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Abstract: The diagnosis of Alzheimer’s disease (AD) is frequently missed or delayed in clinical
practice. To remedy this situation, we developed a screening, paper-based (P-ELISA) platform to detect
β-amyloid peptide 1–42 (Aβ42) and provide rapid results using a small volume, easily accessible
plasma sample instead of cerebrospinal fluid. The protocol outlined herein only requires 3 µL
of sample per well and a short operating time (i.e., only 90 min). The detection limit of Aβ42 is
63.04 pg/mL in a buffer system. This P-ELISA-based approach can be used for early, preclinical stage
AD screening, including screening for amnestic mild cognitive impairment (MCI) due to AD. It may
also be used for treatment and stage monitoring purposes. The implementation of this approach
may provide tremendous impact for an afflicted population and may well prompt additional and
expanded efforts in both academic and commercial communities.

Keywords: Alzheimer’s disease; β-amyloid peptide; paper-based ELISA; P-ELISA, point of
care testing

Alzheimer’s disease (AD) is one the most common irreversible neurodegenerative diseases across
the globe. The massive number of people affected worldwide totals nearly 44 million [1]. AD results in
drastically impaired cognitive function and a reduced capacity to perform even daily routines and
activities. Currently, AD diagnosis relies heavily on symptomology with symptom-dependent tools
including guidance from the following: (a) National Institute of Neurological and Communicative
Disorders and Stroke AD and Related Disorders Association (NINCDS-ADRDA, UK) and (b) Diagnostic
and Statistical Manual of the American Psychiatric Association (DSM-IV/DSM-5) [2]. As a result,
AD diagnosis is frequently missed or delayed in clinical practice [3]. More recent criteria such as those
provided by the National Institute on Aging and the Alzheimer’s Association (NIA-AA) include the use
of biomarkers (e.g., β-amyloid and tau) for diagnostic support [4]. As a result, focus has rightly begun
to shift toward developing early-stage methods for the detection of possibly potent AD biomarkers.

Most existing diagnostic methods, e.g., neuroimaging, enzyme-linked immunosorbent assay
(ELISA), and polymerase chain reaction (PCR), are not suitable for point-of-care (POC) testing in their
current state because they rely on highly sophisticated machinery and equipment, complicated operating
procedures, and invasive or destructive sampling methods. Several newer studies have demonstrated
greater creativity and have overcome problems by developing new POC testing devices to detect
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AD-related biomarkers. For example, an electrochemical immuno-sensing approach has been
demonstrated for the detection of β-amyloid peptide 1–42 (Aβ42) at pM levels in a relatively shorter
period of time than can be accomplished with an ELISA [5]. Stravalaci et al. described a novel
immunoassay based on surface plasmon resonance (SPR) that specifically recognizes biologically active
oligomers of the β-amyloid peptide (Aβ) [6]. Despite these advances, there is still an urgent need for
rapid, effective, and easily used POC devices for early AD screening. The above-mentioned biosensors
are not currently practical enough for clinical validation because they may be costly, involve a relatively
time-consuming processes (e.g., immunoassay based on SPR requires a 5 h incubation period to
produce a maximal signal), or they may require sophisticated signal readers. On the other hand,
our paper-based POC device for the detection of Aβ42 is rapid, effective, inexpensive, and requires no
sophisticated laboratory equipment. This process relies on an easily accessible body fluid, plasma,
that facilitates minimally invasive first-step screening within one and a half hours.

A paper-based ELISA (P-ELISA) has previously been used to successfully detect proteins
such as vascular endothelial growth factor (VEGF), as well as noncollagenous 16A (NC16A)
autoimmune antibody toward diagnosis of various diseases such as age-related macular degeneration,
bullous pemphigoid and Escherichia coli O157:H7 infection [7–10]. We have now demonstrated a
P-ELISA system to detect Aβ42 in plasma. The aim of our study was twofold: (1) to expand the field
of biomarker-dependent AD screening, as the use of biomarkers to support diagnosis has gained value
and momentum, and, (2) to develop a specific POC tool using a P-ELISA to detect Aβ42 in both buffer
and plasma systems. Based on its appropriate limit of detection (LOD), shorter operation duration,
and lower cost, this method might set an example for the development of other approaches employing
AD-related biomarkers for early stage screening, pre-treatment monitoring, in-treatment monitoring,
and post-treatment follow-up. To our knowledge, our study is the first to apply a P-ELISA to detect
plasma Aβ42.

Several studies have supported the important role of Aβ42 in the development of AD and have
indicated that Aβ42 level dysregulation is responsible for the abnormal accumulation of Aβ42 plaques
in the hippocampus and cortex [11,12]. For this reason, Aβ42 has been identified as a diagnostic
biomarker, and anti-Aβ-directed therapies have been developed to combat AD [13]. With reliable
detection at the core of any diagnostic approach, we first developed a buffer system-based P-ELISA
tool to detect Aβ42 in 10-fold dilutions from 1 ng/mL to 1 pg/mL. An outline of our process is
provided in Scheme 1 (below). After completing our P-ELISA process (as shown in the supporting
movie), we visually interpreted the colorimetric output signal and used a smartphone camera (Apple,
1 Infinite Loop Cupertino, CA 95014, USA) to record the results. This process eliminates the need
for any other specialized detector device. Colorimetric assays are particularly well-suited for use in
resource-poor settings where plate readers and fluorescence scanners are rare but smartphones are
relatively common. We converted our P-ELISA colorimetric results to eight-bit grayscale with ImageJ
software using the formula: gray = (red + green + blue)/3. The color intensity was measured from
min to max and defined as [experiment zone intensity] − [blank zone intensity]. The Mann–Whitney
U test was used to compare the median mean intensity of different Aβ42 concentrations. The LOD was
calculated as 63.04 pg/mL, as determined by nonlinear regression fits. Figure 1 displays the significant
difference (p < 0.001) found between the group with concentrations at 1 ng/mL and our negative control
group. The grayscale color intensity values at Aβ42 concentrations of 100, 10, and 1 pg/mL were
significantly different (p < 0.01) compared to the grayscale color intensity value of the control group.
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Scheme 1. Schematic of our paper-based ELISA (P-ELISA) device development and test procedure for
the detection of β-amyloid peptide 1-42 (Aβ42) concentrations in both buffer and plasma systems.
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Figure 1. Colorimetric results (intensity) from our paper-based ELISA (P-ELISA) test for β-amyloid 
peptide 1-42 (Aβ42) concentrations in a buffer system. The color intensity difference between our 1 
pg/mL Aβ42 concentration and our control was very significant. (** p < 0.01; *** p < 0.001). 
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Figure 1. Colorimetric results (intensity) from our paper-based ELISA (P-ELISA) test for β-amyloid
peptide 1-42 (Aβ42) concentrations in a buffer system. The color intensity difference between our
1 pg/mL Aβ42 concentration and our control was very significant. (** p < 0.01; *** p < 0.001).
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Clinically, biomarkers have been used to screen for AD, but these approaches have required
semi-invasive cerebrospinal fluid (CSF) sampling via lumbar puncture and/or the use of costly
neuroimaging techniques [14]. Transitioning the use of these biomarkers to portable and reliable POC
diagnostic devices has been challenging. Cerebrospinal fluid Aβ42 assays may be a more accurate
reflection of the central amyloid pathology associated with AD, but there has been some reluctance to
employ this approach for routine analysis because of the risk associated with external drains and severe
disturbances in CSF [15]. For this reason and others, there have been increased interest and research into
the use of more easily accessible sample sources, such as plasma, that contain measurable quantities of
Aβ42 suitable for clinical assessment [16]. Previous studies have reported that intra-cerebroventricular
injection of Aβ42 is correlated with plasma Aβ42 levels in a mouse model, thus confirming the
in vivo mixing of CSF and plasma Aβ42 pools [17]. In humans, a weak positive correlation was also
observed between plasma and CSF Aβ42 levels [18]. Moreover, increasing evidence had indicated that
plasma Aβ42 concentration may be a risk predictor for AD [19], though some studies have produced
controversial results [20]. Kim et al. outlined a filtration-based approach for distinguishing between
normal plasma Aβ42 levels and those of patients with AD [21]. Mayeux et al. found mean plasma
Aβ42 levels of 82.4 6 ± 8.6 pg/mL among patients with AD and subsequently found baseline mean
plasma Aβ42 levels of 68.7 pg/mL and follow-up levels of 76.5 pg/mL in individuals with AD in a later
study [22,23]. Using variable capture antibodies and analytical platforms, a wide range of mean plasma
Aβ42 levels, from 36 to 140 pg/mL, have been reported in patients suffering from AD [24]. We elected
to examine plasma Aβ42 concentration using our own unique P-ELISA approach, employing the same
process and equipment employed in our buffer system analysis. We used four sets of plasma samples
containing four different concentrations of Aβ42; 0 (control), 10 pg/mL, 100 pg/mL, and 1 ng/mL.
For our secondary antibody, we used horseradish peroxidase (HRP) conjugated anti-rabbit antibody
(Cat. No.: 7074, Cell Signaling Technology, 3 Trask Lane, Danvers, MA01923, USA) on plasma samples
1 and 2, and we used HRP-conjugated anti-rabbit antibody (Cat. No.: Ab6702, Abcam, Discovery Drive
Cambridge Biomedical Campus, Cambridge CB2 0AX, UK) on plasma samples 3 and 4. A comparison
between the two secondary antibodies is shown in Table 1. In Figure 2, plasma samples 1 and 2
displayed significant differences (p < 0.05) compared to the control for spiked Aβ42 concentrations
of 100 pg/mL and 1 ng/mL, respectively. Plasma samples 3 and 4, however, displayed significant
differences (p < 0.05) compared to the control for spiked Aβ42 concentrations of 10 and 100 pg/mL.
From these results, we gathered that secondary antibody selection does appear to affect the performance
of our P-ELISA platform. Our plasma system results were also approximately 10 times less sensitive
than those from our buffer system. This may be explained by the fact that Aβ42 has to be measured
in the matrix as a derivative of blood, which contains very high levels of plasma proteins such as
albumin, clotting factor, and immunoglobulin G (IgG), all of which interfere with the application
and interpretation of biochemical marker assay results [25,26]. There is room for improvement in
the sensitivity and reliability for a plasma-based P-ELISA. Despite these difficulties, a plasma-based
P-ELISA system may be used for early AD screening, as suggested by Blennow et al. [27]. Furthermore,
repeated longitudinal measurements of plasma Aβ42 level may be useful for routine follow-up to
determine disease progression and monitor therapy.

Table 1. Comparison between the two secondary antibodies used in our paper-based ELISA (P-ELISA)
system for the detection of β-amyloid peptide 1–42 (Aβ42).

Goat Anti-Rabbit IgG H and L
(Cat. No.: Ab6702)

Anti-Rabbit IgG, HRP-Linked
Antibody (Cat. No.: 7074)

Host Species Goat Goat
Target Species Rabbit Rabbit

Clonality Polyclonal Polyclonal
Isotype IgG IgG

Performance 10 pg/mL 100 pg/mL
Brand Abcam Cell Signaling Technology
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Figure 2. Colorimetric results (intensity) from a paper-based ELISA (P-ELISA) test for β-amyloid 
peptide 1–42 (Aβ42) concentration in a plasma system. The secondary antibody used in plasma 1 and 
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of detection (LOD) for tests using plasma 1 and 2 was approximately 100 pg/mL, while the LOD for 
tests using plasma 3 and 4 was about 10 pg/mL. (* p < 0.05). 
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Figure 2. Colorimetric results (intensity) from a paper-based ELISA (P-ELISA) test for β-amyloid
peptide 1–42 (Aβ42) concentration in a plasma system. The secondary antibody used in plasma 1 and 2
was from Cell Signaling Technology, while that used in plasma 3 and 4 was from Abcam. The limit of
detection (LOD) for tests using plasma 1 and 2 was approximately 100 pg/mL, while the LOD for tests
using plasma 3 and 4 was about 10 pg/mL. (* p < 0.05).

Clinical AD is thought to be preceded by a long asymptomatic or mildly symptomatic period
that may be initiated 15–20 years Fprior to the onset of clinical signs [28]. This pre-dementia period is
primarily composed of two parts: (1) preclinical AD and (2) amnestic mild cognitive impairment (MCI)
due to AD development (Figure 3). Preclinical AD consists of the following three stages: (1) stage 1,
which is manifested by the evidence of amyloidosis; (2) stage 2, which is characterized by not only
amyloidosis but also evidence of neurodegeneration; an, (3) stage 3, a combination of amyloidosis,
neurodegeneration, and subtle cognitive decline not meeting the criteria for MCI [29]. Compared to
preclinical AD, amnestic MCI due to AD is defined as noticeable cognitive impairment resulting from
underlying AD pathology. Because the development of AD is irreversible and progressive, there is
an increasing need for biomarker-based screening tools to identify patients in preclinical or early
clinical stages of AD. These patients would be greatly benefited by early intervention before more
severe and irreversible damage occurs to the brain. In the past decade, a number of studies have made
great efforts to develop biomarker-based screening tools and POC testing platforms to diagnose AD.
Nakamura et al. validated the clinical utility of a blood-based Aβ assay using immunoprecipitation and
mass spectrometry to predict brain Aβ burden [30]. Garyfallou et al. demonstrated an electrochemical
immunosensor that can be easily integrated into portable devices to diagnose AD using plasma
immunoglobulins [31]. Tonello et al. developed a POC testing system based on screen-printed
electrochemical sensors (SPES) [32]. This study, however, is the first to demonstrate a P-ELISA system
for Aβ42 detection in human plasma. It is challenging to measure Aβ42 due to antibody masking,
Ab oligomerization, and Ab complex formation [33]. Plasma Aβ42 is also hard to use for diagnosing
late-onset AD as a single time-point measure due to the considerable overlap with changes in the
normal, aging population and the onset of vascular diseases [18,34]. We hope to promote the use
of a P-ELISA for early screening, routine follow-up analyses, as well as AD monitoring in living
patients as an adjunct to care. If detected at concentrations associated with risk, Aβ42 levels can be
modified, as demonstrated by Boada et al., who describe a process for modifying Aβ42 concentration in
plasma using plasma exchange (PE) and albumin replacement that improved cognition in patients with
mild-to-moderate AD [35]. Our P-ELISA platform can help optimize therapeutics and improve disease
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progression prediction [36]. P-ELISA methods provide several advantages compared to conventional
ELISA methods (Table 2). First, the entire P-ELISA process, from antigen immobilization to colorimetric
reaction, can be completed within one and half hours; by contrast, a conventional ELISA requires at
least six-to-eight hours to complete. Second, a P-ELISA requires only 3 µL of sample per test zone,
while conventional ELISA requires more than twenty-five times that. Finally, P-ELISA results can
be quantified with simple devices, such as smartphone cameras, which increases their usability and
broadens their impact. Further research could result in the production of a paper-based multiplexed
assay incorporating peptide-detecting ELISA to create a multi-step, all-in-one diagnostic device [37,38].
We have accomplished the first step toward this goal, creating a paper-based device for peptide
detection, with this study.
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Figure 3. The role of point-of-care (POC) β-amyloid peptide 1–42 (Aβ42) testing for patients with
preclinical Alzheimer’s disease (AD), amnestic mild cognitive impairment (MCI) due to AD, and
AD dementia.

Table 2. Comparison between the paper-based ELISA (P-ELISA) and conventional enzyme-linked
immunosorbent assay (ELISA) systems for the detection of β-amyloid peptide 1–42 (Aβ42) using
plasma and cerebrospinal fluid (CSF) samples.

Paper-Based ELISA
(P-ELISA) Enzyme-Linked Immunosorbent Assay (ELISA) [25,39]

Time 1.5 h 6–8 h (at least)
Sample Volume (per Test Zone) 3 µL 75 µL 100−370 µL

Sample Source Buffer Plasma CSF
Limit of Detection 63.04 pg/mL 5.71 pg/mL 312 pg/mL

This study outlines our development of the first P-ELISA tool for Aβ42 detection with demonstrated
potential for testing human plasma. Our findings underscore the potential for employing a P-ELISA for
both pre-clinical AD screening and post-diagnosis treatment monitoring. Compared to commonly-used
Aβ42 detection methods, the P-ELISA offers five principal advantages: (1) rapidity, (2) small sample
and reagent volume requirements, (3) cost-effectiveness, (4) readily available equipment and materials,
and (5) improved clinical safety due to the fact that required samples involve the appropriation of
plasma as opposed to CSF via lumbar puncture. P-ELISA techniques require some improvement
in accuracy, precision, and long-term stability to render them more commercially viable. However,
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we found our approach to be highly sensitive, as evidenced by the 63.04 pg/mL LOD value attained in
our buffer system experiments. In conclusion, our P-ELISA system is a promising candidate for the
early screening of AD pre-dementia period and the post-diagnostic monitoring of AD, especially in
small laboratories and in developing countries where cost and convenience are more critical.
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Abbreviations

AD Alzheimer’s disease
P-ELISA Paper-based ELISA
Aβ42 β-amyloid peptide 1–42
MCI Mild cognitive impairment

NINCDS-ADRDA
National Institute of Neurological and Communicative Disorders and
Stroke AD and Related Disorders Association

DSM Diagnostic and Statistical Manual of the American Psychiatric Association
NIA-AA National Institute on Aging and the Alzheimer’s Association
ELISA Enzyme-linked immunosorbent assay
PCR Polymerase chain reaction
POC Point-of-care
SPR Surface plasmon resonance
Aβ ββrface plpeptide
VEGF Vascular endothelial growth factor
NC16A Noncollagenous 16A
LOD Limit of detection
CSF Cerebrospinal fluid
HRP Horseradish peroxidase
IgG Immunoglobulin G
SPES Screen-printed electrochemical sensors
PE Plasma exchange
APOE Apolipoprotein E
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