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We present Nubeam (nucleotide be a matrix) as a novel reference-free approach to analyze short sequencing reads.

Nubeam represents nucleotides by matrices, transforms a read into a product of matrices, and assigns numbers to reads

based on the product matrix. Nubeam capitalizes on the noncommutative property of matrix multiplication, such that dif-

ferent reads are assigned different numbers and similar reads similar numbers. A sample, which is a collection of reads, be-

comes a collection of numbers that form an empirical distribution. We demonstrate that the genetic difference between

samples can be quantified by the distance between empirical distributions. Nubeam includes the k-mer method as a special

case, but unlike the k-mer method, it is convenient for Nubeam to account for GC bias and nucleotide quality. As a refer-

ence-free approach, Nubeam avoids reference bias and mapping bias, and can work with organisms without reference ge-

nomes. Thus, Nubeam is ideal to analyze data sets frommetagenomics whole genome shotgun (WGS) sequencing, where the

amount of unmapped reads is substantial. When applied to a WGS sequencing data set to quantify distances between meta-

genomics samples from various human body habitats, Nubeam recapitulates findings made bymapping-based methods and

sheds light on contributions of unmapped reads. Nubeam is also useful in analyzing 16S rRNA sequencing data, which is a

more prevalent type of data set in metagenomics studies. In our analysis, Nubeam recapitulated the findings that natural

microbiota in mouse gut are resilient under challenges, and Nubeam detected differences in vaginal microbiota between

cases of polycystic ovary syndrome and healthy controls.

[Supplemental material is available for this article.]

When identifying variants is not amust and the primary interest is
to quantify genetic differences between samples (Ravel et al. 2011;
Nayfach and Pollard 2016), it can be beneficial to analyze short se-
quencing reads without reference genomes. First, it avoids refer-
ence bias and mapping bias. Both biases can be mitigated but
never overcome because they are intrinsic to the mapping-based
approach. Second, it avoids uncertainty related to variant calling,
particularly when the sequencing coverage is low. Third, it be-
comes possible to analyze organisms that have no reference ge-
nomes or the reference genomes are incomplete or of low quality.

The prominent reference-free approach is the k-mer method
(Jiang et al. 2012; Subramanian and Schwartz 2015; Lu et al.
2017b). Simply put, the k-mer method calculates the frequency
of each k-mer (k consecutive nucleotides) in all reads froma sample
and computes differences between samples by comparing k-mer
frequencies. In practice, however, the k-mer method has several
limitations. For example, choosing k can be a challenge—a too
small or too large k will make the k-mer frequencies less informa-
tive. More importantly, some pairs of k-mers only differ by one nu-
cleotide and other pairs of k-mers differ by k nucleotides, but it is
difficult to account for such differences in the k-mer method.
Last but not least, how to account for GC bias is an unmet chal-
lenge for the k-mer method.

We present a novel method, Nubeam (nucleotide be a
matrix), that includes the k-mer method as a special case but with
several key advantages.Nubeamcanaccount for nucleotidequality
and GC bias, and its computation is efficient. As a reference-free
method, Nubeam is particularly suitable to analyze whole genome

shotgun (WGS) sequencing data inmetagenomics, because it is the
norm that a large percent of the shotgun sequencing reads cannot
be mapped to reference genomes (Supplemental Fig. S1).

Though recent studies improved mapping rates for gut
(Almeida et al. 2019; Nayfach et al. 2019; Pasolli et al. 2019) and
other well-studied human body habitats (Pasolli et al. 2019), the
mapping rate remains low for other environments like soil and sea-
water (Nayfach et al. 2016).

We applied Nubeam to analyze WGS reads from the Human
Microbiome Project (HMP) (The Human Microbiome Project
Consortium 2012), and our main objective was to understand
how the unmapped reads affect the genetic distance estimates be-
tween samples. The majority of the available microbiome data are
16S rRNA sequencing (usually V3/V4 hypervariable regions) in-
stead of WGS. To demonstrate Nubeam’s utility analyzing 16S
rRNA sequencing data, we applied Nubeam to analyze a mouse
gutmicrobiota 16S data set (Rosshart et al. 2019) and a human vag-
inal microbiota 16S data set in a recent case control study (Hong
et al. 2020).

Results

Nubeam

Weassume each sample is a collection of reads of the same length l,
and each read consists of 4 nt, A, T, C, and G, and possibly an un-
known nucleotide denoted by N.We first construct four binary se-
quences from a read by using each of the 4 nt as a reference, with
the reference nucleotide being 1 and the others 0. (Note that our
representation allows us to mask a low-quality nucleotide to N to
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account for nucleotide quality.) We use a matrixM1 = 1 1
0 1

( )
to

represent 1, and its transpose M0 = 1 0
1 1

( )
to represent 0. For

each binary sequence B= b1b2…bl, we obtain the product matrix

MB = Pl
j=1Mbj . (When B is an alternating sequence 101010… ,

the entries in MB are entries in a Fibonacci sequence.) Let W be a
weight matrix, we designate log (tr(WMB)) as the Nubeamnumber

to the binary sequence B. (Here, we useW = 1
��
3

√��
2

√ ��
5

√
( )

, and this

choice is explained further below.) Thus, for each read, we obtain
fourNubeamnumbers (Nubeamquadruplet) that jointly represent
the read (Fig. 1A).

For each sample, a collection of reads becomes a collection of
Nubeam quadruplets. These quadruplets define a four-dimension-
al empirical distribution, and the genetic distance between two
samples can be quantified by the distance between the two empir-
ical distributions. We obtain a histogram estimate for each collec-
tion of quadruplets (Supplemental Material and Methods) and
calculate the Hellinger distance between probability mass func-
tions (Methods).Wewill show that theNubeamHellinger distance
highly correlates with the genetic distance between two samples.

Nubeam capitalizes on the noncommutative property of ma-
trix multiplication, so that if two reads differ, their Nubeam qua-
druplets differ. More importantly, if two reads are similar (e.g.,
with small Hamming distance), their Nubeam quadruplets are
close to each other. To demonstrate this through simulations, we

first simulated binary sequences of
length 100. For each sequence, we intro-
duced SNV by flipping the digit at 1 or 3
or 10 or 50 random positions to obtain
mutant sequences. We also introduced
indels to the original sequences by insert-
ing or deleting a segment of lengths of 1
or 3 or 10 or 50. Figure 1, B and C, plots
Nubeam numbers of original binary se-
quences (x-axis) versus mutant sequenc-
es (y-axis) with different numbers of
SNVs or different lengths of indels.
Indeed, similar sequences tend to have
similarNubeamnumbers. This “continu-
um” property is important as it is the
foundation for the usefulness of the
Nubeam representation. The effective-
ness of quantitative treatments, includ-
ing controlling for GC bias and
histogram estimates for empirical distri-
butions, implicitly depends on the con-
tinuum property.

The usefulness of amethod depends
on how effectively it handles the known
artifacts (Benjamini and Speed 2012;
Guo et al. 2012) due to shotgun sequenc-
ing technology in real data. One major
artifact in sequencing is strand bias
(Guo et al. 2012), where one strand may
be sequenced in a much higher propor-
tion than the other. Here, we provide a
simple solution to account for strand
bias. For a read R, we obtain its reverse
complement U, andwe compute quadru-
plets for both R andU for building an em-
pirical distribution. The other major
artifact in sequencing is the GC content
bias, mainly due to the intrinsic property
of the polymerase chain reaction (PCR),
leading to the phenomenon that some
stretches of nucleotides are more likely
to be sequenced than others, depending
on the GC content (Benjamini and
Speed 2012). We control for GC bias by
regressing out GC counts or proportions
from each quadruplet using a simple lin-
ear regression, treating read as the unit of
observation (Fig. 1D). We found it more

B

A

C

D

Figure 1. Nubeam assigns numbers to reads. (A) Illustration of how to obtain Nubeam quadruplet for a
read. Convert a read to four binary sequences (indicated by the on/off power symbol), turn each binary se-
quence intoaproductmatrix, andobtainanumber fromeachproductmatrix. (B,C) Similarbinarysequences
produce similar numbers. For each simulated binary sequence of length 100,we obtained sequences with 1
or 3 or 10or 50 randomSNVs, or sequenceswith 1- or 3- or 10- or 50-bp indels, and compared theNubeam
numbers of original sequences with those of mutant sequences. (D) Regressing out GC content from
Nubeam numbers of binary sequences; data comes from mapped reads of HMP sample SRS019215. Left:
With A as reference (T as reference is similar). Right: With C as reference (G as reference is similar).
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effective to perform regression jointly over all samples, instead of
one sample at a time. After GC is regressed out, the residuals are
used to define empirical distributions to quantify genetic distances
between samples.

Nubeam distance reflects genetic distance

We first demonstrate that Nubeam distance correlates well with
the genetic distance in a three-taxa setting (Fig. 2A,B). Let a star
tree have three leaf nodes and the inner node is seeded with a sub-
strain of Escherichia. coli. Taxa S1 and S2 have equal branch lengths
that correspond to 1×10−5 mutations per site per cell division.We
varied the branch length of taxa S3, with the correspondingmuta-
tion rate ranging from 1×10−5 to 1×10−3 per site per cell division.
In perspective, two phenotypically similar E. coli strains from dif-
ferent environments differ by about 1000 nt (Swick et al. 2013),
which corresponds to a mutation rate of 1 × 10−4. This simulation
setup produces varying genetic distances between S3 and S1/S2
with fixed distance between S1 and S2 as a baseline. We then sim-
ulated genomes of S1, S2, and S3 using iSG (Strope et al. 2006) un-
der the general time reversible (GTR) substitution model (Tavaré
1986; Setti et al. 2012). For each simulated genome, we produced
75-bp error-free reads using a sliding window. The simulations
were replicated 100 times. Figure 2A plots the true genetic distance
(measured by the Hamming distance normalized by the genome
size) versus inferred Nubeam distance, and the Spearman’s
rank correlation between the Nubeam distance and genetic dis-
tance is 0.999.

Next, we demonstrate that true phylogenies could be recon-
structed using Nubeam distance. We simulated sets of sequencing
reads using eight-taxonomic-unit trees (Supplemental Material
and Methods), computed Nubeam distance between each pair of
taxa to reconstruct the phylogenetic tree, and assessed the accura-
cy of phylogeny reconstruction by comparing the inferred tree
with the true tree (Chan et al. 2014). We used six combinations
of internal and terminal branch lengths of 1 ×10−5 and 5×10−5

to represent different degrees of genomic difference and different
levels of difficulties for phylogeny inference (Supplemental Fig.
S2). For each of the 100 replicates of a tree, hierarchical clustering
was applied on the Nubeam distance matrix to reconstruct the
phylogeny. The reconstructed phylogenies were compared with

the true trees using Compare2Trees (Nye et al. 2005), and
Nubeam perfectly reconstructed phylogeny for each of 100 repli-
cates for all six generating trees. When applied to complete ge-
nomes of bat betacoronavirus and the newly identified
pandemic coronavirus strain SARS-CoV-2, Nubeam clustered the
virus according to subgenera, correctly grouped human SARS
and MERS coronavirus with the closest bat strains at the genome
level (Hu et al. 2015), and recapitulated the findings that the ge-
nome of bat coronavirus RaTG13 is highly similar to that of
SARS-CoV-2 (Supplemental Fig. S2; Zhou et al. 2020).

We further demonstrate that the Nubeam distance correlates
well with composition-based dissimilarities using synthetic com-
munities. We generated synthetic communities composed of 10
equidistant or unequal-distant E. coli strains at different complex-
ity levels (Fig. 3A,B); the pair-wise Nubeam distance correlates well
with Bray-Curtis dissimilarity or weighted UniFrac distance
(Lozupone et al. 2007) even at a high level of complexity (Fig.
3B). The k-mer frequency-based method (Lu et al. 2017b) and ref-
erence-based method (Lu et al. 2017a) are not as effective as
Nubeam (Supplemental Fig. S3), presumably because Nubeam ac-
counts for similarities between k-mers. Further, Nubeamconsumes
<20% of CPU time compared to the k-mer method (Supplemental
Table S1).

Nubeam controls for GC bias

Based on the E. coli genome, we simulated 15 samples without GC
content bias and 30 samples withGC content bias, 10 for each bias
scheme. The bias schemes are detailed in theMethods section, and
the severity of the GC bias in each schedule can be observed in
Figure 4A. These three schemes reflect typical GC bias patterns ob-
served in libraries of human whole genome sequencing data
(Benjamini and Speed 2012; Xu et al. 2018). These bias schemes
are intrinsic to the shotgun sequencing technology so that they
also apply to libraries of mouse and bacteria. Let d0 represent the
Nubeamdistance between two sampleswithoutGC bias; let db rep-
resent Nubeam distance between a sample without GC bias and a
sample with GC bias without controlling for GC bias; and let dc
represent Nubeam distance between a sample without GC bias
and a sample with GC bias but controlling for GC bias. To see
the effectiveness of Nubeam controlling for GC bias, we compared

rb = (db − d0)/ d0 with rc = (dc − d0)/ d0
both visually and numerically (Fig. 4B–
D). The GC biases were reduced effective-
ly in all three simulatedGCbias schemes.

Nubeam includes the k-mer method as a

special case

We first show that if two binary seq-
uences are different, then their cor-
responding product matrices differ
(Proposition 1). By definition of

M0 = 1 0
1 1

( )
andM1 = 1 1

0 1

( )
, a ma-

trix right multiplying anM0 is to add the
second column of the matrix to the first,
and right multiplying anM1 is to add the
first column to the second. Thus, for a
given product matrix, one can solve for
the binary string using the following al-
gorithm. Let the binary string be b1b2…
bl. Compare the columns of the product

BA

Figure 2. Nubeam Hellinger distance correlates well with genetic distance. (A) Hamming distance (x-
axis, normalized by genome size) versus Nubeam Hellinger distance (y-axis). (B) The squared Hellinger
distance (y-axis) appears to be linear with the Hamming distance (x-axis).
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matrix, pick the large column (whose entries are numerically not
less than the corresponding ones of the other); if it is the first col-
umn, then bl=0 and if it is the second, then bl=1. Subtract the
small column from the large column to obtain a new matrix, let
l decrease by 1 and repeat the procedure. Because the algorithm
is deterministic, the solution must be unique. Thus, two different
binary sequences must correspond to two different product
matrices.

Let F andG be twomatrices whose entries are integers, and re-

call W = 1
��
3

√��
2

√ ��
5

√
( )

, then tr(WF) = tr(WG) if and only if F=G

(Proposition 2). This is true because any entry in 1,
��
2

√
,

��
3

√
,

��
5

√{ }
is not a linear combination of the other three entries with rational
coefficients (Boreico 2008).

If two reads aredifferent, thenat leastonepairof binary strings
(among four such pairs) is different, and consequently (by
Proposition2), these twobinary strings get assigneddifferent num-
bers. Thus, if two reads are different, then the two quadruplets are
different, and vice versa. In other words, k-mer has a one-to-one
correspondence with the Nubeam quadruplet. When we use each
unique quadruplet as a bin to compute distance between empirical
distributions, then the practice is equivalent to the k-mer method
(see Supplemental Material and Methods for more details).

Compared with Nubeam, the k-mer method is rather primi-
tive; it has difficulty in controlling for GC bias, it disregards the dif-

ferent degree of similarities among k-mers, and its computation
becomes difficult rather quickly as k increases.

Nubeam analyzing WGS sequencing data

Nubeam is ideal in analyzing metagenomics WGS sequencing
data, simply because about half of reads cannot be mapped any-
where in more than 3000 microbial reference genomes. We ana-
lyzed 690 HMP (The Human Microbiome Project Consortium
2012) phase I samples collected from seven body habitats (ex-
cluding a habitat called “other oral”). HMP performed quality
control and removed human sequence contamination; HMP
then aligned reads passing a low-complexity filter to reference ge-
nomes (https://www.hmpdacc.org/HMREFG/), with an average of
57% of reads mapped per sample (SEM 13%), but mapping rates
vary for samples from different body habitats (Supplemental Fig.
S1). The inadequacy of the reference genomes and mapping bias
both contribute to the high percentage of unmapped reads
(Nayfach and Pollard 2016). We would like to mention here
that the most recent de novo assembly resulted in 29.14% and
26.40% increases in mappability on average for gut and oral hab-
itats, respectively (Pasolli et al. 2019). We split each sample
(whole sample) into mapped reads (mapped pseudosample) and
unmapped reads (unmapped pseudosample). Our analysis has
two aims: whether we can recapitulate the findings made by

B

A

Figure 3. Nubeam Hellinger distances correlate well with composition-based dissimilarities among synthetic communities. We generated four sets of
synthetic communities; each set contains 15 samples composed of 10 taxonomic units. The relative abundances of taxonomic units in each sample follow
Dir(α1×10), with α being 1 and 10 in A and B, respectively, controlling for the complexity of the community. The relationship among the taxonomic units is
shown in the star tree, with branch lengths of either 1 × 10−4 or 2 × 10−4. Each sample has 50 million 75-bp reads. The 105 pair-wise Nubeam distances
were calculated among the 15 samples. The significance of linear relationship is measured by R2 and P-value for regression coefficient.
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the mapping-based method through analyzing mapped reads us-
ing Nubeam; and whether Nubeam enables the unmapped reads
to provide additional information.

Nubeam within-sample diversity

We used the second moment of Nubeam numbers of a sample to
quantify within-sample diversity (see Methods). To validate our
definition of Nubeam within-sample diversity, we simulated a
mixture of two bacteria species (E. coli and Proteus mirabilis) by
mixing reads at various mixing proportions. The inferred within-
sample diversities reflected our intuition that the intermediate
mixing proportions led to higher within-sample diversity than ex-
treme mixing proportions (Supplemental Fig. S4).

We further simulated 10-species communities (Supplemental
Table S2) and compared our definition of Nubeam within-sample
diversity with reference-based alpha diversity measures such as an
inverse Simpson’s index and Shannon index. Communities with a
smaller inverse Simpson’s index and Shannon index generally
have smaller Nubeam within-sample diversity; however, commu-
nities with the same inverse Simpson’s (or Shannon) index can
have divergent Nubeam within-sample diversities (Supplemental
Table S3). This is because the Nubeam within-sample diversity of
a community takes into account within-sample diversities of
each component (Supplemental Fig. S5) and the relatedness (or
similarity) between components, whereas the reference-based al-
pha diversity measures are oblivious to these factors.

We quantified Nubeam within-sample diversities of mapped
and unmapped pseudosamples. Being able to quantify within-
sample diversity of unmapped pseudosamples is a strength of
Nubeam. For mapped pseudosamples, oral and gastrointestinal
habitats have highwithin-sample diversity, whereas skin and vagi-
na have low within-sample diversity (Fig. 5)—the ranking of with-
in-sample diversity by body habitats is largely consistent with that
in a published study of HMP (The Human Microbiome Project
Consortium 2012). For unmapped pseudosamples, the within-
sample diversity is generally higher thanmapped ones, particular-
ly for nasal and urogenital samples (Fig. 5); the ranking by body
habitats is also different from mapped ones.

Nubeam between-sample diversity

In metagenomics literature, the beta-diversity measures the differ-
ence of microbial compositions between two samples. Here, we
used Nubeam distance to quantify beta-diversity between a pair
of samples and examined beta-diversity estimates using hierarchi-
cal clustering. In parallel, we applied UMAP (McInnes et al. 2018)
for nonlinear dimensionality reduction and visualization to exam-
ine beta-diversity estimates (Supplemental Fig. S6). UMAP cluster-
ing corroborates hierarchical clustering on big pictures, but for
finer details such as outliers, we trust hierarchical clustering over
UMAP.

We first examined the beta-diversity of mapped pseudosam-
ples (Fig. 6A). The primary clustering is by body habitats, with

BA
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Figure 4. The effect of controlling for GC content bias in Nubeam. (A) GC content (x-axis) versus bin coverage (y-axis) to demonstrate patterns of GC bias
for three simulation schemes, with LOESS curve marked in blue. Recall that rb = (�db − �d0)/ �d0 and rc = (�dc − �d0)/ �d0 measure relative differences before
and after controlling for GC bias, respectively. (B) rc=2.4% after controlling for GC bias versus rb=50.7% before controlling for GC bias for simulation
scheme 1. (C ) rc=7.1% after controlling for GC bias versus rb=78.2% before controlling for GC bias for simulation scheme 2. (D) rc =4.9% after controlling
for GC bias versus rb=38.6% before controlling for GC bias for simulation scheme 3.
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gastrointestinal, oral, and urogenital samples well separate. Skin
samples intermingle with a subset of nasal samples. Within the
oral cavity, samples from supragingival plaque clearly separate
from those frombuccalmucosa and tongue dorsum, and a portion
of buccal mucosa samples intermingle with tongue dorsum sam-
ples. These results are comparable with published studies of the
same data sets using mapping-based methods (The Human
Microbiome Project Consortium 2012).

We then examined the beta-diversity of unmapped pseudo-
samples (Fig. 6B). The overall clustering pattern still follows the
body habitats. The most striking difference is that the urogential
samples intermingle with the nasal samples, which is also evident
in Supplemental Figure S6B. For each body habitat, we used
Mantel’s test to compare the distance matrices calculated using
mapped pseudosamples with those calculated using unmapped
pseudosamples. We found nonsignificant correlation for vagina,
and significant yet moderate correlations for the rest of the body
habitats (Supplemental Table S4), revealing the necessity to study
the contribution of unmapped reads in metagenomics studies.
Lastly, we examined the beta-diversity of whole samples. Figure
6C shows that the clustering of whole samples is also by body hab-
itats, which largely agrees with those of mapped pseudosamples.
Noticeable differences do exist, however, presumably due to un-
mapped reads. For example, there are only two outliers for skin
in mapped pseudosamples, but eight outliers for skin in whole
samples. For another example, one gastrointestinal outlier among
mapped pseudosamples (marked with an asterisk in Figure 6A),
which distinguishes itself by its unusually high contents (7.5%)
of pathogen Shigella spp., is no longer an outlier among whole
samples. Finally, one skin outlier is clustered with oral mapped
pseudosamples, likely due to its 46.1% of Finegoldia magna, an op-
portunistic pathogen that can be found in skin, oral, gastrointesti-
nal, and urogenital habitats (Rosenthal et al. 2012), and its
corresponding whole sample is still an outlier but with a new
companion.

It is worth noting that nasal samples have been reported to
bridge skin and oral samples in ordination analysis using 16S
rRNA sequencing data (The Human Microbiome Project
Consortium 2012); our analysis shows that, for both mapped
and unmapped pseudosamples and whole samples, it is supragin-
gival plaque samples but not buccal mucosa or tongue dorsum
samples that are close to nasal samples (Fig. 6; Supplemental
Figs. S6, S7).

Urogenital (vaginal) samples

There are four urogenital outliers in the mapped pseudosamples
(Fig. 6A). To make sense of these four samples, we compared the
clustering with the taxonomic compositions of all urogenital sam-
ples (Methods). Figure 7 demonstrates that the clustering is in con-
cordance with their taxonomic compositions and abundances. In
particular, two outlier samples have almost no Lactobacillus bacte-
ria but instead have high proportions of anaerobic Gardnerella and
Atopobium bacteria; the other two outlier samples contain large
proportions of Bifidobacterium bacteria (10% and 31% for the
two samples, respectively), in addition to high proportions of
Lactobacillus gasseri.

Vaginal microbiomes are known to have simple taxonomic
compositions dominated either by a single Lactobacillus species
or by strictly anaerobic bacteria (Ravel et al. 2011; Romero et al.
2014). However, our analysis suggests that might be true only for
mapped pseudosamples, as the unmapped urogenital pseudosam-
ples have extraordinarily high Nubeam within-sample diversities.
We thus performed de novo assembly using state-of-the-art meta-
genomics assembler metaSPAdes (Nurk et al. 2017) for all un-
mapped reads to produce contigs (minimum length 228 bp) and
remapped reads to contigs. To our surprise, 54% of the reads fail
to be remapped, indicating that they are isolated reads; 27% of
reads can bemapped to contigs with null BLAST results, indicating
that they are from unknown organisms; only 19% of reads can be

Figure 5. The Nubeam within-sample diversity of the whole sample, mapped, and unmapped pseudosamples for each body habitat. The rankings for
the Nubeam within-sample diversity of different body habitats are shown at the bottom; the rankings in the published study (The Human Microbiome
Project Consortium 2012) of the same data set using mapping-based methods are shown at the top.
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mapped to contigs from known microorganisms (according to
BLAST results). De novo assembly using MEGAHIT (Li et al.
2015) produced qualitatively similar results with metaSPAdes
(Supplemental Table S5). These results suggest that the sequencing
depths for vaginal samples in HMP are far from sufficient, and the
composition of the vaginalmicrobiomeneeds to be further studied
using WGS with sufficient sequencing depths.

Nubeam analyzing 16S rRNA sequencing data

The 16S rRNA sequencing data is more abundantly available than
WGS data in current microbiome studies. By design, 16S rRNA se-
quencing data is more suitable for mapping-based methods. To
demonstrate that Nubeam is also useful in analyzing 16S rRNA se-
quencing data, we analyzed two sets of 16S rRNA sequencing data.

Mouse gut microbiota samples

In a recent study (Rosshart et al. 2019),
mice of the same genetic background
but with different gut microbiota states
—natural or conventional laboratory—
were subjected to antibiotic, dietary,
and microbial challenges. We recapitu-
lated the findings in the original study
(Rosshart et al. 2019) that natural micro-
biota are resilient against these challeng-
es, whereas conventional laboratory
microbiota are not (Fig. 8A–D). Our anal-
ysis also produced some interesting and
novel findings. First, for the antibiotic
challenge (Fig. 8A), the change of gut
microbiota of Taconic laboratory and
wildling mice are highly consistent at
the end of antibiotic treatment, whereas
microbiota of Jackson Laboratory mice
change little comparatively. However,
during the recovery period, the micro-
biota of both Taconic and Jackson Labo-
ratory mice differ greatly from that of
wildling mice, though there is a tenden-
cy of reverting back to normal. Second,
for microbial challenge through cohous-
ing, the gut microbiota of wildR mice are
indeed resilient (Fig. 8C,D); however, gut
microbiota of some laboratory mice ap-
pear to be as resilient as that of wildR
mice, as can be seen for two Taconic lab-
oratory samples (Fig. 8C) and one Jack-
son Laboratory sample (Fig. 8D).

Human vaginal microbiota samples

In a recent study (Hong et al. 2020),
vaginal microbiota samples were col-
lected from 39 individuals newly diag-
nosed with polycystic ovary syndrome
(PCOS) and 40 healthy control in-
dividuals. First, we performed permuta-
tion multivariate analysis of variance
(PERMANOVA) (McArdle and Anderson
2001) based on a Nubeam distance
matrix and found significant (P-value =

8.59×10−3 under 105 permutations) association between vaginal
microbiota and case control status. Second, we performedmultidi-
mensional scaling (MDS) for the Nubeam distance matrix. A logis-
tic regression shows significant association between the top six
principal coordinates, which account for 60.55% of variation,
with the case control status (P-value =9.19× 10−4). There is a signif-
icant difference (Kruskal–Wallis test P-value =9.44 ×10−7) between
case and control groups in the predicted probability of a sample be-
ing a PCOS case (Supplemental Fig. S8A). Third, hierarchical clus-
tering of samples based on the Nubeam distance matrix shows
visibly recognizable clustering of samples according to PCOS status
(Supplemental Fig. S8B). To summarize, using Nubeam we con-
firmed the association between vaginal microbiota and PCOS dis-
covered in the original study using mapping-based methods
(Hong et al. 2020).

C

A

B

Figure 6. Hierarchical clustering (Ward’s minimum variance method) of mapped pseudosamples (A),
unmapped pseudosamples (B), and whole samples (C), respectively. If a sample is marked by ∗ in A, then
its corresponding whole sample is again marked by ∗ in C. For a selected pair of subclusters, we used a
Kruskal–Wallis test to check whether there is a significant difference between within-group distances
and between-group distances for the pair of subclusters.
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Discussion

Wepresented a novel reference-free approach, Nubeam, to analyze
short sequencing reads. Nubeam can account for strand bias and
GC bias when quantifying genetic distance between samples.
We showed that the k-mer method is equivalent to a special case
of Nubeam, without its ability to account for GC bias. We demon-
strated its usefulness by applying Nubeam to analyze both WGS
and 16S rRNA sequencing data sets.

Our analysis sheds new light on the HMP WGS sequencing
samples in several aspects. First, similar to the clustering of
mapped pseudosamples, the clustering of unmapped pseudosam-
ples is also dominated by the body habitats; however, the moder-
ate or even nonsignificant correlations between distance matrices
calculated usingmapped andunmappedpseudosamples indicate a
different within-habitat sample relationship using different sets of
reads. Second, the clustering differences betweenmapped pseudo-
samples and whole samples do exist, and they are best represented
by outlier samples of particular body habitats. Third, analysis of
the unmapped reads suggests that the sequencing depths for vag-
inal samples are far from sufficient, and deeper sequencing might
challenge the current belief that vaginal microbiomes have simple
taxonomic compositions. A limitation of our analysis, as pointed
out by one reviewer, is that we used the same reference database
asHMP,whichdoes not reflect themost recent progress in the field
(Almeida et al. 2019; Nayfach et al. 2019; Pasolli et al. 2019). We
note, however, reference bias and mapping bias are intrinsic to
the mapping-based approaches, and both biases can be mitigated
but never overcome.

We also demonstrated that Nubeam is useful for analyzing
16S rRNA sequencing data, even though, by design, the 16S data
is more suitable for mapping-based method. Our analysis recapit-
ulates findings that mouse natural microbiota are resilient against

challenges, whereas conventional laboratory microbiota are not.
However, our analysis also revealed that the gut microbiota of
some laboratory mice can be as resilient as those of wild mice (nat-
ural microbiota) in cohousing experiments. The analysis demon-
strates that Nubeam can gain novel insights that are
undetectable by other reference-free methods (Callahan et al.
2016; Rosshart et al. 2019). Using the 16S rRNA sequencing data
set from a case control study, wewere able to detect the significant
association between the Nubeam pairwise distancematrix and the
case control status.

The unmapped reads from WGS sequencing are more prone
to artifacts produced in DNA handling and sequencing. Since
Nubeam is a reference-free approach, we paid extraordinary atten-
tion to guard against possible artifacts. We performed additional
quality controls on sequencing reads andmade an effort to remove
human contamination by removing reads that can be mapped to
the human reference genomes. Yet, it was still possible—although
not probable—that the unmapped reads were a mixture of micro-
bial reads and human reads from complex genomic regions, large
structural variations, and population-specific sequences, regard-
less of how small the proportion of human reads. The clustering
of unmapped pseudosamples, which largely agrees with that of
mapped pseudosamples, reassured us that our additional quality
control procedure was effective, and our novel insights based on
unmapped reads were not driven by data artifacts.

To remove human contamination, we used human reference
genome hg19 (out of convenience) instead of a newer version
hg38.We argue that using hg38 will not significantly affect our re-
sults of decontamination, for two reasons. First, hg19 is a compre-
hensive mapping target for human reads: 99.92% of reads from a
human sequencing sample could be mapped to the hg19 primary
assembly (Schneider et al. 2017). Second, hg38 adds the modeled
centromere, 261 scaffolds of alternate loci, gaps closure by WGS

Figure 7. Hierarchical clustering (Ward’s minimum variance method) of vaginal samples using a Nubeam distance matrix is consistent with community
state types defined by relative abundances of microbial taxa. The heat map was generated using relative abundances of microbial taxa, with only the most
abundant ones chosen. The four outlier samples described in the main text are marked by ∗.
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contigs, and CHM1 BAC clones (Schneider et al. 2017); many of
the new sequence additions were already represented in the hu-
man sequences in the NCBI Nucleotide Collection, which was
used in addition to hg19 to remove possible human contamina-
tion (Methods).

Many aspects of Nubeam invite continuing investigations.
One possibility is to design bettermatrices to represent nucleotides
for specific applications. For example, we discovered that the ma-
trix format of quaternion performs better in certain simulations.
Another possibility is the computation. For example, computing
Nubeam Hellinger distance between two (four dimensional) em-
pirical distributions may be made more effective via shrinkage
density estimates (Ma 2017). Other areas of further investigation
include accounting for GC bias and sequencing error.

Controlling for GC content bias is the key advantage of
Nubeam, and such control is mandatory in real sequencing data
analysis. The downside for correcting GC bias is that it may dimin-
ish the difference between samples when such a difference is cor-
related with GC content. We propose the following approach to
mitigate the adverse effect of controlling for GC content bias: par-
tition the Nubeam quadruplets into bins according to the GC

counts of the corresponding reads; for each GC bin, compute
pair-wise distance between samples after controlling for GC bias,
and then take a weighted sum of distances from difference bins.

The “continuum” propertymakes themethodmore robust to
sequencing error. Moreover, we can take advantage of theNubeam
representation to explicitly account for sequencing error.
Specifically, if the base quality score is lower than a designated
threshold, we mask it with “N”. When the low quality nucleotide
happens to be an error, only one Nubeam number in a quadruplet
would be changed, whereas a sequencing error in the read affects
twoNubeamnumbers in a quadruplet. Thus, themaskingwillmit-
igate the effect of sequencing errors.

We believe Nubeam can find itself in a broad range of appli-
cations. One application we recently developed is to perform reads
deduplication before mapping (Dai and Guan 2020). Since a
unique read is assigned a unique quadruplet, the deduplication
can be done efficiently. Another possible application is to identify
sequences that contribute to the difference between sequencing
samples of different states, as a distribution of Nubeam numbers
of a sample can be viewed as a mixture distribution with compo-
nent distributions of different weights. Nubeam can be effective

BA

C D

Figure 8. Natural micemicrobiota are resilient against interruptions, including (A) antibiotic challenge, (B) high fat dietary challenge, and (C,D) microbial
challenge through cohousing, whereas conventional laboratory mice microbiota are generally not. Samples at the beginning and the end of experiments
are annotated by convex hulls.
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in some areas where the k-mer approach is useful, such as charac-
terizing protein binding motif (Newburger and Bulyk 2009), CpG
island by the flanking regions (Chae et al. 2013), and sequence fea-
ture for haplotype grouping (Navarro-Gomez et al. 2015), analyz-
ing RNA-seq data to gain novel insights on new exons and
splicing isoforms (Bray et al. 2016; Audoux et al. 2017), and even
detecting genetic associations (Rahman et al. 2018).

A recent study suggested that environment, not genetics, pri-
marily shapes the host microbiome composition (Rothschild et al.
2018). Through quantifying microbiome difference between sam-
ples, Nubeam can be used to quantify the environmental factors to
facilitate the study of gene × environment interactions for many
phenotypes such as diabetes and obesity (Li 2019). Finally,
Nubeam enables us to study the contribution of unmapped reads
to the genetic distance between samples. Using WGS sequencing
for human subjects, Nubeam has the potential to investigate
whether, and to what extent, the unmapped reads can contribute
to explain the “missing heritabilities” (Maher 2008).

Methods

Controlling for GC bias

TheGC content bias is amajor sequencing artifact that leads to the
dependence between regional coverage and GC content. When
the signal of interest is the abundance of reads originating from
certain genomic regions, GC content bias is a confounding factor.
We correct the GC content bias at the read level by regression. We
fit the standard linear regression model yi=Xβ+ ε, where yi is an n
×1 matrix of numbers assigned to reads by Nubeam, X is an n×3
matrix of AT-count andGC-count of reads including a columnvec-
tor of 1, β is a 3 ×1 vector of corresponding regression coefficients
including the intercept, and ε is an n×1 vector of residuals. The re-
siduals are then assigned to reads.

Simulating GC content bias

We simulated sequencing samples with GC content bias using the
followingmethod (Benjamini and Speed 2012). For a position x on
the genome, the number of the 75-bp read originating from x to be
sampled follows Pois(λ), where λ is the expected count for the read.
Denote the GC content (ranging from 0 to 1) of the 200-bp frag-
ment originating from x as gc. When there is no GC content
bias, λ=1 regardless of the value of gc; when there is GC content
bias, λ is determined by the Gaussian function λ= a exp(− (gc−
b)2/2c2) (Frampton and Houlston 2012). We simulated three
schemes of GC content bias: a=1, b=0.5, c=0.2 for scheme 1;
a =1, b=0.6, c=0.3 for scheme 2; a= 1, b=0.4, c=0.3 for scheme
3. These three schemes reflect typical GCbias patternswe observed
in human WGS sequencing data.

Quantifying Nubeam within-sample diversity

Let X, an n ×4 matrix, be a collection of quadruplets. Define
Σ = XTX, and perform eigen-decomposition for Σ. The Nubeam
within-sample diversity can be quantified as the sum of eigenval-
ues (each eigenvalue is nonnegative).

Distance between two empirical distributions

Let X and Y be two collections of quadruplets. We divided
samples into bins and obtained {xj} and {yj} as probability mass
functions for X and Y, respectively. The Hellinger distance is de-
fined as H =

���������������
1−∑

j
����
xjyj

√√
. A detailed algorithm to partition

bins in a balanced manner can be found in Supplemental
Material and Methods.

Human Microbiome Project WGS samples

We downloaded BAM files of 754 WGS samples from http://
hmpdacc.org/HMSCP/ and extracted reads using SAMtools (Li et
al. 2009). For a sample to be included in the study, it had to pass
the QC procedure described in http://hmpdacc.org/hmp/
HMASM/, which leaves us with 690 samples. Five samples had cor-
rupted files and were removed. We further removed 29 samples
from body habitat “other oral” and analyzed a total of 656 samples
from seven body habitats. We deduplicated reads by an in-house
software based on Nubeam numbers of reads. Deduplicated reads
were then mapped to human reference genome hg19 and human
sequences from the NCBI Nucleotide Collection (https://www
.ncbi.nlm.nih.gov/nucleotide/) (downloaded on June 7, 2019) by
BWA (Li and Durbin 2009) to remove human sequence contami-
nation. The hierarchical clustering (Ward’s minimum variance
method) was presented using ggtree (Yu et al. 2017) in R (R Core
Team 2018).

Clustering of vaginal samples

For the 56 urogenital (vaginal) samples, we applied hierarchical
clustering (Ward’s minimum variance method) on the Nubeam
distance matrix. The heat map of relative abundances of microbial
taxa was generated using data from Kraal et al. (2014), with the
abundance tables of each sample downloaded from http://
hmpdacc.org/HMSCP/. The abundances of strains in each sample
were estimated by the product of breadth and depth of coverage,
and relative abundances were obtained by normalization, as de-
scribed in Kraal et al. (2014). The relative abundances of species
were calculated by adding up the relative abundances of strains be-
longing to the same species, while the relative abundances of gen-
erawere calculated similarly. The selected strains/genera each have
a cumulative relative abundance of more than 1×10−3 across 56
samples; and for each sample, their abundances account for
more than 99.9% of overall abundance. Lactobacillus has all the
species listed, whereas other genera only have their genera names
listed. The hierarchical clustering and heat mapwere presented us-
ing heatmap.2 in R (R Core Team 2018) packagegplots.

Mouse 16S rRNA sequencing samples

We downloaded 16S rRNA hypervariable region V4 sequencing
data of mouse gut microbiota samples from the NCBI BioProject
database (https://www.ncbi.nlm.nih.gov/bioproject/) under ac-
cession number PRJNA540893 and extracted reads using fastq-
dump.Wemerged the PE reads into a single one and then removed
the primers from both ends of the merged read using
AdapterRemoval (version 2.3.1) (Schubert et al. 2016).We generat-
ed the Nubeam quadruplets for sequences defined by a window of
50 bases slid along a merged read with a step of one base. The GC
content was regressed out using the logarithm of AT and CG per-
centages in the merged read. Multidimensional scaling was ap-
plied on Nubeam distance matrices; the resulted first two
principal coordinates were plotted against each other.

Human vaginal 16S rRNA sequencing samples

We downloaded 16S rRNA hypervariable regions V3–V4 sequenc-
ing data of human vaginalmicrobiota samples from figshare (https
://figshare.com/s/e56859e336e71ecc2867). We merged the PE
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reads into a single one and then removed the primers from both
ends of the merged read using AdapterRemoval. We generated
the Nubeam quadruplets for sequences defined by the first 400
bases of merged reads. The GC content was regressed out using
the logarithm of AT and CG percentages in the merged read. To
quantify the association between beta-diversity and PCOS status,
PERMANOVA was performed using adonis in R (R Core Team
2018) package vegan (version 2.5-5) (https://rdrr.io/cran/vegan/).
Multidimensional scaling was applied on the Nubeam distance
matrix; a logistic regression model based on the resulted first six
principal coordinates was built.

Software availability

Nubeam source code is available on both GitHub (https://github
.com/daihang16/Nubeam) and Supplemental Code.
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