purified using caesium chloride density gradient centrifugation. The titre was
determined by quantitative reverse transcriptase–PCR using primers spanning the
region of the Ttr promoter as published before27 using the following primers:

Ttr forward primer: 50-AGCTTGGCAGGGATCAG-30.
Ttr reverse primer: 50-GCTTCTCCTGGTGAAG-30 .

MiR-125b-5p mimic administration in vivo. For rapid gain of miR-125b-5p
function we injected 10 mg HPLC-purified miRIDIAN miR-125b-5p mimic
(Dharmacon) via the tail vein in BALB/c mice that were injected 1 h earlier with
APAP or FAS intraperitoneally. The miR-125b-5p dilution and injection was
performed according to instructions provided by the manufacturer.

Immunoblotting. Immunoblottings were performed from whole-cell lysates or
mouse liver lysates obtained using Cell Lysis Buffer (Cell Signaling) in combination
of Complete Mini Protease Inhibitor Cocktail (Roche) and HALT-phosphatase
inhibitor (Thermo Scientific). Protein (200 ng) per sample (BCA Protein Assay Kit,

Pierce, USA) was used for western blottings. The antibodies KEAP1 (Abcam,
catalogue number: 66620, 1:500 dilution), NRF2 (Abcam, catalogue number:
31163, 1:500 dilution), a-tubulin (Sigma-Aldrich, catalogue number: T9026,
1:1,000 dilution) and vinculin (Sigma-Aldrich, catalogue number: V9131, 1:5,000
dilution) were used. Proteins were visualized using ECL (Thermo Scientific).

Luciferase reporter assay. The 30-UTR of Keap1 mRNA was amplified by PCR
from genomic DNA using the following primers:

Mouse Keap1 forward primer:
50-GGAAAGTTTAAACGAGAAGCCTCTGGGCTCTG-30.
Mouse Keap1 reverse primer:
50-GGAAATCTAGACCATCAGGATCTGCGTGTATT-30 .
Human KEAP1 forward primer:
50-GGAAAGTTTAAACCGGCAGCTGTCACCATGT-30 .
Human KEAP1 reverse primer:
50-GGAAATCTAGAACAAAATAACTGTCCATCCGGT-30 .
The amplicon was cloned into a miRGLO vector (Promega). Luciferase

reporter assay was performed as described27. Briefly, primary hepatocytes were
co-transfected with 100 ng miRGLO plasmid containing the 30-UTR and 25 nM
mimic or inhibitor. Forty-eight hours later, Dual-GLO luciferase reagent was first
added and incubated for 30 min before measuring the firefly luminescence.
StopGLO reagent was then added to cells and incubated again for 30 min before
reading the luminescence intensity. Mutated 30-UTRs were amplified and plasmids
were constructed using the QuikChange lightning site-directed mutagenesis kit
(Agilent Technologies).

Caspase 3/7 activity assay. Caspase 3/7 activities in liver tissue were measured
using a Caspase-Glo assay kit (Promega)29. Briefly, mouse liver lysates were
prepared by Dounce homogenization in hypotonic extraction buffer (25 mM
HEPES pH 7.5, 5 mM MgCl2 and 1 mM EGTA) in combination of Complete Mini
Protease Inhibitor Cocktail (Roche) and subsequently centrifuged (15 min,
13,000 r.p.m., 4 �C). One microgram of protein per sample (BCA Protein Assay Kit,
Pierce) was used for caspase3/7 activity assay. The luminescence of each sample
was measured in a white 96-well plate.

GDH detection. GDH in mouse serum was detected using Glutamate
Dehydrogenase Detection Kit (Abcam), according to manufacturer’s
recommendation. Briefly, 5 ml serum samples were diluted in assay buffer and
mixed with Reaction Mix. The GDH activity was quantified colorimetrically
(l¼ 450 nm).

GSH/GSSG-Glo assay. GSH/GSSG ratio in liver tissue was measured using
GSH/GSSG-Glo assay kit (Promega) as per the manufacturer’s recommendation.
Briefly, mouse liver lysates were homogenized in 5% w/v metaphosphoric acid
(Sigma) and subsequently centrifuged (10 min, 13,000 r.p.m., 4 �C). Supernatants
were neutralized with neutralization buffer and diluted in dilution buffer. Total
GSH and oxidized GSH were measured using a luminescence reader.

Serum mtDNA measurement. Serum mtDNA was measured by absolute
quantification real-time PCR, as described30. Briefly, total DNA was isolated
from serum samples using a QIAamp Blood and Mini Kit (Qiagen). To construct
standard curves, mitochondrial pellets were isolated from mouse liver using
Mitochondrial DNA Isolation Kit (Abcam). Purity of mtDNA standards
was verified by real-time PCR for mouse cytochrome c oxidase subunit III
and b-actin.

Human patient samples. Frozen liver tissues from human ALF patients
were obtained from the Department of Gastroenterology, Hepatology and
Endocrinology, Hannover Medical School, where all human samples (blood and
tissues) were collected after informed consent from patients. The study was
performed according to the guidelines of, and given permission by, the ethics
committee of Hannover Medical School.

Serum miRNA analyses. miRNAs were isolated from 100 ml of human serum
using the miRNeasy Serum/Plasma Kit (Qiagen) according to the manufacturer’s
instructions. Serum RNA (2.25 ng) was reverse transcribed using the Taqman
miRNA RT kit (Applied Biosystems) and miR-125b-5p expression was determined
by real-time PCR using Taqman Universal Real Time PCR kit (Applied
Biosystems). miRNA expression was normalized to spike-in control of
Caenorhabditis elegans miR-39 miRNA. Data were analysed according to the
DDCt method.

Statistical analysis. Significance was determined with the two-tailed Student’s
t-test for comparison of two groups. Significance between multiple groups was
determined by one-way analysis of variance. A P-value of o0.05 was considered
significant. Error bars represent±s.e.m. *Po0.05 and **Po0.01.
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Data availability. The authors declare that data supporting the findings of this
study are available within the article and its Supplementary Information files.
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