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Neoadjuvant chemotherapy (NAC) may increase the resection rate of breast cancer and
shows promising effects on patient prognosis. It has become a necessary treatment
choice and is widely used in the clinical setting. Benefitting from the clinical information
obtained during NAC treatment, computational methods can improve decision-making by
evaluating and predicting treatment responses using a multidisciplinary approach, as
there are no uniformly accepted protocols for all institutions for adopting different
treatment regiments. In this study, 166 Chinese breast cancer cases were collected
from patients who received NAC treatment at the First Bethune Hospital of Jilin University.
The Miller–Payne grading system was used to evaluate the treatment response. Four
machine learning multiple classifiers were constructed to predict the treatment response
against the 26 features extracted from the patients’ clinical data, including Random Forest
(RF) model, Convolution Neural Network (CNN) model, Support Vector Machine (SVM)
model, and Logistic Regression (LR) model, where the RF model achieved the best
performance using our data. To allow a more general application, the models were
reconstructed using only six selected features, and the RF model achieved the highest
performance with 54.26% accuracy. This work can efficiently guide optimal treatment
planning for breast cancer patients.

Keywords: breast cancer, treatment efficacy prediction, decision-making, multiple classification,
neoadjuvant chemotherapy
INTRODUCTION

Breast cancer is the most frequent cancer in women. Diagnosed patients account for 30% of all female
cancers (1), and the incidence rates continue to increase (2). Alongwith surgical treatment, neoadjuvant
chemotherapy (NAC) has been introduced as a treatment strategy with the aim of reducing tumor size
(3) and has contributed to significantly increase the efficacy of breast cancer treatment (4), thanks to its
steadily increasing acceptance as a multidisciplinary treatment approach for patients with locally
advanced breast cancer (5). NAC is a cost-efficient approach to downstage primary tumor and
metastatic axillary lymph node (6), and has especially achieved notable pathologic complete response
(pCR) rates in the most aggressive tumors (7), and conversely, also provides obvious benefits to breast-
conservation therapy (8, 9).NAC takes advantage of and contributes to the impact of systemic therapies
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on breast cancer biology (10). However, the therapeutic effect of
NAC relies on the patient’s biological phenotypes including
HER2(+) positive cancers (11) or triple-negative cancers (12),
which characterize the many patients who experience higher local
recurrence rates (13).

Decision-making therefore is a vitally important part of NAC,
and treatment regiments selected according to the patients’
individual needs will help to optimize NAC, in which a
comprehensive treatment evaluation is required. Undoubtedly,
a clinical evaluation (14–16), tissue pathology evaluation (17,
18), evaluation of axillary lymph nodes (19), and a combination
of these evaluation approaches (20) will accurately contribute to
the efficacy of NAC, although all these evaluations are posterior
approaches, regardless of the outcome of treatment given to a
designated patient. Therefore, prospective treatment effects may
be likely foreseen for patients, who will benefit from the selection
of an optimal treatment regiments, that avoids adverse events,
and thereby reduces the recurrence, metastasis, and latent risks.

Many computational methods have been developed to predict
the survival of breast cancer patients receiving NAC treatment
based on the information recorded during the clinical treatment
processes. Recently, Lai et al. proposed a prognostic nomogram
model to predict disease-free survival (DFS) (21), Laas et al. used a
random survival forest method to evaluate distant metastasis-free
survival (DMFS) (22), and Tahmassebic et al. compared eight
machine learning algorithms for the early prediction of pCR,
including the support vector machine (SVM), linear discriminant
analysis (LDA), extreme gradient boosting (XGBoost), where the
XGBoost algorithms attained the best performance (23). The above
methods achievedgoodpredictionaccuracy, anddemonstrated that
the computational approach is apractical contribution toevaluating
NAC. Cancer survival is determined by many factors, and sample
quantity seems less than the requirement of machine learning
algorithms to make a comprehensive regression prediction at
present. By contrast, grading evaluation may even more intuitive
to guide the decision-making of the treatment.

In this study, we adopted the Miller-Payne grading system to
evaluate the efficacy of NAC, the clinical treatment records of 166
Chinese breast cancer cases from the First Bethune Hospital of
Jilin University were used to build the evaluation model. The 166
cases were randomly selected as the training dataset. For the
comparison, three traditional machine learning algorithms,
random forest (RF), logistic regression (LR), and SVM were
used, along with the CNN deep learning method. The four
models were trained and tested using the same datasets, and
the RF model achieved the best performance after feature
selection. This work merely uses basic clinical data to
accurately evaluate NAC efficacy, it represents a promising
approach to improve the treatment decision-making process.
MATERIALS AND METHODS

Patients and Treatment Regiments
A total of 166 breast cancer cases were collected among
the diagnosed patients at the First Bethune Hospital of
Jilin University over the past five years, which included
Frontiers in Oncology | www.frontiersin.org 2
triple-negative, Luminal A, HER2 positive, Luminal B(+),
Luminal B(-) cases, covering the patients aged 27 to 71 years old.
These pathological classifications are molecular subtypes of breast
cancer and are used to predict the risk of recurrence and metastasis
of breast cancer and its response to treatment. All patients received
surgical treatment based on their diagnosed cancer types, which
consisted of radical mastectomy, protective and radical operation of
mastocarcinoma, and breast conserving surgery. Correspondingly,
the NAC regiments were differentially applied to individual
patients, while chemotherapy was based on an anthracycline and
paclitaxel chemotherapy regimen, and Herceptin-targeted therapy
was given to HER2 positive patients before chemotherapy. All
NAC patients received radiotherapy, and endocrine therapy was
adopted after radiotherapy.

The diagnosis and NAC treatment process were recorded for
each patient. All data were digitalized and cleaned, record items
having toomany default values were filtered, and otherwise missing
values were assigned to zero. Finally, 26 clinical record items were
available as features to be input into the prediction model. Detailed
information regarding the selected features is shown in
Supplementary Table 1. However, not all features contributed to
obtaining an accurate prediction, we thus selected only 6 features
that were highly relevant to the Miller-Payne grading scale,
including Ki-67 expression, breast mass length, breast mass
width, PR value, visible tumor thrombi, final calcification
morphology. For the experimental study, 166 cases were divided
into a training dataset based on 10-fold cross-validation.

NAC Evaluation
The Miller-Payne grading system (24) provides a five-point scale
by the paired examination of specimens before and after the
operation, and is currently widely applied in clinical treatment
evaluation in China, including for NAC evaluation in this study.
Based on the proportion of tumor cell reduction, the system
grades the postoperative curative effect from level 1 to 5
according to the decrease in tumor cells from low to high. This
system does not provide a comprehensive evaluation of
postoperative cancer survival investigations, but it is obvious
that there are few evaluation approaches available for this
purpose, as multiple factors are involved in cancer patient
survival. In contrast, this system describes the principle
pathological features relevant to cancer simply and intuitively,
so that it is available for our goal to predict the NAC efficacy, and
provides the suggestions for clinical practice.

Feature Selection
The Pearson correlation coefficient (25) and the Random Forest
Feature Importance Index (RFFII) (26) were used to select features
that had the greatest impact on the model performance. Too many
features may weaken the performance of the model, thus feature
selection should be used to improve the model’s performance.
PCC can identify the linear relationship between features and
labels while the RRFII selects the feature importance relative to the
RF prediction model. We combined these indicators as a reference
for feature selection. The PCC was used to calculate the linear
relationship between each feature and the Miller-Payne grading
label. It divided feature correlation into positive and negative
January 2021 | Volume 10 | Article 592556
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categories, in which the higher the absolute value of the correlation
coefficient the stronger the correlation.

The RFFII presents the degree to which each feature
contributes to each tree in a random forest, then takes the
average value, and finally compares the contribution of
different features. For example, for each decision tree in a
random forest with N trees, the corresponding Out-of-Bag
(OOB) data was used to calculate its OOB error, which is
recorded as e1. Then, noise interference is randomly added to
the features of OOB samples, and the OOB is calculated again,
which is then recorded as e2. The characteristic importance D of
the whole random forest can be calculated using Eq. (1).

D =o
e2 − e1

N
(1)

Prediction Models
For Miller-Payne grading, a multiple classifier was applied to
predict NAC efficacy; there are many choices of algorithms
available to establish the prediction model. In previous studies,
the Scikit-Learn (Sklearn) classifier was widely used as a machine
learning tool based on Python, and provides various packaged
tools. Among the numerous machine learning algorithms, we
choose to apply RF (27, 28), LG (29), and SVM (30) algorithms
for modeling. Further, a CNN (31) model was built based on
Keras since the deep learning module delivered good
performance in many similar studies. In total four algorithms
were attempted in this study to build the prediction models, and
the best model was selected to be used in the clinical setting.

RF Model
RF is a modified algorithm based on bagging strategy, using
multiple trees to train and classify the input sample, it builds each
tree according to the following algorithm:

1. Draw a bootstrap sample Z* of size N from the training data
2. Grow a RF tree T to the bootstrapped data, by recursively

repeating the following steps for each terminal node of the
tree, until the minimum node size n is reached.
Frontier
(1) Select m variables at random from the M variables

(2) Pick the best variable among the m

(3) Split the node into two daughter nodes

3. Output the ensemble of trees

N was used to represent the number of training cases
(samples), and M was used to represent the number of
features. In this study, there were 166 training cases with 26
features, the M is equal to 26 and the N is equal to 166.

The default parameters were used to initialize the model, and
then we tuned the parameters to adjust the model to achieve the
best performance. There were three parameters to be optimized,
including the optimal minimum sample number of leaf nodes
(min_samples_leaf), the number of trees (n_estimators), and the
minimum sample size required for internal node repartition
(min_samples_split). The min_samples_split value limits the
conditions under which subtrees can continue to be divided, and
s in Oncology | www.frontiersin.org 3
if the sample size of a node is less than the min_samples_split, it
will not continue to attempt to select the optimal feature for
partitioning. The min_samples_leaf was 3 and the n_estimators
was 400 after parameter tuning. The min_samples_split was set to
2 to limit the minimum sample size.

LG Model
Logistic regression is a machine learning method used to solve
binary classification (0 or 1) problems. It is often used to estimate
the possibility of something. LG model transformed the 26
features into a virtual variable as the input variable. The model
executed data analysis and established a decision boundary.
Subsequently, using the Sigmoid function and the gradient
descent were used to solve the optimization problem. The
optimal solution was obtained and output as the Miller-
Payne grades.

SVM Model
SVM is a binary classification model. Its basic model is a linear
classifier with the largest interval defined in the feature space.
Using 26 features as the input variable of SVM model. The SVM
model attempts to find a suitable classification hyperplane to
classify the data, which is defined as Eq. (2). The SVMmodel can
obtain more than one hyperplane, so loss of function
optimization is used to identify the classification hyperplane
with the strongest generalization ability in order to achieve the
classification effect and build a multiple classifier. Next, the
Millar-Payne grades were output.

wTx + b = 0 (2)

CNN Model
CNN is a type of feedforward neural network that contains
convolution calculation and has a deep structure. It can represent
learning ability and classifies input information according to its
hierarchical structure. Twenty-six features were input into the
CNN model through the input layer. Then the convolution
kernel was used in the convolution layer to extract and map
the features. Features were obtained by multi-layer convolution
and then they were classified in the full connection layer. In order
to prevent overfitting, a pooling operation was carried out, and
the features were aggregated to reduce the amount of data
operation. The ReLU function was used as the activation
function to increase the nonlinear relationship among the
layers of the neural network. In this study, five full connection
layers were used, and the nodes of each layer were set as 2,048,
1,024, 564, 256, and 6. The Miller-Payne grades were output in
the last full connection layer.

The input of these four models included the 26 features of the
NAC dataset. The known labels cases were used to train the
model while the test cases that were unknown labels were used to
test the model. Finally, the output obtained represented the
predicted labels of unlearned test cases. we then evaluated the
performance of these models and chose the best-performing
machine learning model for our prediction model.
January 2021 | Volume 10 | Article 592556
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Training and Evaluation
For the purpose of the model training and prediction
performance evaluation, we used 10-fold cross-validation to
train the models and evaluated them by Accuracy (ACC),
Precision (P), F1 score (F1), and Recall (R). A 10-fold cross-
validation is a common training and validating method, it
randomly divides the dataset into ten subsets, each turn of
total ten in the validation process, chooses one subset as the
testing dataset, and the remaining nine are the training dataset
(32, 33). The correct rate (or error rate) was obtained for each
test. The average value of the accuracy (or error rate) of the 10
times results was used as the estimation of the accuracy of
the algorithm.

The weighted average value was applied to evaluate the
performance of the model more accurately. The sample
quantity of Miller-Payne grading was uneven, for example,
there were only two samples in the first category. An uneven
distribution of samples will affect the performance of the
prediction model. The value range is from 0 to 1.

ACC is the evaluation of the overall accuracy of classification,
so a calculation of the weighted average is not needed. It was
calculated using Eq. (3). Precision was defined by evaluating the
accuracy of each category to the classifier. It was calculated using
Eq. (4). Recall is a supplement to precision and the recall rate was
obtained for our original sample, which indicated the number of
positive examples in the sample were predicted to be correct. It
was calculate using Eq. (5). The F1-score represented the
harmonic average of precision and recall. It was calculated
using Eq. (6).

ACC =
TP + TN

TP + TN + FP + FN
(3)

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)
Frontiers in Oncology | www.frontiersin.org 4
F1 =
2*P*R
P + R

(6)
RESULTS AND DISCUSSION

Prediction Performances on Original
Features
In this study, we used the dataset collected from patients
diagnosed at the First Bethune Hospital of Jilin University over
the past three years. Patients were divided into triple-negative,
Luminal A, HER2(+), Luminal B(+), Luminal B(-) types, and
involved patients aged from 27 to 71 years old. The dataset
including 166 clinical cases. LR, SVM, CNN, and RF were used to
construct prediction models of the Miller-Payne grading system
for the NAC regiment. The original dataset obtained 26 features
that were used as the input features for the models and a 10-fold
cross-validation was used to train these models and ACC, P, F1,
and R scores were used to evaluate their performance.

The evaluation results of the RF, LG, SVM, and CNNmodels are
shown in Table 1. The ACC scores of the RF, LG, and SVMmodels
were 49.45, 48.24, and 50.00%, respectively. The CNN model
achieved the best ACC score at 50% and the SVM model
achieved the worst ACC score at 45.84%. The LG model had the
best scores in P, F1, and R score which was 49.72, 50.00, and 49.72%,
respectively, while the SVMmodel had the worst scores which were
45.39, 43.37, and 44.13%, respectively. The evaluation scores of level
1 were zero, which could be due the fact that there were only 2
samples in level 1 of the Miller-Payne grading in the dataset, and
thus, the predictionmodel could not be trained. From these scores it
can be derived that the performance of these machine learning
models did not perform very well for this dataset, and the overall
evaluation score of these four models did not differ greatly. This
might be due to model overfitting caused by the redundant features
that affect the performance of the models. CNN achieved the best
score, which may have resulted from the pooling operations in the
layers of the neural network to reduce overfitting. Therefore, feature
selection is required.We thus compared the prediction performance
TABLE 1 | Prediction Performances on Original Features.

Level 1 Level 2 Level 3 Level 4 Level 5 Weighted Accuracy

Amount 2 41 50 43 30
RF Precision 0 50.00% 48.39% 46.94% 54.55% 48.94% 49.45%

Recall 0 26.83% 60.00% 53.49% 60.00% 49.40%
F1-score 0 34.92% 53.57% 50.00% 57.14% 48.04%

LG Precision 0 54.05% 50.94% 48.98% 46.15% 49.72% 48.24%
Recall 0 48.78% 54.00% 55.81% 40.00% 50.00%
F1-score 0 51.28% 52.43% 52.17% 42.86% 49.72%

SVM Precision 0 37.14% 59.52% 43.48% 38.89% 45.39% 45.83%
Recall 0 31.71% 50.00% 46.51% 46.67% 43.37%
F1-score 0 34.21% 54.35% 44.94% 42.42% 44.13%

CNN Precision 0 25.00% 46.67% 54.55% 58.33% 45.85% 50.00%
Recall 0 11.11% 70.00% 46.15% 77.78% 50.00%
F1-score 0 15.38% 56.00% 50.00% 66.67% 46.39%
January 20
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of models using the original features and selected the original
features using the PCC and RFFII algorithms.

NAC Efficacy Relevant Features
For clinical purposes, the principal features would be more
efficient as tools for making treatment-related decisions, to
reduce the computational costs, or even to improve prediction
accuracy. We performed feature selection to identify the
principle features from the total of 26 original features input
by PCC and RFFII algorithms.

PCC was applied to calculate the correlation between
Miller-Payne grading and each feature for all the 166 cases
and then ranked the correlation coefficients according to their
absolute values. There were 8 features positively correlated to
Miller-Payne grading while 18 features were negatively
correlated. As shown in Figure 1, Ki-67 expression, final
organizational credit type, ER/PR status were positively
correlated, while cancer infiltration of vessels or nerves,
visible tumor thrombus, and ER value negatively correlated;
Ki-67 expression, ER/PR and ER values represented genomic
features. Ki-67 expression is associated with prognosis in
Frontiers in Oncology | www.frontiersin.org 5
breast cancer patients, which helps to determine whether or
not NAC should be applied. The ER/PR and ER values can
also be used to predict prognosis of breast cancer patients and
guide the NAC treatment option. Final organizational credit
type, cancer infiltration of vessels or nerves, and visible tumor
thrombus are used to judge the condition of patients before
NAC is attempted.

We then classified the clinical features into positive
correlation features and negative correlation features according
to PCC, and ranked these according to absolute values. Similarly,
we used the RFFII to rank the features. Among positive
correlation and negative correlation features, features with a
higher correlation index were selected as the input features to
train the model. The features with higher PCC and RFFII scores
were input as priority. As shown in Figure 2, the abscissa
indicates the RFFII score; the higher the score obtained by the
feature, the greater the importance in the RF model. Ki-67
expression, PR and ER values are important genomic features,
while breast mass and width, visible tumor thrombus, final
calcification morphology, and the body mass index are
important clinical features.
FIGURE 1 | Features relevant to NAC by Pearson correlation coefficient.
January 2021 | Volume 10 | Article 592556
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In the feature selection process, each group of input features was
input into four models for training, and the performance of each
model was evaluated. According to the two indicators, the features
were iterated from high to low as input to train themodels. Features
that had a bad impact on the model performance were eliminated
and finally a group of features with the highest accuracy rate was
Frontiers in Oncology | www.frontiersin.org 6
selected. Finally, the best performing model was selected as the final
prediction model and the group of features was selected. The
performance of the RF model was the best and included an input
group comprising six features: Ki-67, breast mass length, breast
mass width, PR value, visible tumor thrombus, final calcification
morphology (Table 2). Figure 3 shows the PCC and RF correlation
of these 6 characteristics. The Ki-67 expression and PR value are
genomic features and were positively related to the Miller-Payne
grading, and showed a high correlation with RF. Breast mass length,
breast mass width, visible tumor thrombus, and final calcification
morphology were the clinical features having high PCC and RFFII
scores, and produced a great influence on the prediction model.

Prediction Performances on Selected
Features
In the feature screening stage, the RF model was identified as the
final prediction model. We retrained the other three models and
evaluated their performance in comparison with the RF model
using the features after feature selection.

Table 3 shows the evaluation results of the RF, LG, SVM, and
CNNmodels after feature selection, and reports the respective ACC
scores 54.26, 47.62, 39.81, and 47.62% for each model. The RF
FIGURE 2 | Features related to NAC by Random Forest correlation.
TABLE 2 | Selected Features.

Feature label Numerical meaning

Ki-67 The higher the index, the more tumor cells are proliferating
and the higher the malignant process is

Breast mass width Width of breast tumor
Breast mass length Length of breast tumor
PR value Progesterone receptor value
Visible tumor
thrombus

Class 0: No visible tumor thrombus
Class 1: Tumor thrombus can be seen in vessels
Class 2: Tumor thrombus can be seen in the nerve
Class 3: The vessels and nerves were all visible

Final calcification
morphology

Class 1: Punctate calcification
Class 2: Cluster calcification
Class 3: Minute calcification
Class 4: Lineal calcification
January 2021 | Volume 10 | Article 592556
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model obtained the highest ACC, P, F1, R scores. The performance
of RF model significantly improved as a whole, while the
performances of the LG, SVM, and CNN models declined.

The RF model achieved the best score overall, thus we selected
the RF model as the prediction model to predict the NAC
outcomes. Our selection was supported by consulting the RFFII
index in the feature selection module. The application of the index
makes allows the RF model to eliminate some redundant features.
Our original dataset contained many clinical and genomic features,
while in the initial training stage, the models could not distinguish
which features were associated with Miller-Payne grading. In the
training process, the RF modelling generated different decision
trees according to the importance of the single features and then
output the optimal solution. Therefore, after removing redundant
features through feature selection, the performance of the RF
model was significantly improved.

The comparison of the evaluation curves of the 10-fold cross-
validation between the RF models for the original 26 features and
the selected 6 features is shown in Figure 4. The score of 10-fold
cross validation after feature selection generally rose, and the
performance of the prediction model improved substantially after
Frontiers in Oncology | www.frontiersin.org 7
feature selection. The model before feature selection achieved
49.45% of the ACC score, 48.94% of the precision score, 49.40%
of the recall score, and 48.04% of the f1-score. The samemodel after
feature selection achieved 54.26% of the ACC score, 53.76% of the
precision score, 54.22% of the recall score, and 53.39% of f1-score.

Case Studies
In order to represent the prediction ability, we randomly selected
4 cases from the four major categories of Miller-Payne grading in
our dataset, then 16 cases were input into the final prediction
model as an evaluation set, the corresponding results are listed in
Table 4. Fourteen of the 16 cases were correctly predicted, while
case 5 was mispredicted as grade level 4 instead of level 3, and
case 14 as level 5 instead of its true level 4. We will analyze these
two cases in detail. First, the feature PCC scores were calculated
for each of the cases using the 4 representative cases indicated
above in its truth category, and then using the averaged PCC
score was used to compare predicted values. In the resulting
output of the final predictions, case 5 obtained a score of 0.4347
in its truth grade level 3, but merely a score of 0.3591 in the
predicted grade level 4, a result which appeared to indicate that
FIGURE 3 | Selected feature attributions.
TABLE 3 | Prediction Performances on Selected Features.

Level 1 Level 2 Level 3 Level 4 Level 5 Weighted avg Accuracy

RF Precision 0 53.57% 52.46% 48.94% 66.67% 53.76% 54.26%
Recall 0 36.59% 64.00% 53.49% 66.67% 54.22%
F1-score 0 43.48% 57.66% 51.11% 66.67% 53.39%

LG Precision 0 50.00% 52.83% 45.83% 45.71% 48.40% 47.62%
Recall 0 36.59% 56.00% 51.16% 53.33% 48.40%
F1-score 0 42.25% 54.37% 48.35% 49.23% 48.23%

SVM Precision 0 42.11% 41.18% 41.67% 40.43% 40.90% 39.81%
Recall 0 19.51% 70.00% 11.63% 63.33% 40.36%
F1-score 0 26.67% 51.85% 18.18% 49.35% 35.83%

CNN Precision 0 11.11% 35.71% 46.67% 100.00% 46.76% 47.62%
Recall 0 11.11% 50.00% 53.85% 44.44% 40.48%
F1-score 0 11.11% 41.67% 50.00% 61.54% 40.96%
Januar
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case 5 was more similar to cases from level 3 in with regard to the
clinical data features. In contrast, case 14 was very similar to
cases in level 4 as we predicted, where the score value was 0.8969
compared to a score of 0.8539 in the truth grade level 5.

Although the PPC scores of the individual features could not be
used alone to determine a predicted value for each case, there were
also obvious differences among cases in the same grade category,
which is a common phenomenon in the clinical diagnostic setting.
The latter is an indication supporting the application of machine
learning models, which are able to discover inner laws from
unintuitive clinical data. Furthermore, from cases 5 and 14, the
modelling outcomes suggest that no one approach is able to
comprehensively evaluate NAC efficacy, there may be some
“fuzzy” zones in the evaluation similar to those observed in the
Miller-Payne grading system. Consequently, the duty of the
Frontiers in Oncology | www.frontiersin.org 8
corresponding prediction methods is to assist, but not make
the definitive clinical treatment decisions, namely, the predictions
of outcomes should be made to approach the true outcome but
should be accompanied by the accumulated clinical data for
each case.
CONCLUSION

We propose a practical breast cancer treatment efficacy prediction
tool forNACpatients. Twenty-six features were extracted from166
cases of real-life clinical data providedby the First BethuneHospital
of Jilin University, and ultimately 6 principle features were selected
using a feature selection process, which were finally used to
optimally construct the supervised prediction model using the
A

B

FIGURE 4 | Comparison of the performance of feature selection. (A) The 10-fold cross validation results, (B) the scores of the models.
TABLE 4 | Case Details.

Input Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ki-67 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
Breast mass length 2 30 10 25 3 60 30 30 0 10 0 20 70 30 70 85
PR value 2.9 5 3 3.2 4.7 4.3 1.45 3.45 1 2 3.5 1.58 0.8 2.9 4.84 4.8
Breast mass width 3 60 80 10 5 0 80 80 1 11 0 70 0 0 0 0
Visible tumor thrombus 1.3 2.3 1.4 2 2.8 2 0.84 1.6 1 1.5 3 1.32 0.5 2 1.33 3
Final calcification morphology 0 2 4 0 2 0 0 8 2 2 3 0 1 7 1 8
Miller Payne grading 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
Forecast results 2 2 2 2 4 3 3 3 4 4 4 4 5 4 5 5
Janu
ary 2021
 | Volum
e 10 | A
rticle 592
Bold values represent the cases which were mis-predicted by the model.
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Miller-Payne grading system as a NAC treatment evaluation tool.
Four different machine learning methods were testing in the study,
of which the Random Forest model proved to be the most
compatible with an average accuracy of 54.26%. As discussed in
the case studies, accuracy could not be considered a comprehensive
criterion in the clinical application given the complexity of each
case. Nonetheless, our method efficiently predicted outcomes of all
the cases that were similar to their true grade. Our findings suggest
this approach may provide an important contribution to the
decision-making process for the clinical treatment of breast cancer.
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