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A B S T R A C T   

Coronavirus disease 2019 (COVID-19) is a current pandemic, and studies reported that older people have higher 
rates of infection and more severe cases. Recently, studies have revealed the involvement of both genetic and 
exposure factors in the susceptibility of COVID-19. However, the correlation between them is still unclear. Thus, 
we aimed to investigate the correlation between genetic and exposure factors associated with COVID-19. We 
retrieved the information of 7362 participants with COVID-19 testing results from the UK Biobank. We identified 
genetic factors for COVID-19 by genome-wide association studies (GWAS) summary analysis. In this study, 21 
single-nucleotide polymorphisms (SNPs) and 15 exposure factors [smoking, alcohol intake, daytime dozing, body 
mass index (BMI), triglyceride, High Density Lipoprotein (HDL), diabetes, chronic kidney disease, chronic liver 
disease, dementia, atmosphere NO2 concentration, socioeconomic status, education qualification, ethnicity, and 
income] were found to be potential risk factors of COVID-19. Then, a gene-exposure (G × E) association network 
was built based on the correlation among and between these genetic factors and exposure factors. rs140092351, 
a SNP on microRNA miR1202, not only had the most significant association with COVID-19, but also interacted 
with multiple exposure factors. Dementia, alcohol consumption, daytime dozing, BMI, HDL, and atmosphere NO2 
concentration were among most significant G × E interactions with COVID-19 infection (P = 0.001).   

1. Introduction 

Coronavirus disease 2019 (COVID-19) is a current pandemic caused 
by a positive-sense RNA virus named the severe acute respiratory syn
drome coronavirus 2 (SARS-CoV-2)(Zhu et al., 2020). Patients infected 
with COVID-19 might develop acute respiratory distress syndrome, have 
a high likelihood of admission to intensive care, and might die.(Huang 
et al., 2020) In addition, COVID-19 has a very dynamic structure and 
spreads rapidly. As of Jul 29, 2020, approximately 16.5 million cases 
and 655,112 deaths have been confirmed worldwide (WHO, 2020). 
Human genetic and exposure factors may contribute to the extremely 
high transmissibility of SARS-CoV-2 and to the relentlessly progressive 
disease observed in a small but significant proportion of infected in
dividuals; yet, these factors are largely unknown. Development of new 
preventive and/or therapeutic strategies for COVID-19 will be greatly 
facilitated by systematic identification of exposure factors and gene 
polymorphisms which modulate the risk of infection and severe illness. 

Recently, studies have focused on the characteristics(Lescure et al., 
2020; Liu et al., 2020; Shereen et al., 2020), epidemiology(Bi et al., 
2020; Zhai et al., 2020; Zhang, 2020), and genomic characterization 
(Devaux et al., 2020; Ellinghaus et al., 2020; Ovsyannikova et al., 2020) 
of COVID-19 infection. These studies reported that older people have 
higher rates of infection and more severe cases. Hou et al. investigated 
genetic susceptibility to COVID-19 by examining DNA polymorphisms in 
ACE2 and TMPRSS2 from ~81,000 human genomes, found that ACE2 or 
TMPRSS2 DNA polymorphisms were likely associated with genetic 
susceptibility of COVID-19, calling for a human genetics initiative for 
fighting the COVID-19 pandemic(Hou et al., 2020). However, little is 
known about the correlation between the genetic and exposure factors 
associated with the infection of COVID-19. 

We hypothesized the existence of nonrandom correlation among and 
between the genetic and exposure factors associated with COVID-19, 
based on which an association network of these factors can be built. 
Then, by examining whether a person fit into such association network 
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“pattern” could provide us a more comprehensive assessment of the 
risks, susceptibility, and treatment responses of COVID-19, and improve 
our understanding on the etiology of the disease. Thus, in the present 
study, we aimed to investigate the correlation of genetic and exposure 
factors associated with COVID-19 in middle-aged and elderly adults, as 
well as the global phenotype-genotype association framework for the 
disease. 

2. Methods 

2.1. Study design and population 

Data related to COVID-19 were obtained from the UK Biobank, a 
health resource for a population-based study of more than 500,000 
participants that attended one of 22 assessment centers across the 
United Kingdom between 2006 and 2010.(Cox, 2018; Sudlow et al., 
2015) Participants provided extensive information via questionnaires, 
interviews, health records, physical measures, blood samples, and ge
notype results, allowing for linkage of extensive exposure, genetic and 
clinical data. Recently, COVID-19 testing results for a subset of partici
pants were made available by Public Health England.(Armstrong et al., 
2020) In this study, 7362 participants (mean age 69 years) with 
COVID-19 testing results or with exposure and genetic information were 
included. 

2.2. Assessment of exposure factors 

In present study, the exposure factor screening was based on a pre
viously published review(Zhang et al., 2020). Based on the extensive 
review and analysis of the above-mentioned review, we have enriched, 
improved, integrated, and assembled the literature on the exposure risk 
factors, methods, and models of COVID-19, and applied UKB data to 
analyze, verify and expand. In this study, the exposure factors are 
organized into five hierarchical levels, including behavior risks, meta
bolic risks, disease risks, environmental risks, and socio-demographic 
index. 

We used 17 indicators for behavior risks. Briefly, smoking status was 
categorized as never, previous, or current smoking. Regular physical 
activity was defined as per week ≥150 min of moderate activity, or per 
week ≥ 75 min of vigorous activity (Lloyd-Jones et al., 2010). Alcohol 
intake (including wine, beer, spirits, and fortified wine) was categorized 
as <1 g/day, 1–7 g/day, 8–15 g/day, and ≥ 16 g/day. All sleep behav
iors were self-reported, and we included six sleep factors (chronotype, 
duration, insomnia, snoring, daytime dozing, and nap during day). All of 
the UK Biobank participants completed a questionnaire on their usual 
dietary pattern, most of which asked about the frequency of consump
tion of main foods and food groups. The questions used in this manu
script are those that asked about the frequency of consumption of fresh 
fruit, raw vegetables, cooked vegetables, oily fish, non-oily fish, pro
cessed meat, beef, lamb, pork, tea, and coffee. 

Nine metabolic risk factors were included in our study. Of them, 
height, weight, waist circumference, and hip circumference were 
measured directly during a medical examination from which body mass 
index (BMI) was calculated as weight in kilograms divided by height in 
meters squared. Non-fasting venous blood, available in a sub-sample, 
was drawn with assaying conducted at dedicated central laboratory 
for uric acid, cholesterol, triglyceride, low-density lipoprotein choles
terol, high-density lipoprotein cholesterol, and Vitamin D.(Elliott et al., 
2008) 

Eleven disease factors were employed in the study. Vital statuses of 
each participant were identified chiefly using linkage with hospital 
admission data. Disease affection statuses were documented, including 
type 2 diabetes (T2DM), chronic kidney disease, hypertension, depres
sion, dementia, cardiovascular disease (CVD), chronic obstructive pul
monary disease (COPD), asthma, chronic liver disease, and cancer. Each 
disease factor was categorized as undiagnosed, diagnosed < 10 years 

ago, and diagnosed ≥ 10 years ago according to disease duration. 
Environmental exposures, were collected by the Small Area Health 

Statistics Unit as part of the BioSHaRE-EU Environmental Determinants 
of Health Project (http://www.bioshare.eu/). UK Biobank is a partici
pating biobank in this project. In this study, 4 environmental factors, 
including PM2.5, PM10, NO2, and NOx were included into environ
mental exposures. 

We used 4 indicators of socio-demographic index. Total annual 
household incomes before tax were self-reported and classified into five 
groups (Less than £18,000, 18,000–30,999, 31,000–51,999, 
52,000–100,000, and greater than 100,000). For educational qualifica
tions, we used a seven category variable (College or University degree, A 
levels/AS levels or equivalent, O levels/GCSEs or equivalent, CSEs or 
equivalent, NVQ or HND or HNC or equivalent, other professional 
qualifications, and none of the above). Socioeconomic status categories 
derived from Townsend deprivation index(Guillaume et al., 2016) 
quintiles 1, 2–4, and 5, combining information on social class, 
employment, car availability, and housing. Ethnicity was self-reported 
and categorized as White, Mixed, Asian or Asian British, Black or 
Black British, and other ethnic groups. 

2.3. Ascertainment of genetic factors 

Genetic risk factors for COVID-19 were identified by the COVID-19 
Host Genetics Initiative (https://www.covid19hg.org/), (Initiative, 
2020) a global initiative to bring together the human genetics commu
nity to generate, share, and analyze data to learn the genetic de
terminants of COVID-19 susceptibility, severity, and outcomes. In this 
study, 102 single-nucleotide polymorphisms (SNPs) reaching a con
ventional genome-wide significance threshold of P-value <1 × 10− 6 

were identified (Supplementary Method, Supplementary Table 1). 

2.4. Ascertainment of hospitalization for COVID-19 

Provided by Public Health England, data on COVID-19 status 
downloaded on July 6, 2020 covered the period March 16, 2020 until 
May 31, 2020. Nose and/or throat swabs were taken from hospitalized 
patients and detection of SARS-CoV-2 can be reported as positive or 
negative. 

2.5. Covariates 

All of the models were adjusted for age, sex, ethnicity (white, mixed, 
Asian, black, and others), qualifications (College degree, A levels/AS 
levels, O levels/GCESs, CSEs, NVQ or HND or HNC, other professional 
qualifications, and none of the above), and socioeconomic status (cat
egories derived from Townsend deprivation index(Guillaume et al., 
2016) quintiles 1, 2–4, and 5, combining information on social class, 
employment, car availability, and housing). 

2.6. Statistical analyses 

Baseline characteristics of the samples were summarized across 
COVID-19 infection status as percentages for categorical variables and 
means and standard deviations (SDs) for continuous variables. Student’s 
t-test was used to compare the means of continuous variables and nor
mally distributed data; otherwise, the Mann–Whitney U test was 
applied. A Shapiro–Wilk normality test was used to assess the normality 
of the distribution. Categorical data were assessed by chi-square test. 
Multivariate logistic regression analyses were used to assess the asso
ciation of both exposure and genetic factors with the risk of COVID-19. 
For exposure factors, in Model 1, we conducted univariate logistic 
regression with unadjusted; in Model 2, we adjusted for age and sex; in 
Model 3, we selected all the significant variables in the Model 2 to enter 
the multivariate logistic regression model. For genetic factors, Model 1, 
in which we included all SNPs with unadjusted for other confounding; 
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Model 2, we adjusted for age, sex ethnicity, education level, and so
cioeconomic statuses. 

Gene-gene and gene-exposure interactions were analyzed using 
generalized multifactor dimensionality reduction (GMDR) 
(http://www.ssg.uab.edu/gmdr/). The best gene-gene, gene-exposure 
interaction model based on the values arising from 10-fold cross- 
validation (CV) consistency and accuracy testing were selected. A per
mutation test with 1000 replications was used to measure the empirical 
P values thereby substantiating the significance of the model. For GMDR 
method, sex, age, ethnicity, qualification, and socioeconomic status 
were used to build a score statistic with adjustment for the covariates. In 
GMDR analysis, a P value was corrected for multiple testing by permu
tation test and a corrected P value < 0.05 (two-tailed) was considered to 
be statistically significant. For validating the results of GMDR, OR (with 
95 % CI) of risk factors were computed by logistic regression analysis. To 
narrow down the number of possible combinations, only dominant 
models were subjected to further analysis. Cytoscape (version 3.7.1) was 
used to layout the association network.(Shannon et al., 2003) All sta
tistical analyses were performed using R (version 3.6.1). 

3. Results 

3.1. Characteristics of participants 

In this analysis, after excluding participants without genetic infor
mation or without exposure information, 7362 participants were ulti
mately included for these samples, the mean age was 69.20 ± 8.68 years, 
and 3647 (49.54 %) individuals were male. In total, 1485 (20.17 %) 
participants were positive for COVID-19 infection. The baseline char
acteristics of the participants are provided in Table 1. Compared to 
participants negative for COVID-19 infection, the positive participants 
were more likely to be male, be of Asian or Black ethnic group, have a 
higher socioeconomic status and income; they were also more likely to 
have a history of T2DM or dementia, a higher BMI and a lower level of 
HDL, whereas less likely to consume alcohol, and less likely to have a 
university degree. 

3.2. Genetic and exposure factors associated with COVID-19 

From the 102 SNPs identified in the GWAS summary analysis, we 
obtained 21 SNPs that were associated with COVID-19 (Fig. 1A; Sup
plementary Table 2). The rs140092351 locus on microRNA MIR1202 
yielded the most significant association. For the 45 exposure factors 
examined (Supplementary Table 3), we found 15 exposure factors 
associated with COVID-19, including smoking, alcohol intake, daytime 
dozing, BMI, TG, HDL, diabetes, chronic kidney disease, chronic liver 
disease, dementia, atmosphere NO2 concentration, socioeconomic sta
tus, education qualifications, ethnicity, and income (Fig. 1B). 

3.3. Correlation between the genetic and exposure factors 

We also detected associations between the genetic and exposure 
factors. Altogether, 247 associations among and between the 21 genetic 
risks and 15 exposure factors of COVID-19 infection were identified, 
based on which a risk factor association network was conducted 
(Fig. 2A). Fig. 2B shows the correlation coefficient of SNPs and exposure 
factors. Among the exposure factors, ethnicity was associated with 
sixteen genetic loci of COVID-19, and atmosphere NO2 concentration 
was associated with ten genetic loci of COVID-19, while alcohol intake 
was associated with nine gene loci of COVID-19. Furthermore, smoking 
was associated with eight gene loci of COVID-19, and T2DM was asso
ciated with four gene loci of COVID-19. 

3.4. Gene-exposure interaction 

The significance of gene-exposure interaction was further evaluated 

Table 1 
Characteristics of the participants by COVID-19.  

Characteristic Non-COVID-19 COVID-19 P value 

No (%) 5877(79.83) 1485(20.17)  
Age, mean (SD), year 69.46(8.52) 68.16(9.23) <0.001 
Male, no. (%) 2863(48.72) 784(52.79) 0.005 
Ethnicity, no. (%)   <0.001 

White 5455(93.3) 1291(87.53)  
Mixed 40(0.68) 10(0.68)  
Asian or Asian British 135(2.31) 64(4.34)  
Black or Black British 135(2.31) 77(5.22)  
Other 82(1.4) 33(2.24)  

Diabetes, no. (%)   0.004 
Undiagnosed 4928(83.85) 1202(80.94)  
Diagnosed < 10 years ago 660(11.23) 180(12.12)  
Diagnosed ≥ 10 years ago 289(4.92) 103(6.94)  

Chronic kidney disease, no. (%)   0.053 
Undiagnosed 4701(79.99) 1159(78.05)  
Diagnosed < 10 years ago 1044(17.76) 278(18.72)  
Diagnosed ≥ 10 years ago 132(2.25) 48(3.23)  

Dementia, no. (%)   <0.001 
Undiagnosed 5563(94.66) 1296(87.27)  
Diagnosed < 10 years ago 306(5.21) 188(12.66)  
Diagnosed ≥ 10 years ago 8(0.14) 1(0.07)  

Chronic liver disease, no. (%)   0.053 
Undiagnosed 5463(92.96) 1402(94.41)  
Diagnosed < 10 years ago 347(5.9) 64(4.31)  
Diagnosed ≥ 10 years ago 67(1.14) 19(1.28)  

Alcohol intake, no. (%)   0.002 
<1 g/day 1769(30.24) 509(34.46)  
1 to 7 g/day 989(16.91) 265(17.94)  
8 to 15 g/day 1140(19.49) 245(16.59)  
≥16 g/day 1952(33.37) 458(31.01)  

Smoking, no. (%)   0.133 
Current 2800(47.92) 720(48.98)  
Former 2260(38.68) 582(39.59)  
Never 783(13.4) 168(11.43)  

Daytime dozing, no. (%)   0.015 
Never/rarely 4176(71.73) 994(67.9)  
Sometimes 1418(24.36) 404(27.6)  
Usually 228(3.92) 66(4.51)  

NO2 (μg/m3)   <0.001 
1(lowest fifth) 986(16.99) 196(13.4)  
2 1104(19.02) 266(18.18)  
3 1157(19.93) 300(20.51)  
4 1255(21.62) 298(20.37)  
5(highest fifth) 1302(22.43) 403(27.55)  

BMI(kg/m2)   0.001 
<25 1571(27.58) 346(23.96)  
25 to 29.9 2367(41.56) 606(41.97)  
30 to 34.9 1202(21.1) 304(21.05)  
≥35 556(9.76) 188(13.02)  

HDL(mmol/l)   <0.001 
Q1(0.8− 1.17) 1517(29.51) 434(34.23)  
Q2(1.18− 1.40) 1278(24.86) 348(27.44)  
Q3(1.41− 1.67) 1200(23.35) 286(22.56)  
Q4(1.68− 3.58) 1145(22.28) 200(15.77)  

TG(mmol/l)   0.104 
<1.7 3203(57.29) 754(54.28)  
1.7− 2.25 1049(18.76) 288(20.73)  
>2.26 1339(23.95) 347(24.98)  

Socioeconomic status, no. (%)   <0.001 
1(lowest deprived) 991(16.89) 206(13.88)  
2 1078(18.37) 244(16.44)  
3 1090(18.58) 257(17.32)  
4 1157(19.72) 313(21.09)  
5(highest deprived) 1551(26.44) 464(31.27)  

Qualification, no. (%)   <0.001 
College or University degree 1606(27.7) 351(24.06)  
A levels/AS levels or equivalent 590(10.18) 135(9.25)  
O levels/GCSEs or equivalent 1190(20.53) 265(18.16)  
CSEs or equivalent 309(5.33) 103(7.06)  
NVQ or HND or HNC or equivalent 449(7.75) 138(9.46)  
Other professional qualifications 332(5.73) 93(6.37)  
None of the above 1321(22.79) 374(25.63)  

Income, no. (%)   0.094 
Less than 18,000 1575(31.68) 408(33.04)  

(continued on next page) 
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using the GMDR model with age, sex, ethnicity, qualification, and so
cioeconomic status as covariates (Table 2). Dementia, alcohol con
sumption, daytime dozing, BMI, HDL, and atmosphere NO2 
concentration were among most significant G x E interaction with 
COVID-19 infection (P < 0.001). Furthermore, we assessed the exposure 
factors selected by GMDR using logistic regression analysis, which 
incorporated age, sex, ethnicity, qualification, and socioeconomic status 
as covariates. Results were summarized in Table 3. For example, in
dividuals with allele A+ (GA, AA) of rs3136704 and had dementia were 
more susceptible (OR, 4.25; 95 % CI, 2.91− 6.19) to COVID-19 relative 
to the rest of the study population. While subjects carrying the G− allele 
(GG) of rs140092351 or T+ allele (CT, TT) of rs12950851 with con
sumption alcohol 8− 15 g/day (OR, 0.47; 95 % CI, 0.32− 0.67) were in 
lower risk of COVID-19 infection compared to others. 

4. Discussion 

We found a significant association framework between and among 
genetic and exposure factors of COVID-19 infection. The rs140092351 
locus on a microRNA miR1202 not only had the most significant asso
ciation with COVID-19, but also interacted with multiple exposure fac
tors. Dementia, alcohol consumption, daytime dozing, BMI, HDL, and 
atmosphere NO2 concentration were among most significant G x E in
teractions with COVID-19 infection. 

Our findings suggested that 15 exposure factors, including diabetes, 
dementia, chronic kidney disease, chronic liver disease, smoking, 
alcohol intake, daytime dozing, BMI, TG, HDL, atmosphere NO2 con
centration, socioeconomic status, education qualifications, ethnicity, 
and income were associated with COVID-19 infection. Emerging evi
dence has suggested that smoking status, black or Asian/Asian British, 
deprivation (both with a strong gradient), diabetes, reduced kidney 
function, chronic liver disease, and diabetes are risk factors of COVID-19 
and resulting complications.(Huang et al., 2020; Williamson et al., 
2020) However, the association of daytime dozing, TG, HDL, atmo
sphere NO2 concentration, and qualification with COVID-19 have not 
been reported. In our study, individuals which reported daytime dozing 
“sometimes”, a high level of TG (1.7− 2.25 mmol/l), a lower level of HDL 
(<1.67 mmol/l), a high atmosphere NO2 concentration (>32.5 μg/m3), 
and a low qualification were more vulnerable to COVID-19 infection. 

Our results found that there are wide correlations between exposure 
factors and susceptibility genes for COVID-19 infection. At the popula
tion level, the distribution of susceptible genes among individuals is 
characteristic, and susceptible individuals often have a series of sus
ceptible gene polymorphisms. We called the genotype combination of 
susceptible genes that are associated with a certain phenotype a "pan- 
genotype." However, despite considering pathway enrichment and 
pairwise association between genotypes, previous studies have often 
targeted a single phenotype. In fact, the combination of certain geno
types is related to different phenotypes, and some phenotypes are also 
associated with each other. Thus, different genotypes and phenotypes 
form an association networks. In this study, the non-random combina
tions of genotypes (“genetic signature”) clustered in exposure factors 
associated with COVID-19. Thus, it is important to take systemic look of 
the multi-dimensional network for COVID-19. 

Table 1 (continued ) 

Characteristic Non-COVID-19 COVID-19 P value 

18,000–30,999 1252(25.19) 308(24.94)  
31,000–51,999 1107(22.27) 293(23.72)  
52,000–100,000 799(16.07) 187(15.14)  
Greater than 100,000 238(4.79) 39(3.16)  

Abbreviations: BMI body mass index; CSE Certificate of Secondary Education; 
GCSE General Certificate of Secondary Education; HDL high density lipoprotein; 
HNC Higher National Certificate; HND Higher National Diploma; NVQ National 
Vocational Qualification; TG triglyceride. 

Fig. 1. Association of exposure (A) and genetic (B) factors with COVID-19 
infection. 
Multivariate logistic model adjusted for age, sex, ethnicity, socioeconomic 
status, and qualification.*B = GTTTCTCTAGTTTGGA. 
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Dementia, alcohol consumption, daytime dozing, BMI, HDL, and 
atmosphere NO2 concentration were among the most significant G x E 
interactions with COVID-19 infection. The rs140092351 locus, located 
on microRNA miR1202 yielded the most significant association, while 
multiple G x E interactions were connected by that polymorphism. The 
function of rs140092351 remains unknown, although several studies 
have reported that a microRNA that 12Kb upstream of rs140092351, 

miR-1202, was related to brain tumors, glioma, depression, and neu
roinflammation. Juan et al. reported that miR-1202 was abnormally 
expressed in prefrontal cortex in depressed patients (Lopez et al., 2014). 
Furthermore, Song et al. claimed that over-expression of miR-1202 
could inactivate TLR4/NF-κB related inflammatory signal pathway 
through targeting its target protein Rab1a to play a protective role in 
neuroinflammation (Song et al., 2020). The present result regarding G x 

Fig. 2. Association of genetic and exposure factors of COVID-19 infection. 
(A) The network of association analysis framework for genetic and exposure factors for COVID-19 infection. Gray shading indicates genetic or exposure factors are 
not associated with COVID-19 infection. (B) Heatmap of correlation coefficients of 21 genetic and 15 exposure factors. 
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E interaction is an important discovery that may indicate new unre
ported biological pathways and mechanisms that need to be further 
verified. 

Our present study also had several limitations. We are unable to 
assess exposure to SARS-CoV-2 in most UKB participants. This has 
important implications for case–control studies, because we cannot 
distinguish individuals who have not contracted SARS-CoV-2 following 
exposure from those who have not been exposed. Furthermore, genetic 
factors related to exposure factors may not cause COVID-19 by them
selves, but likely to increase the susceptibility of the disease by 
increasing the risk of phenotypic factors (both behavioral and patho
physiologic) that associated with it. In addition, our exposure factors 
were collected between 2006 and 2010 and may not represent the 
current state of exposure. 

Unlike previous protein-protein or genetic interaction studies, in this 
study, we conducted a unique association network among phenotypes, 

lifestyle, environmental, genotypes, disease of associated with COVID- 
19. The research results of above association analysis framework 
shows that when genetic factors of COVID-19 cannot be changed, the 
identification and improvement of genetically-related exposure factors 
can modulate the infection of COVID-19. 

Table 2 
Best gene–gene/exposure interaction models as identified by GMDR.  

Best combination Testing 
accuracy 

Cross-validation 
consistency 

P 
valuea 

Gene-Gene interaction    
rs140092351, rs5852036 0.530 8/10 0.001 
rs140092351, rs5852036, 
rs116513329 

0.534 6/10 0.001 

Gene-dementia interaction    
rs3136704, dementia 0.541 7/10 0.001 
rs3136704, rs140092351, 
dementia 

0.557 9/10 0.001 

Gene-T2DM interaction    
rs3136704, T2DM 0.518 5/10 0.055 
rs3136704, rs6736835, T2DM 0.505 3/10 0.055 

Gene-alcohol interaction    
rs140092351, alcohol 0.525 7/10 0.001 
rs140092351, rs12950851, 
alcohol 

0.528 6/10 0.011 

Gene-daytime dozing 
interaction    
rs140092351, rs12950851, 
daytime dozing 

0.533 8/10 0.001 

Gene-NO2 interaction    
rs140092351, NO2 0.518 6/10 0.055 
rs140092351, rs12950851, 
NO2 

0.550 10/10 0.001 

Gene-BMI interaction    
rs3136704, BMI 0.508 3/10 0.055 
rs140092351, rs12950851, 
BMI 

0.535 7/10 0.001 

Gene-TG interaction    
rs140092351, TG 0.520 3/10 0.055 
rs140092351, rs57136622, 
TG 

0.520 6/10 0.055 

Gene-smoking interaction    
rs140092351, smoking 0.520 2/10 0.055 
rs140092351, rs3136704, 
smoking 

0.530 6/10 0.011 

Gene-HDL interaction    
rs12950851, HDL 0.532 6/10 0.001 
rs140092351, rs12950851, 
HDL 

0.557 10/10 0.001 

Gene-qualification interaction    
rs140092351, qualification 0.526 9/10 0.001 
rs140092351, rs3136704, 
qualification 

0.522 4/10 0.055 

Gene-income interaction    
rs140092351, income 0.521 7/10 0.055 
rs140092351, rs12950851, 
income 

0.529 7/10 0.055 

Gene-TDI interaction    
rs140092351, TDI 0.519 4/10 0.055 
rs140092351, rs12950851, 
TDI 

0.531 7/10 0.055  

a GMDR analysis adjusted for age, sex, ethnicity, socioeconomic status, and 
qualification. 

Table 3 
Stratified analysis for interaction between gene and gene/environment on 
COVID-19.  

Factors OR (95 % CI)a P value 

Gene-Gene interaction 
rs140092351 rs5852036 　 　 　 
GG GGA or 

GAGA 
　 1(ref.) 　 

GB or BBb GG 　 1.62 
(1.35− 1.95) 

<0.001 

rs140092351 rs5852036 rs116513329 　 　 
GG GGA or 

GAGA 
TT 1(ref.) 　 

GB or BB GG TC or CC 2.62 
(1.59− 4.25) 

<0.001 

Gene-dementia interaction 
Dementia rs3136704 　 　 　 
No GG 　 1(ref.) 　 
Yes GA or AA 　 4.25 

(2.91− 6.19) 
<0.001 

Dementia rs3136704 rs140092351 　 　 
No GG GG 1(ref.) 　 
Yes GA or AA GB or BB 5.82 

(3.25− 10.47) 
<0.001 

Gene-alcohol interaction 
Alcohol rs140092351 　 　 　 
0− 7 g/day GB or BB 　 1(ref.) 　 
8− 15 g/day GG 　 0.67 

(0.53− 0.84) 
<0.001 

Alcohol rs140092351 rs12950851 　 　 
0− 7 g/day GB or BB CC 1(ref.) 　 
8− 15 g/day GG CT or TT 0.47 

(0.32− 0.67) 
<0.001 

Gene-smoking interaction 
Smoking rs140092351 rs3136704 　 　 
Never GG GG 1(ref.) 　 
Current GB or BB GA or AA 2.15 

(1.47− 3.16) 
<0.001 

Gene-daytime dozing interaction 
Daytime dozing rs140092351 rs12950851 　 　 
Never/rarely GG CT or TT 1(ref.) 　 
Sometimes GB or BB CC 1.70 

(1.27− 2.25) 
<0.001 

Gene-BMI interaction 
BMI rs140092351 rs12950851 　 　 
<25 kg/m2 GG CT or TT 1(ref.) 　 
≥35 kg/m2 GB or BB CC 2.30 

(1.40− 3.77) 
<0.001 

Gene-HDL interaction 
HDL rs140092351 rs12950851 　 　 
0.8− 1.17 mmol/l GB or BB CC 1(ref.) 　 
1.68− 3.58 mmol/ 
l 

GG CT or TT 0.57 
(0.36− 0.90) 

0.019 

Gene-NO2 interaction 
NO2 rs140092351 rs12950851 　 　 
1(lowest fifth) GG CT or TT 1(ref.) 　 
5(highest fifth) GB or BB CC 2.40 

(1.41− 4.11) 
0.0013 

Gene-qualification interaction 
Qualification rs140092351 　 　 　 
College GG 　 1(ref.) 　 
GSEs/NVQ/ 
HND/HNC 

GB or BB 　 1.83 
(1.47− 2.27) 

<0.001  

a Multivariable logistic model adjusted for age, sex, ethnicity, socioeconomic 
status, and qualification. 

b B =GTTTCTCTAGTTTGGA. 
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5. Conclusion 

We found a significant association framework between and among 
genetic and exposure factors of COVID-19 infection. Phenotype- 
genotype association were common among genetic and exposure fac
tors. The rs140092351 locus on a microRNA miR1202 not only had the 
most significant association with COVID-19, but also interacted with 
multiple exposure factors. Dementia, alcohol consumption, daytime 
dozing, BMI, HDL, and atmosphere NO2 concentration were among most 
significant G x E interactions with COVID-19 infection. Our findings will 
provide a new perspective for comprehensive prevention and treatment 
of COVID-19. 
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