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Abstract

Interactions of proteins regulate signaling, catalysis, gene expression and many other cellular functions. Therefore,
characterizing the entire human interactome is a key effort in current proteomics research. This challenge is complicated by
the dynamic nature of protein-protein interactions (PPIs), which are conditional on the cellular context: both interacting
proteins must be expressed in the same cell and localized in the same organelle to meet. Additionally, interactions underlie
a delicate control of signaling pathways, e.g. by post-translational modifications of the protein partners - hence, many
diseases are caused by the perturbation of these mechanisms. Despite the high degree of cell-state specificity of PPIs, many
interactions are measured under artificial conditions (e.g. yeast cells are transfected with human genes in yeast two-hybrid
assays) or even if detected in a physiological context, this information is missing from the common PPI databases. To
overcome these problems, we developed a method that assigns context information to PPIs inferred from various attributes
of the interacting proteins: gene expression, functional and disease annotations, and inferred pathways. We demonstrate
that context consistency correlates with the experimental reliability of PPIs, which allows us to generate high-confidence
tissue- and function-specific subnetworks. We illustrate how these context-filtered networks are enriched in bona fide
pathways and disease proteins to prove the ability of context-filters to highlight meaningful interactions with respect to
various biological questions. We use this approach to study the lung-specific pathways used by the influenza virus, pointing
to IRAK1, BHLHE40 and TOLLIP as potential regulators of influenza virus pathogenicity, and to study the signalling pathways
that play a role in Alzheimer’s disease, identifying a pathway involving the altered phosphorylation of the Tau protein.
Finally, we provide the annotated human PPI network via a web frontend that allows the construction of context-specific
networks in several ways.
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Introduction

The advent of high-throughput techniques to measure and

perturb molecular species in a systematic way has enabled

researchers to assess the different layers of cellular metabolism

under different experimental conditions. Protein-protein interac-

tion (PPI) networks created by a variety of methods including

yeast-two-hybrid (Y2H), mass-spectrometry (MS) and computa-

tional predictions [1,2] are valuable research resources, and have

been used heavily in the last decade. However, a major drawback

of these data is that the artificial expression systems used to

reconstruct PPI networks do not take into account two of the many

factors that are essential to understand the biology of the cell: first,

the time-point at which the proteins are expressed (e.g., cell-cycle

or developmental stage) and second, the tissue or intracellular

compartment where the proteins are expressed or located

(different organs and tissues have very specific protein composi-

tions). Therefore, two proteins may be reported as interaction

partners, although they are expressed in different tissues or at

different time-points. While high-throughput studies acknowledge

these caveats, PPI databases collect these data without mecha-

nisms explicitly directed to discern the biological plausibility of a

reported interaction. Therefore, the selection of proteins expressed

in a specific cell type or compartment would allow the generation

of subnetworks that more realistically represent biological

processes in the respective cell types or cellular compartment.

Several attempts have been made to investigate the tissue-specific

binding behavior of single proteins and the spatio-temporal
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dynamics of PPI networks [3,4,5,6,7,8]. In a recent study evaluating

the characteristics of publicly available PPI databases, we demon-

strated that the use of subnetworks (which include only interactions

of proteins expressed in the same tissue) identifies potential

mechanisms or pathways that would remain obscured if the

complete PPI database was used [9].

In addition, many proteins have multiple functions, carried out

in cooperation with distinct sets of interacting partners. Networks

of interacting proteins with coherent function have been termed

context networks [10]. Here, we adopt this notion of context and

extend it to PPIs or networks of proteins being expressed in the

same tissue or cooperatively transmitting signal flow.

There is a lack of studies testing systematically the potential of

adding context information to PPI networks in recovering

meaningful PPI subsets and, although there are a few approaches

that allow to add expression or functional information to PPI data

[11,12,13], convenient methods for the creation of such context-

specific subnetworks are generally missing.

Here, we introduce an approach to add context to PPI networks

using annotations and relations between the interacting partners

and demonstrate that context-specific PPI networks are enriched

in high-confidence interactions. We use this approach to inves-

tigate how the proteins of the human influenza virus interfere with

the immune response of the host cell in a tissue-specific manner,

finding novel potential regulators of influenza virus pathogenicity,

and to study the brain-specific signaling pathways that play a role

in Alzheimer’s disease, identifying a pathway involving the altered

phosphorylation of the Tau protein. Thereby, we illustrate how

the addition of context to PPI networks can guide researchers in

the discovery of meaningful interactions and pathways, which

would otherwise be obscured by the vast amount of irrelevant (for

a specific question) and partly erroneous amount of PPI data.

Materials and Methods

Data sources
Our approach to add context-specific information to human

PPI data was implemented in the HIPPIE database [14]. HIPPIE

is an integrated PPI database that currently contains more than

101,000 interactions of ,13,500 human proteins. HIPPIE is

regularly updated by incorporating interaction data from major

expert-curated experimental PPI databases (such as BioGRID

[15], HPRD [16], IntAct [17] and MINT [18]) in an automated

manner using the web service PSICQUIC [19]. All interactions

have an associated confidence score based on the sum of cumula-

tive supporting experimental evidence.

Individual proteins were associated with tissues, subcellular

locations and biological processes in the following manner. First,

proteins were associated with tissues (based on their gene

expression profiles retrieved from BioGPS [20] and using the

method defined in [9]) or defined as housekeeping (using a list

from [21]). Next, associations with biological processes and

subcellular locations were determined according to the EBI Gene

Ontology (GO) annotation (release from October 28, 2011;

reduced to GO slim terms) [22], and to MeSH terms belonging to

‘‘Diseases’’ (class C) or ‘‘Tissues’’ (class A10) that annotate the

biomedical references associated to them in MEDLINE (release

2012; gene2pubmed at NCBI ftp site).

Context association
We associated an interaction with a tissue when both interactors

are expressed in the same tissue (e.g. ‘‘lung’’). Given a term of a

functional ontology, we associated an interaction with this function

when both interactors are annotated with either the given

functional term or with children of it in the hierarchy of the

ontology. For example, the GO term ‘‘transport’’ would be

associated with an interaction between a protein annotated as

involved in ‘‘vacuolar transport’’ and another protein annotated as

involved in ‘‘nucleocytoplasmic transport’’. Functional terms

considered were either GO terms or MeSH terms. We excluded

the rather unspecific top-level terms ‘biological process’, ‘cellular

component’ and ‘cell’. Additionally, we ignored categories that are

associated to less than 20 interactions.

Edge directionality
Our approach includes a method to infer directed PPIs. This

inference of interaction (edge) directionality needs sets of proteins

predefined as sinks and sources. As default sources and sinks, we

connected all proteins annotated with the GO terms ‘receptor’ and

‘sequence-specific DNA binding transcription factor activity’,

respectively, in the UniprotKB [23]. This is done assuming that

signal pathways follow the transmission of information through

interacting proteins starting in cell surface receptors that collect

external cues and ending in transcription factors as final effectors

on gene regulation, following [24]. To infer edge directionality, all

pairwise shortest paths between proteins of the source and the sink

sets present in the generated output network are calculated. We do

not consider edge weights and, hence we are able to determine

each shortest path in linear time via a breadth-first search. An edge

of the network is considered to be directed if at least one shortest

path goes through that edge. The direction of the path (from source

to sink) determines the direction of the edge. Edges with conflicting

orientations of passing paths are not assigned directionality.

Pathway enrichment analysis
For the evaluation of the influenza virus host factor network

generation we performed pathway enrichment analysis with

ConsensusPathDB (run on August 30, 2012; [25]). We used a

cut-off of 0.05 on the q-value, which is the false discovery rate

(FDR) adjusted equivalent to the p-value. The background control

for the tests was the complete list of proteins annotated as expressed

in the given tissues (and with PPI information in HIPPIE).

Author Summary

Protein-protein-interactions (PPIs) participate in virtually all
biological processes. However, the PPI map is not static
but the pairs of proteins that interact depends on the type
of cell, the subcellular localization and modifications of the
participating proteins, among many other factors. There-
fore, it is important to understand the specific conditions
under which a PPI happens. Unfortunately, experimental
methods often do not provide this information or, even
worse, measure PPIs under artificial conditions not found
in biological systems. We developed a method to infer this
missing information from properties of the interacting
proteins, such as in which cell types the proteins are found,
which functions they fulfill and whether they are known to
play a role in disease. We show that PPIs for which we can
infer conditions under which they happen have a higher
experimental reliability. Also, our inference agrees well
with known pathways and disease proteins. Since diseases
usually affect specific cell types, we study PPI networks
of influenza proteins in lung tissues and of Alzheimer’s
disease proteins in neural tissues. In both cases, we can
highlight interesting interactions potentially playing a role
in disease progression.

Meaningful PPIs Revealed by Protein Context
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Definition of up-regulated genes upon influenza
infection

We retrieved the preprocessed microarray data described in

[26] measuring gene expression changes over multiple time points

in a lung adenocarcinoma cell line (Calu-3) infected with influenza

A/Netherlands/602/2009 (H1N1). To select steadily up-regulated

genes we filtered for probes differentially expressed at the last three

time-points in the time series (30, 36 and 48 h) with a q-value less

than 0.01 and a log2 fold change greater than 1.

Literature mining protocol to obtain PPIs associated to
Alzheimer’s and protein phosphorylation

To generate a list of PPIs related to Alzheimer’s and protein

phosphorylation, first, we used the webserver MedlineRanker [27]

to retrieve a list of ranked PubMed abstracts (corresponding to

manuscripts published within the last 5 years) according to their

relevance to the search term ‘‘Alzheimer phosphorylation’’, which

relates loosely to the question of interest. Next, we input the top 50

abstracts from MedlineRanker into the webserver PESCADOR

[28], which extracts a network of potential PPIs based on a set of

PubMed abstracts. In our example, PESCADOR outputs 10

interaction pairs (type 2; co-occurrence of genes or proteins within

a sentence containing a biointeraction term), of which only 4 pairs

existed in HIPPIE as scored interactions (PSEN1:PSEN2,

GSK3B:MAPT, APP:BACE1, PPP2R4:SET). These confirmed

PPIs were then used as input for further analysis.

Results

Context-specific and directed PPI networks
We inferred context information for all interactions in the

human PPI database HIPPIE [14]. This database collects human

PPIs for which there is experimental evidence. The amount and

quality of the experimental evidence supporting each PPI is

evaluated with a confidence score that ranges from 0 to 1. In a first

step, we associated all 13,477 proteins in HIPPIE with the

following attributes: tissue-expression, GO biological process and

cellular compartment, and inferred annotations for the MeSH

categories disease and tissue. We then inferred context associations

to the PPIs according to the annotations of the interacting proteins

and taking into account the hierarchical structure of GO and

MeSH terms (see Materials and Methods for details).

By assuming that a large fraction of signaling events transmits

information from proteins sensing environmental changes to

effector proteins altering the cellular state, we computed shortest

paths from membrane-bound receptors to transcription factors

(TF) through the network. From the predicted information flow we

assigned edge directionality to interactions on these paths (see

Materials and Methods for details).

Overall, we were able to associate context to more than 97,000

of the 101,131 interactions of the current version of HIPPIE.

Interactions for which we inferred or collected annotations had

significantly better experimental evidence (Figure 1A). This

suggests that annotated interactions might have higher biological

significance than non-annotated ones.

As expected, we observed that more specific context categories

were associated to interactions with higher experimental reliability:

while the confidence scores of interactions with rather unspecific

and ubiquitous terms resemble the overall confidence score

distribution, interactions with highly specific terms usually have

a higher than average confidence score (Figure 1B-C). For

example, the 43,372 interactions associated with the GO category

‘cytoplasm’ (of depth 1 in the GO hierarchy) have an average

confidence score of 0.675 as compared the average of 0.670 over

all interactions. On the other hand, the 159 interactions associated

with the (depth 3) GO category ‘ribonucleoprotein complex

assembly’ have an average confidence score of 0.754. We observed

a similar tendency for more specific MeSH terms to have a higher

experimental reliability.

To demonstrate that our automated context association approach

allows identification of relevant interactions, we tested if networks of

interactions of our inferred MESH-based disease-annotation are

enriched in well-known disease proteins. Therefore, we repeatedly

generated disease-context networks around a set of canonical disease

proteins. As a canonical disease protein specification, we retrieved

the manually curated UniProt Knowledgebase disease protein

annotation. For each of the canonical disease proteins, we gene-

rated two types of networks: (a) disease networks consisting only of

interaction partners of the disease proteins that we had associated

with the equivalent MeSH disease term and (b) unfiltered PPI

network consisting of all interaction partners of the disease protein

from HIPPIE. We did this for all disease proteins where the disease

was associated with at least two disease proteins in UniProt and at

least two interactions that we had associated with this disease. To

quantify the enrichment of disease proteins in these networks we

repeatedly calculated the F1 score, the harmonic mean of precision

and recall (F1 = 2*precision*recall/(precision+recall)). A one-sided

Mann-Whitney-test comparing the distribution of F1 scores between

the disease networks and the non-filtered networks indicated that the

F1 scores for the disease networks were significantly larger (p,0.05)

proving an enrichment of disease proteins in the disease filtered

networks (without losing sensitivity by removing disease proteins in

the filtering step). The mean precision on the filtered networks was

0.47 and on the unfiltered networks 0.21. The mean recall for the

filtered networks was 0.14 and for the unfiltered networks 0.15. This

illustrates that in exchange for a small decrease in recall the precision

can be more than doubled by applying the MeSH disease filter.

We then investigated the potential of edge directionality infer-

ence based on the shortest paths between membrane-bound

receptors and TFs through the PPI network to recover known

pathways. We retrieved pathway annotations (extracted from

WikiPathways download March 29, 2012) and computed the

shortest paths through HIPPIE between all pairs of receptors and

TFs within the same pathway (excluding only pairs that directly

interact or could not be connected by any path). We counted the

number of proteins of each pathway found on the shortest paths.

We found for 3163 of the 5063 pairs that this approach correctly

identified proteins of the selected pathway. The mean precision

(the fraction of proteins on the paths that indeed belonged to the

correct pathway) over all combinations of receptors with

transcription factors was 0.20. The mean recall (the fraction of

the pathway that was recovered by considering the paths between

one receptor and one transcription factor) was 0.02.

To assess if the agreement between shortest paths and canonical

pathways was larger than expected by chance, we generated a

background distribution by computing repeatedly the shortest paths

between a receptor and a TF from different pathways and

computed the overlap between the proteins on the shortest paths

to either the TF- or the receptor-containing pathway. We found that

the overlap distribution was significantly higher when the receptor

and the TF were members of the same pathway (p,0.001; Mann-

Whitney-test) proving the potential of shortest paths to recover the

signal flow between TFs and receptors when functionally related

pairs of receptors and transcription factors are chosen.

We wondered if we could further increase the overlap between

the shortest paths and the canonical pathways by filtering the

networks for tissue expression. To associate pathways with tissues,

we determined for each pathway which tissues were enriched

Meaningful PPIs Revealed by Protein Context
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Figure 1. Experimental reliability of annotated PPIs. (A) All 101,131 PPIs in HIPPIE are scored according to their associated experimental evidence
with a value that ranges from 0 to 1 and increases with the quality and amount of experimental evidence reported in PPI databases [14]. We were able to
infer context to a fraction of interactions according to: GO terms biological process (BP) and cellular component (CC), MeSH terms (subcategories disease
and tissue) and tissue or housekeeping expression. The numbers in the bars indicate the mean experimental score of the non-annotated fraction (above,
black font) and of the annotated fraction (below, white font), respectively. All mean-score differences between annotated and not annotated interactions
were significant (p,0.001; Mann-Whitney-test). (B–C) Box plots visualizing the distribution of experimental scores of PPIs associated with GO (left) and
MeSH (right) term categories. (B) The scores for GO and MeSH terms decreased generally for less specific terms (the only exception was GO terms depth 2,
which was associated with interactions of a lower mean confidence as compared to GO terms depth 1). (C) GO and MeSH terms were subdivided in
quartiles according to the number of interactions annotated for each category. The scores decreased for terms associated to higher numbers of interactions.
doi:10.1371/journal.pcbi.1002860.g001

Meaningful PPIs Revealed by Protein Context
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among the genes of the pathway (Supplementary Table S1 lists

pathway that are associated to more than 2-fold enriched tissues).

Inspection of the tissues enriched among proteins forming a

pathway revealed that in many cases they indeed reflect plausible

locations for pathway activity. For example, immune response

pathways were enriched among blood cells and pathways asso-

ciated with neurodegenerative diseases and addiction in brain-

related tissues.

We repeated the computation of shortest paths linking receptors

to transcription factors in tissue-specific networks for combinations

of pathways and tissues listed in Supplementary Table S1 and for

all pairs of receptors and transcription factors that were expressed

in the respective tissue. Indeed, we observed an increase of the

mean precision to 0.24, which indicates that we could increase the

amount of meaningful interactions by additionally filtering for

tissue expression. The recall remained low (at 0.03), which is not

surprising since many pathway-related proteins were not present

in the considered tissue-specific networks and, hence, could not be

detected. Again, the amount of pathway proteins on the tissue-

specific shortest paths between receptors and TF from the same

pathway was significantly larger as compared to shortest paths

between receptors and TF from different pathways (p,0.05).

To further investigate if the described context-associations can

help to extract pathway information from networks, we compared

the frequency of protein pairs being member of the same pathway

(as defined by WikiPathways) among tissue-specific PPIs (both

proteins where required to be co-expressed in at least one tissue)

and compared this frequency to PPIs between proteins that are not

expressed in the same tissue. We observed that interacting protein

pairs that are expressed in the same tissue are indeed more likely to

be in the same pathway as compared to interacting protein pairs

that are expressed in disjoint sets of tissues (p,0.001). This, again,

demonstrates that the annotations have captured properties

related to pathways and suggests that the filtering helps revealing

pathway information.

In the next sections we use the context-associated PPI network

to obtain novel insights into the mechanisms of human disease: we

perform a targeted study of the PPI network surrounding the

human proteins that interact with influenza virus proteins to find

potential regulators of viral pathogenicity, and we explore the

question of whether and how altered protein phosphorylation

might be a cause of Alzheimer’s disease.

Context-specific subnetworks of influenza virus host
factors identify known disease pathways and suggest
novel pathogenesis mechanisms

We analyzed PPI data of human proteins that interact with

influenza virus proteins. Influenza viruses infect bronchial

epithelial tissue and many cell types in the lung, sometimes

resulting in viral pneumonia [29]. We started by obtaining a list of

87 human proteins that have been shown to interact with at least

one influenza virus protein in a previous study [30]. From this list,

we observed that 23 proteins were expressed in bronchial epithelial

tissue (BET), in whole lung, or in both tissues - we refer to these

proteins as first layer host factors. We created the second layer by

filtering tissue-specific proteins (expressed in BET or whole lung)

that interact with members of the first-layer (Figure 2A). Together, the

first and second layers compose the tissue-specific PPI subnetworks.

Next, we identified known pathways enriched in the BET- and

lung-specific PPI subnetworks, and found both similarities and

differences in the cellular functions of each (see Materials and

Methods for details on the enrichment analysis and a full list of

enriched pathways in Supplementary Table S2). Both subnetworks

showed enrichment for processes related to programmed cell

death and eukaryotic translation. These results are consistent with

functions known to be activated or disrupted by influenza virus

infection [31,32,33]. In addition, proteins in the BET subnetwork

exhibited a stronger signature in processes involved with trans-

criptional regulation, sumoylation, and the regulation of mRNA

stability (in particular, the stability of AU-rich element-containing

mRNAs). Although these processes tend to be associated with

general housekeeping functions, we point out that many cytokine

and interferon mRNAs contain AU-rich elements [34]. This

observation suggests, hypothetically, that influenza virus proteins

may function to dysregulate cytokine mRNA stability in BET, a

function that could impact influenza virus pathogenesis through

modulation of immune cell infiltration and function. In relation to

sumoylation, it has been noted recently that influenza virus can

gain protein functionality during infection by interacting with the

sumoylation system of the host cell [35]. On the other hand, the

lung subnetwork was uniquely enriched for processes related to

cell-substrate adhesion (pathway ‘‘signaling events mediated by

focal adhesion kinase’’). Because cell adhesion is important for

maintaining cellular viability and epithelial barrier function, it is

possible that influenza virus protein-mediated interference with

this process could impact both the amount of virus-inflicted

damage upon the lung and dissemination of influenza virus into

extra-pulmonary sites.

Cells respond to influenza infection by producing cytokines and

chemokines [36,37], while viral proteins counteract this innate

immune response. One example of a viral protein that directly

interferes on the protein level with cellular immune pathways is

NS1 (its involvement in immune response suppression is reviewed

in [38]). Here, we noted that the lung PPI subnetwork – which was

centered on viral protein-host protein interactions – was enriched

for several curated pathways involving Toll-like receptor (TLR)

and IL-1 receptor (IL-1R) signaling (e.g., ‘‘TLR JNK’’, ‘‘TRAF6

mediated IRF7 activation in TLR7/8 or 9 signalling’’, ‘‘IL-1

JNK’’, ‘‘TLR ECSIT MEKK1 JNK’’ and ‘‘IL1-mediated

signaling events’’). Although these pathways are expected to be

activated in response to viral infection, no previous study has

identified any role for any influenza virus protein in perturbing

TLR or IL-1R signal transduction. Several host proteins were

consistently observed in most/all of the enriched TLR/IL-1R

pathways from the influenza PPI lung subnetwork, including

IRAK1, TOLLIP and MyD88. Under normal conditions, the

IRAK1 kinase associates with TOLLIP (an inhibitory molecule),

and upon receptor stimulation, IRAK1 is recruited to the TLR/

IL1R-receptor complex through its interaction with MyD88

(reviewed in [39]). Recruitment results in activation of IRAK1

kinase activity and subsequent activation of MAP kinase pathways,

NF-kB-dependent gene expression and interferon a induction.

Altogether, these observations suggest the novel possibility that

influenza virus proteins interfere with TLR/IL-1R signaling in

lung – possibly by accessing a critical regulator of TLR/IL-1R

signal transduction (i.e., IRAK1) – an observation that may have

implications for the regulation of pathogenesis associated with

influenza virus infections.

A recent study demonstrated that signaling through the IL-1

receptor has a protective effect in mice infected with the pandemic

1918 influenza virus [40]. Another study reported that IL-1

receptor-deficient mice succumbed more easily than wild-type

mice to infection with an H5N1 virus of low pathogenicity (A/

Hong Kong/486/1997) [41]. Moreover, IL-1 receptor-deficient

mice showed reduced inflammatory pathology upon infection with

A/Puerto Rico/8/34 (H1N1) influenza virus [42]. Several studies

also established that influenza virus infection is sensed by TLR7 in

plasmacytoid dendritic cells [43,44,45,46,47,48]. However, none

Meaningful PPIs Revealed by Protein Context

PLOS Computational Biology | www.ploscompbiol.org 5 January 2013 | Volume 9 | Issue 1 | e1002860



Figure 2. Tissue-specific PPI subnetwork of human proteins interacting with influenza virus proteins. (A) Influenza proteins (red)
interact with 23 ‘first layer’ host proteins (blue). These first layer proteins have interaction partners that are specific for the bronchial epithelial tissue
(BET) subnetwork, for the lung subnetwork or are shared between both subnetworks (all in green). Details of the genes in this figure are given in a

Meaningful PPIs Revealed by Protein Context
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of these studies addressed the significance of IRAK1 in influenza

virus pathogenicity. Our study thus exemplifies how our network

analysis can identify potential regulators of influenza pathogenicity

for experimental testing, for example, by assessing influenza virus

infections in IRAK1-deficient cells or mice.

Next, we aimed to predict more specific novel interference

mechanisms by constructing directed and tissue-specific protein

networks linking the viral proteins with proteins whose correspond-

ing transcript was up-regulated after influenza virus infection. We

selected steadily up-regulated transcripts from a microarray experi-

ment measuring gene expression changes over time in a lung

epithelial cell line infected with a 2009 pandemic H1N1 virus [26]

(228 transcripts were selected in total; see Materials and Methods

for more details). As expected, all ten most strongly enriched known

pathways among the selected transcripts were involved in infection

and the immune response. For example, the most highly overrep-

resented pathway was interferon alpha-beta signaling (p,10e-20).

We constructed BET- and lung-specific networks connecting

the viral proteins with the 228 up-regulated factors by shortest

paths. From the shortest paths we assigned directions to the edges

on these paths. The directed networks consisted of 577 (BET) and

1056 (lung) PPIs. To examine if these networks might reveal

relevant information on how viral proteins interfere with the

cellular immune response, we tested for enrichment of known

pathways in the directed networks. We found that the directed

networks were strongly enriched in immune response-related

pathways (especially cytokine-related) even after excluding the 228

up-regulated transcripts, indicating that enrichment was indepen-

dent of the high fraction of immune response factors in the

transcriptomics data (Supplementary Table S3). For example, we

observed a significant enrichment in both the directed BET- and

lung-specific networks for proteins related to IL-2 and IL-6

signaling and focal adhesions (q-values,0.05). This suggested that

we, indeed, might have captured relevant crosstalk between the

viral proteins and immune pathways. The full networks are

included in the File S1.

To mine the directed networks for interactions that are involved

in interference mechanisms of the viral proteins with the cellular

immune response, we concentrated, again, on layer one and two

host factor proteins on the shortest paths. From the list of curated

pathways enriched in both the BET and the lung directed

networks (Supplementary Table S3), we selected several cytokine-

related pathways (marked in Supplementary Table S3) and filtered

for interactions where the second layer protein was in one of these

pathways but the layer one protein was not (to specifically detect

novel, indirect interference mechanisms). This resulted in a

comprehensive BET network consisting of 49 interactions and a

lung network formed by 67 interactions including viral proteins

and host factors up to layer two (see Supplementary Table S4 for

the comprehensive networks and Figure 2 for a manually curated

subset of these networks).

Close inspection of these comprehensive cytokine-related net-

works in both BET and lung revealed several points of potential

viral protein-mediated interference with inflammatory pathways

(Figure 2). For example, the BET network showed interactions

between viral polymerase complex proteins (i.e., PB1 and PB2)

and BHLHE40, a transcriptional regulator that cooperates with

HDAC1 to repress STAT1 activity [49] (Figure 2B). STAT1 is

essential for the activation of interferon stimulated genes, which

repress viral replication, and while influenza virus has an established

ability to impair STAT1 [50], no such function has been assigned to

any of the viral polymerase complex subunits. BHLHE40 also

interacts with TOLLIP, a suppressor of TLR signaling [51] (see also

the discussion of lung-specific inflammatory pathways above). This

implies that the BHLHE40 protein could act as an important access

point for influenza virus-mediated interference with host antiviral

and inflammatory regulation in BET, and further that viral

polymerase subunits may have an important – yet unappreciated

– role in this activity.

As in BET, lung-specific cytokine-related networks revealed that

influenza virus proteins interface with TOLLIP (Figure 2C).

However, it is notable that, in lung, this interaction occurs through

BHLHE40 and two additional routes (i.e., MAGED1 and

RBPMS), potentially involving up to four viral proteins: (i) the

aforementioned polymerase complex subunits, PB1 and PB2; (ii)

the viral ion channel protein, M2; (iii) and the viral RNA-binding

nucleoprotein, NP. Thus, access to TOLLIP might be particularly

important in lung. The PB1/PB2-BHLHE40 interaction is

maintained in this tissue type, although the nature of the inter-

action may differ compared to BET. Specifically, BHLHE40 may

favor interaction with STAT3 (Figure 2C), and previous evidence

indicates that BHLHE40 stimulates STAT3 activity rather than

inducing inhibition [52]. Thus, analysis of context-specific PPIs –

in combination with influenza virus-induced changes in the

cellular transcriptome – reveal important, putative tissue-specific

differences in the ability of viral proteins to interact with cellular

immune response signaling networks. Additional experiments will

be necessary to further establish the functions of these interactions.

Search for phosphorylation-dependent PPIs related to
Alzheimer’s

Assuming no prior expert knowledge on a given topic, we

applied a systematic protocol which can, in principle, be used to

interrogate the PPI network about the involvement of protein

interactions in a complex biological question according to current

knowledge. In general, altered states of protein phosphorylation

affect the PPI network and can lead to pathogenesis. Our goal in

this example was to investigate the possible role of protein

phosphorylation in Alzheimer’s disease (AD), the most common

form of dementia. AD is a degenerative disease manifesting in the

brain, and its cause has been hypothesized to be the formation of

protein aggregates leading to neuron death, in particular related to

the abnormal phosphorylation of the microtubule-associated

protein tau [53].

First, we need to input a list of proteins related to the topic.

Using a literature mining protocol (see Materials and Methods for

details) we generated a list of PPIs related to Alzheimer’s and

protein phosphorylation: PSEN1:PSEN2, GSK3B:MAPT, APP:-

BACE1, and PPP2R4:SET. We then studied the network

surrounding these interactors (Figure 3).

The initial PPI network contained 727 interactions (Figure 4A).

Interactions could be further filtered on the basis of reasonable

criteria, namely by tissue filtering for housekeeping and genes

Cytoscape file (File S1). (B and C) Mini-networks for BET (B) and lung (C) were created from tissue-specific protein networks linking viral proteins to
host proteins whose transcript was up-regulated after influenza virus infection (for a complete list of interactions, see Supplementary Table S4). Viral
protein nodes are shown in red, first layer host interactors in blue and second layer host interactors in green. The STAT1 protein (shown in (B) as the
white node) was not one of the original network-derived nodes, but was included due to its association with two other network nodes (BHLHE40 and
HDAC1) and its known role in mediating inflammation in response to viral infection. General functions associated with different areas in each mini-
network (e.g., ‘Inflammation’ and ‘Focal adhesions’) are described by partially transparent colored boxes in both (B) and (C).
doi:10.1371/journal.pcbi.1002860.g002
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expressed in the brain (we selected ‘‘whole brain’’ and ‘‘prefrontal

cortex’’), and filtering for genes related to the GO term ‘‘cell

death’’, reflecting that AD is characterized by death of neural cells

(Figure 4B). Finally, to reveal potential signal transduction

pathways we used the inference of edge directionality from

receptors to TFs described above (Figure 4B).

Within the resulting network, we highlighted the following path

(Figure 4): LRP6-GSK3B-MAPT-AATF. The low density lipo-

protein receptor-related protein 6 (LRP6) interacts with glycogen

synthase kinase 3B and attenuates the kinase’s ability to

phosphorylate microtubule associated protein tau (MAPT) [54].

Tau protein can contribute to AD in different ways: 1) the

hyperphosphorylation of tau protein can affect microtubule

stability, leading to a disassociation of tau protein from the

microtubule, possibly followed by the aggregation of phosphory-

lated tau into neurofibrillary tangles, which are observed in the

brains of AD patients [55]; 2) mediated by protein phosphatase 1

and GSK3 activity, Tau filaments interfere with axonal transport

in the neuron, which is consistent with deficiencies in axonal

transport in AD [56]. Tau protein has been found to co-localize in

the cytoplasm with Che-1 (AATF), which is an evolutionarily

conserved RNA polymerase II binding protein that accumulates in

the cell upon DNA damage [57]. It appears that Che-1/Tau

proteins dissociate during neuronal cell death [58]; however, the

function of Che-1 in the cytoplasm is unclear, as Che-1 is a nuclear

protein that is involved in gene regulation of E2F1 targets and p53

and has pro-proliferative and anti-apoptotic functions [59].

Together, these interactions suggest a complex interplay whereby

the Tau phosphorylation state and structure, and context-

dependent protein distribution within the cell may contribute to

neuronal cell death and AD pathology. An unbiased search for

protein phosphorylation in relation to cell death in AD pointed us

to this interesting pathway.

Discussion

The incorporation of tissue-specific expression information to

create PPI subnetworks is a useful method to elucidate biological

processes that cannot be observed when using the complete PPI

network. Here we have shown an approach for the inference of

associated context for PPIs based on the annotations of the inter-

acting partners, which enhances the relevance of the annotated

interactions. Interactions between proteins expressed in the same

location (e.g. lung) or at the same time or developmental stage (e.g.

embryo development) can then be selected. Directed pathways can

be inferred and highlighted in the filtered network according to

sets of sources and sinks corresponding to receptors and trans-

cription factors. Using this approach we were able to identify novel,

tissue-specific interactions between influenza virus proteins and

cellular inflammatory signaling pathways that may regulate patho-

genesis associated with infection, and to describe a brain-specific

protein phosphorylation pathway relevant for Alzheimer’s disease.

Several methods exist to create subnetworks of the human

interactome based on context criteria. For example, POINeT [11]

integrates the major PPI databases and allows the creation of

tissue-specific networks. To our knowledge we are the first to

combine edge directionality, gene expression and functional

information for the detection of meaningful interactions. Some

approaches exist that infer information flow in a network from the

shortest paths (or ‘lowest costs’ if costs are associated with edges)

Figure 3. Protocol for extraction of a PPI subnetwork related to phosphorylation in Alzheimer’s disease. The flowchart illustrates the
input terms and options used to generate a topic-focused PPI subnetwork. Eight genes were selected as a result of an unbiased literature mining query for
proteins related to Alzheimer’s disease (AD) and phosphorylation (see main text for details). The PPI network of first neighbours of these genes in HIPPIE was
generated. Then, filters were applied to focus on a PPI subnetwork or proteins expressed in the brain and related to cell death, thus relevant to AD.
doi:10.1371/journal.pcbi.1002860.g003
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that connects a set of source nodes with sink nodes. Cytoscape

plug-ins such as BisoGenet [60] and GenePro [61] find the

shortest paths between nodes of the gene and protein network and

represent properties of the nodes. SPIKE [62] includes curated

pathway data and also calculates pathway inference. The task of

identifying signaling events from PPI data and functional protein

annotation alone has been addressed in several studies [24,63,64]

and implemented in tools (e.g. ANAT [65]). Here, we proposed a

protocol for edge directionality prediction based on calculating the

shortest paths between sources and sinks. This protocol is runtime-

efficient, which allowed us to provide it as a web tool that is the

first to combine both PPI analysis for inference of edge

directionality and PPI filtering by tissue and function (available

from http://cbdm.mdc-berlin.de/tools/hippie/).

In summary, we have presented and made available an

approach to associate context to PPI networks, which provides

novel biological insight into mechanisms of disease. The continuing

generation of PPI data and further incorporation into databases,

and an increasing quality of annotations attached to genes and

proteins will result in further improvements of our methodology.

Supporting Information

File S1 Network of first and second layer host factors (Figure 2A)

in Cytoscape format.
(ZIP)

File S2 Directed BET and lung specific networks connecting first

layer viral interactors with upregulated host proteins in Cytoscape

format. In the directed network, sources and sinks are color

encoded (viral are red and upregulated proteins brown). Cytokine-

related proteins are shown as circles.
(ZIP)

Figure 4. Filtering and highlighting a PPI subnetwork related to phosphorylation in Alzheimer’s disease. A PPI network was generated
as explained in Figure 3 starting with 8 genes relevant for Alzheimer’s disease (AD) and phosphorylation. (A) The PPI network contains 727
interactions. (B) Filtering for interactions between partners that are housekeeping or expressed in the brain (‘‘whole brain’’ and ‘‘prefrontal cortex’’),
relate to the GO term ‘‘cell death’’, and with experimental scores above 0.5, results in a much more focused subnetwork involving 6 of the 8 genes
used as input (octagonal nodes). Nodes corresponding to receptors and transcription factors are colored (blue and pink nodes, respectively). Edge
directed path analysis from receptors to transcription factors resulted in the association of directionality to some of the edges (arrows). The path
LRP6-GSK3B-MAPT-AATF is highlighted in green and described in the text.
doi:10.1371/journal.pcbi.1002860.g004
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Table S1 Tissues more than two-fold enriched among proteins

in pathways.

(XLS)

Table S2 Pathways enriched in first and second layer influenza

host factor networks.

(XLS)

Table S3 Pathways enriched among directed networks connect-

ing viral proteins with gene products upregulated upon influenza

infection.

(XLS)

Table S4 Comprehensive BET and lung PPI networks connect-

ing viral proteins with cytokine-related second layer proteins on

shortest paths between viral proteins and gene products upregu-

lated upon influenza infection.

(XLS)
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