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Abstract

How cells regulate the size of intracellular structures and organelles is a longstanding ques-

tion. Recent experiments suggest that size control of intracellular structures is achieved

through the depletion of a limiting subunit pool in the cytoplasm. While the limiting pool

model ensures organelle-to-cell size scaling, it does not provide a mechanism for robust

size control of multiple co-existing structures. Here we develop a generalized theory for

size-dependent growth of intracellular structures to demonstrate that robust size control of

multiple intracellular structures, competing for a limiting subunit pool, is achieved via a nega-

tive feedback between the growth rate and the size of the individual structure. This design

principle captures size maintenance of a wide variety of subcellular structures, from cyto-

skeletal filaments to three-dimensional organelles. We identify the feedback motifs for struc-

ture size regulation based on known molecular processes, and compare our theory to

existing models of size regulation in biological assemblies. Furthermore, we show that posi-

tive feedback between structure size and growth rate can lead to bistable size distribution

and spontaneous size selection.

Author summary

Organelle size control is essential for the proper physiological functioning of eukaryotic

cells, but the underlying mechanisms of size regulation remain poorly understood. By

developing a general theory for organelle size control, we show that robust size control of

intracellular structures and organelles is achieved via a negative feedback between individ-

ual organelle size and their net growth rates. This design principle not only describes size

maintenance of single organelles, but also ensures size stability of multiple co-existing

organelles that are built from a limiting pool of subunits. Our results delineate the role of

limiting pool as a size scaling mechanism rather than a size control mechanism, support-

ing the idea that negative feedback control of organelle size via depletion of a limiting sub-

unit pool is not sufficient to maintain the size of multiple competing organelles. In the

case of positive feedback between organelle size and growth rate, our model reproduces

phenomena such as bistability in organelle size distribution and spontaneous emergence

of cell polarity.
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Introduction

Eukaryotic cells are composed of a wide diversity of macromolecular assemblies, from linear

protofilaments to networks of cytoskeletal polymers and complex three-dimensional organ-

elles such as the centrosomes and the nucleus. The cytoplasmic pool of proteins constitutes the

building blocks for intracellular organelles, whose sizes are often commensurate with cell size.

Despite continuous turnover in their component parts, intracellular structures are maintained

at a precise size through dynamic balance between subunit assembly and disassembly [1]. An

outstanding challenge is to identify the design principles through which cells achieve robust

size regulation of multiple co-existing structures that are assembled from a limiting pool of

molecular building blocks in the cytoplasm.

Studies in recent years have focused on understanding the mechanisms for size control of

individual cellular structures such as the eukaryotic flagella [2, 3], actin cables [4], mitotic spin-

dles [5–7], centrosomes [8, 9], as well as the nuceloli [10] and the nucleus [11]. A simple model

that explains size control of these dynamic structures is the limiting pool model [1], where

structures grow by depleting the pool of available subunits in the cytoplasm. As a result,

growth rate of structures decreases with increasing assembly size, and a steady-state size is

reached when the rate of assembly balances the rate of disassembly of incorporated material.

Since structure size is determined by the amount of available subunits in the cytoplasm, which

in turn scales with cell size, the limiting pool model naturally captures the scaling of structure

size with cell size. However, the limiting pool fails to capture size regulation of multiple com-

peting structures [12, 13], due to the absence of an underlying mechanism for sensing individ-

ual structure size. Failure of the limiting pool mechanism in determining the size of multiple

structures suggests that additional feedback design principles are necessary for robust size con-

trol of intracellular structures. In this work we develop a theory for size-dependent growth of

intracellular structures and organelles that assemble from a limiting pool of building blocks in

the cellular cytoplasm. Using this theory, we uncover the feedback motifs between structure

size and growth rate that are necessary for robust size maintenance of multiple structures com-

peting for a shared subunit pool. We specifically consider the size regulation of structures that

grow via subunit addition and removal processes, and do not consider multi-compartment

organelles such as the golgi body or the endoplasmic reticulum that grow via budding and

fusion where the chemical composition of the structures may play crucial roles.

In the noisy cellular environment, intracellular structures grow from a cytoplasmic subunit

pool via stochastic assembly and disassembly processes [14]. For simplicity, we first consider a

deterministic description for the growth of M structures that incorporate material from Nav

available subunits with assembly rate Kon and disassembly rate Koff. Dynamics of size of the ith

structure (i = 1..M), ni (expressed as the number of subunits), is given by:

_ni ¼ KonðrÞ � Koff ð1Þ

where ρ is the concentration of subunits in the cytoplasm, given by ρ = Nav/V, with V the cell

volume. The rates Kon, off can in general be functions of structure size and chemical composi-

tion. In the canonical limiting pool model [1], Kon = k+ρ, Koff = k−, where kþi and k�i are the

bare rates of assembly and disassembly of the ith structure. If the cytoplasmic concentration of

subunits is maintained at a constant homeostatic value ( _r ¼ 0) [15, 16], size control is not

achieved except when ρ is fine tuned to a critical value ρ = ρc = k−/k+. Growth is unbounded

for ρ> ρc and the assembly degrades for ρ< ρc. By contrast, in the presence of a limiting pool,

the total amount of subunits N ¼ Nav þ
PM

i¼1
ni is constant. In this case, the assembled struc-

ture reaches a steady-state size n = N − (k−/k+)V, only for M = 1.
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However, when multiple structures are assembled from a shared subunit pool (M> 1), Eq

(1) yields a system of under-determined rate equations with no unique solution for the steady-

state size of the individual assemblies when the subunit pool is limited (see S1 and S2 Texts for

details). This indeterminacy manifests as large size fluctuations (S1 Fig) in a stochastic descrip-

tion [13], arising from building block transfer (via assembly and disassembly) between individ-

ual structures. The underlying reason is that the limiting pool model does not provide a

mechanism to sense the individual size of the structures. Rather, the limiting pool mechanism

operates by sensing the size of the available subunit pool to provide a system size-dependent

feedback.

In the limiting pool model for M> 1, departure from size control of individual structures is

manifested either as large anticorrelated size fluctuations (for identical growth rates), or the

faster growing structure ending up incorporating all the subunits [13]. To ensure robust size

control, a negative feedback is required between the growth rate and the size of individual

structures, which is lacking in the canonical limiting pool model. Such feedback motifs can be

realized when the net growth rate of individual structures decreases with increasing size. In

fact, size-dependent assembly and disassembly rates have been reported in many cases of single

filament growth, including in Chlamydomonous flagella [3], microtubules [17, 18], as well as

filamentous actin (F-actin) [19]. Size-dependent growth models have also been developed for

multi-compartment membrane-bound organelles that grow via budding and fusion of vesicles,

where growth dynamics depends on the local chemical composition of the organelle [20].

Here we develop a theory for size-dependent growth of multiple intracellular structures that

grow via subunit addition and removal processes, and compete for a limiting pool of building

blocks in the cellular cytoplasm. We specifically explore the effect of size-dependent feedback

motifs on organelle growth dynamics to uncover the nature of feedback that may guarantee

robust control of organelle size.

Results

Theory of size-dependent growth of intracellular structures in a limiting

subunit pool

We first develop a minimal mathematical model for the assembly of an intracellular structure

from a limiting subunit pool, where the subunits undergo binding and unbinding kinetics

with rates given by Kon and Koff respectively. In our model, the assembly and disassembly rates

depend on the size of the individual structures and are given by

KonðnÞ ¼ kþðN � nÞð1þ nÞ� a=V ;

KoffðnÞ ¼ k� nb ;
ð2Þ

where N is the total amount of subunits, k+ and k− are the bare assembly and disassembly

rates, N − n = Nav is size of the pool of free subunits. The coefficients α and β can take on both

positive and negative values, and represent the strengths of the size-dependent feedback that

can arise due to active molecular processes or the geometry of the structures grown. A more

general choice for the size-dependent growth rate could be a polynomial function of n of arbi-

trary degree. Here we consider a power-law form for analytical tractability. The power-law

form for the growth rate also makes it easier to infer the nature of the size-dependent feedback,

which plays a vital role in organelle size regulation as discussed below. Negative feedback con-

trol of growth is realized for α> 0 (assembly rate decreases with size) and/or β> 0 (disassem-

bly rate increases with size). Conversely, size-dependent positive feedback can be described

with α< 0 and/or β< 0. These simple power law forms for the assembly and disassembly
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rates allow for analytical tractability of our minimal model, but results in a mathematical sin-

gularity for β< 0, where the disassembly rate encounters a divergence as the structure size

approaches zero. While this singularity has to be appropriately regularized in our analysis, we

note that the regime β< 0 is not biophysically relevant. To the best of our knowledge, no

known biological growth processes exhibit positive feedback from size-dependent

disassembly.

We assume that the subunit pool is well mixed in the cytoplasm such that subunit diffusion

is much faster compared to the growth process (see S3 Text for the role of diffusion). A con-

ceptual understanding of the growth process can be gained by dynamical systems analysis of

the following rate equation for the time evolution of a single structure of size n:

dn
dt
¼ KonðnÞ � KoffðnÞ : ð3Þ

From the above rate equation, it follows that there is a unique and stable steady-state size of

the structure for α + β� 0 (S2 Text). By contrast when α + β< 0 the system exhibits bistability

with two stable fixed points (see S2 Text).

To study the robustness of size control, it is necessary to go beyond a simple deterministic

description of average size, and examine how variations in size are controlled. To this end, we

implement a stochastic model in which the chemical master equation for the probability P(n,

t) of assembling a structure of size n at time t is given by,

dPðn; tÞ
dt

¼ Konðn � 1ÞPðn � 1; tÞ þ Koffðnþ 1ÞPðnþ 1; tÞ

� ðKonðnÞ þ KoffðnÞÞPðn; tÞ:

The above equation can be solved at steady state using the detailed balance condition:

k− nβP(n) = k+(N − n + 1)(n)−αP(n − 1)/V. The steady-state size distribution, in a system of

unit volume, is given by

PðnÞ ¼
1

CN

knN!

ðN � nÞ!ðn!Þ
aþb

 !

ð4Þ

with k ¼ kþ
k� and the normalization constant CN ¼

PN
n¼0
knN!=½ðN � nÞ!ðn!Þ

aþb
�. For α + β� 0

we get a unimodal size distribution steady-state, with a mean size that is stable to perturbations

(S3 Fig). For α + β< 0, the size distribution is bimodal, indicative of a bistable system (S4 Fig

and S2 Text). We return to this case later.

Size regulation of two competing structures

To elucidate the emergence of robust size control of multiple structures via size-dependent

negative feedback on growth, we consider two assemblies growing from a shared pool of N
subunits (Fig 1A). At time t, the size of the ith assembly (i = 1, 2) is given by ni(t), the number

of incorporated subunits. The assembly and disassembly rates of the ith structure is Kon ¼

kþi Navð1þ niÞ
� a
=V and Koff ¼ k�i n

b
i . Here, k�i denote the bare assembly and disassembly rates

of the ith structure, and Nav = N − (n1 + n2) is the total amount of available subunits. The state

of the system can be characterized by the joint probability distribution, P(n1, n2, t), which is

the probability that the size of the structure i (i = 1, 2) is ni at time t. The time evolution of the

probability distribution is governed by a chemical master equation (S2 Text) that can be solved
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to obtain the steady-state joint probability distribution in a system of unit volume (V = 1),

Pðn1; n2Þ ¼ Pð0; 0Þ
k
n1
1 k

n2
2 N!

ðn1!Þ
aþb
ðn2!Þ

aþbNav!
; ð5Þ

where k1 ¼ kþ
1
=k�

1
, k2 ¼ kþ

2
=k�

2
, and P(0, 0) is a normalization constant. The size distributions

of the individual structures, P(n1) and P(n2), can be obtained from the joint distribution by

summing over all possible sizes of the other structure, as derived in S2 Text. In the following,

we use stochastic simulations (Gillespie algorithm, Methods) to compute the time evolution of

the size of individual structures, and compare them to the dynamics predicted by the deter-

ministic rate equations (Eq 1). We note that the rate equations (Eq 1) do not simply follow

from the first moment of the chemical master equation, and should be interpreted as an

approximate deterministic model. Due to the nonlinearity of the system, the equation for the

mean size is coupled to higher order moments and cannot be simply deduced for all values of

α and β (see S2 Text).

The case α = 0 and β = 0 corresponds to the canonical limiting pool model (Eq 1) where the

assembly rate is proportional to the available pool size and the disassembly rate is constant [1].

In this case, the deterministic equations do not have a unique solution and stochastic simula-

tions predict large anticorrelated size fluctuations as the subunit pool is depleted (S2 Text and

S1 Fig). The class of models with α + β = 0 also fails to regulate the size of individual structures

Fig 1. Size regulation of two structures grown from a shared subunit pool. (A) Schematic of two filaments growing from a shared pool of monomers

where the assembly and disassembly rates depend on their individual size. (B-D) Size dynamics of two identical filaments (κ1 = κ2 = κ = 1 for B and C)

obtained from stochastic simulations in three distinct growth regimes: (B) α + β = 0 (for deterministic solution α = −1 and β = 1), (C) α + β = 1 (α = 0,

β = 1) and (D) α + β = −0.2, κ = 0.0022 (α = −0.2, β = 0). The black (n1) and gray (n2) solid lines are the deterministic solutions to the rate equations of

size. The deterministic solution correctly captures the mean size dynamics for α + β = 1, but fails to predict the essential features of size dynamics in the

two other cases. (E-F) Size distribution of two identical structures for (E) α + β = 0 and (F) α + β = 1. Open circles represent solution from stochastic

simulation and the solid line represents the analytical solution to the chemical master equation. (G) Size distribution for two competing structures with

α + β = 1 and κ1 = 2κ2 = 1, obtained from analytical solution to the master equation (solid line) and stochastic simulations (open circles). (H) Phase

diagram showing the co-existence of two competing structures over a broad range of parameter space in the model, with κ2 = 2. Coexistence phase is

defined as both structures having mean size larger than one subunit. For all results in (A-H) V = 1 and N = 50.

https://doi.org/10.1371/journal.pcbi.1010253.g001
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similar to the limiting pool model. Although the models in this class exhibit size-dependent

assembly and disassembly rates, there is no overall negative feedback control of structure size.

For example, in the case α = −1 and β = 1, the positive feedback control of assembly is nullified

by a negative feedback in disassembly. Lack of size regulation for α + β = 0 manifests as large

anticorrelated size fluctuations of two competing (but identical) structures (Fig 1B), resulting

in an almost uniform size distribution (Fig 1E). In this particular parameter regime (α + β = 0,

β = 1), the deterministic equations predict the existence of a stable node, while in the presence

of stochasticity there is no size regulation of individual structures (Fig 1B and S2 Fig).

By contrast, for α + β> 0, there is an overall negative feedback control of growth that

ensures robust size control of multiple structures. To illustrate this, we simulate the growth

dynamics of two identical filaments competing for the same subunit pool, for the specific case

α + β = 1 (Fig 1C and 1F). The individual filaments assume a well-defined mean length (Fig

1C), with the standard deviation in size smaller compared to the mean (Fig 1F). In this case (α
+ β> 0), the deterministic equations predict the existence of a stable node (S3 Fig) and cor-

rectly captures the mean length dynamics (Fig 1C).

In the scenario when α + β< 0, there is an overall positive feedback resulting in autocata-

lytic growth and bistable size distribution. In this case, the two identical structures initially

grow at equal rates, but due to transient size differences arising from stochastic fluctuations,

the bigger structure ends up assimilating all the subunits. Consequently, stochastic fluctuations

can make the bigger structure lose enough subunits at the expense of growth of the smaller

structure. Thus, stochastic simulations result in dynamic switching between two stable states

(Fig 1D), which is not captured by the deterministic rate equations (S4 and S5 Figs).

Apart from the existence of a well-defined mean steady-state size for α + β> 0, co-existence

of multiple competing non-identical structures is an important aspect of biological size regula-

tion. It is relevant when there are nucleators with different assembly and disassembly rate con-

stants, assembling multiple structures from the same subunit pool [21]. In the limiting-pool

regime, even a small difference in assembly or disassembly rate constants will lead to a “win-

ner-takes-all” scenario, where the structure with a higher net growth ends up taking all the

subunits [13]. A negative feedback control of growth rate ensures stable co-existence of multi-

ple competing structures with mean size commensurate with the difference in their growth

rates (Fig 1G). This co-existence regime occurs over a wide range of the parameter space (Fig

1H) for α + β> 0, reflecting it to be a robust feature of negative feedback control of size.

It is important to note that the different growth regimes described above are only meaning-

ful when the net growth rate κ (or the subunit concentration) is high enough. Below a thresh-

old growth rate, κ< κ0, the structure size is small (of the order of unity) and the dynamics are

characterised by large size fluctuations (coefficient of variation CV> 1) even in presence of

strong negative feedback (S6 Fig). The size distribution in this regime is very close to an expo-

nential distribution (S6 Fig). We define κ0 as the growth rate for which CV = 1. Both the mean

size and the standard deviation increases with increasing κ and N, with the CV decreasing with

increasing κ (S6 Fig). The loss of size regulation at smaller growth rates (κ< κ0) occurs for all

values of α + β (S6 Fig). We note that this regime of growth can also be observed below a criti-

cal subunit concentration for which the deterministic growth rate _n � 0, but stochastic growth

gives rise to small transient structures with a large CV in the size distribution.

The results presented above for two structures (Fig 1) can be easily generalized to multiple

structures (M> 2) growing from the same subunit pool (S7 Fig). As discussed in detail in S4

Text, introducing more structures does not introduce any new interactions and the qualitative

features of the growth in the different feedback regimes remain unchanged for any value of M
(S8 Fig). Since analytical computation of size distribution of individual structures become
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cumbersome for larger values of M, we use Gillespie simulations to evolve the size dynamics of

multiple structures.

Comparisons to specific biological systems—Filament length regulation

Size-dependent growth of structures is a commonly observed motif for size regulation in biol-

ogy and it appears in many specific biomolecular systems that grow via subunit assembly and

disassembly. Here we visit some of these examples to show how size-dependent assembly and

disassembly rates in these intracellular structures can be captured by our minimal model for

specific choices of the coefficients α and β. The case (α, β) = (0, 1) can be mapped to the length

regulation of Microtubules and F-actin (see S5 Text for details), where the filament disassem-

bly rate increases with increasing filament length (Fig 2, cyan solid circle).

In the antenna mechanism for microtubule length control, the kinesin Kip3 associates with

microtubule monomers, walks towards the plus end of the filament and detaches from the end

by removing microtubule monomers [22]. Over time, Kip3 molecules accumulate near the

Fig 2. Phase diagram of the size-dependent growth model. Phase diagram of the size-dependent growth model in α-β plane, showing the different

regimes of size control. α + β> 0 defines the regime of negative autoregulation of growth which guarantees robust size control. Positive autoregulation

of growth (α + β< 0) gives rise to bistable size distribution. The phase boundary α + β = 0 corresponds to a class of models where there is no size

regulation of individual structures, similar to the limiting pool model (α = 0, β = 0). We map our model to size control mechanisms for a variety of

intracellular structures, from linear filaments to organelles.

https://doi.org/10.1371/journal.pcbi.1010253.g002
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plus-end, leading to an effective linear length-dependent disassembly rate [23]. In the case of

F-actin, chemical changes in subunit states, via nucleotide hydrolysis of bound monomers

[24], can lead to a linear length-dependent disassembly rate [19] (S9 Fig). In addition, length-

dependent F-actin disassembly could also arise through the action of the severing protein

ADF/cofilin [25]. In all these cases, length-dependent disassembly via active molecular pro-

cesses can stabilize the length of multiple filaments competing for the same monomer pool.

Similar to length-dependent disassembly processes, length-dependent assembly can also

give rise to negative feedback control of structure size in many cases, such as in the growth of

actin cables in yeast and eukaryotic flagella. Size regulation of actin cable via antenna mecha-

nism [4] can be mapped to the case (α, β) = (1, 0) where the assembly rate decreases with struc-

ture size (Fig 2, light green dots). In the case of actin cable formation, Smy1 proteins get

transported to actin barbed end and inhibit Formin activity to transiently halt the growth [26].

Longer filaments can bind and transport more Smy1 to the barbed end, creating a size depen-

dent decrease in assembly rate [4]. Below we present models for a few specific organelles

whose size regulation be understood using our proposed motifs for size-dependent feedback

on growth rate.

Length regulation of eukaryotic flagella

Flagellar growth in the biflagellate Chlamydomonas reinhardtii is a classic example of size regu-

lation of multiple organelles assembled from a common cytoplasmic pool of building blocks

[27–29]. Molecular mechanisms for flagellar length control remain an active area of research,

with mathematical models suggesting that flagellum length dynamics is controlled by a length-

dependent assembly process [2, 3, 30], or by a length-dependent disassembly mechanism [31].

C. reinhardtii flagella grow from a shared pool of tubulins, which are carried and assembled

via intraflagellar transport (IFT) particles at the tip of the flagellum [3] (Fig 3A). As the total

amount of IFT particles on the flagellum remain constant over time [3, 30], IFT density at the

flagellar tip is a decreasing function of length. This leads to a length-dependent assembly rate

for the flagellum, inversely proportional to the flagellum length [2, 30, 32], corresponding to

the case (α, β) = (1, 0) in our model (Fig 2).

We use the balance-point model proposed by Marshall et al. [2, 3, 32] to show that it is suffi-

cient to regulate flagellar length in the multi-flagellate system in C. reinhardtii. A deterministic

description of the system takes the form (i = 1, 2),

_ni ¼ kþi
N �

P2

j¼1
nj

V

 !

ð1þ niÞ
� 1
� k�i ð6Þ

where ni is the length of the ith flagellum in tubulin numbers, V is the cell volume, N is total

tubulin amount in the cell. The initial growth rate is independent of flagellar length, consistent

with experimental data [28]. We use Gillespie algorithm (Methods) to simulate the stochastic

system of multiple flagella grown from a shared pool of tubulins. Our simulations (Fig 3B) cap-

ture the experimentally reported phenomena that mean flagellar size decreases with increasing

the number of flagella in a cell [12, 27, 33].

We further use our stochastic model to simulate the flagellar regrowth experiment (Fig 3C-

left), where one of the two flagella is cut at t = t0 and the length dynamics for both the flagella

are measured. Upon severing of one of the flagella, the intact flagellum starts shrinking initially

whereas the amputated flagellum starts growing in response to the cut [28]. Both the flagella

start growing after some time, eventually reaching a steady state-length that is similar to the

original length of the flagellum [28]. The regrowth of the damaged flagellum is limited by the

production of new subunits as inhibition of protein production generates two flagella with the
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same but smaller size [28]. To model this experiment, we first let the size of the two flagella

(with lengths L1 and L2) reach a steady-state following the stochastic growth dynamics given in

Eq 6. We model the amputation by letting L2! 0 which results in reduction in the total num-

ber of building blocks N = Nav + L1 + L2, such that N! N − L2. Subunits are produced at a

rate rp to replenish the available subunit pool such that Nav(t) = Nav(t0) + δN(t). Dynamics of

subunit production is given by:

_dN ¼ rpðDN � dNÞ ; ð7Þ

where ΔN (= L2) is the lost amount of subunits during the flagellum amputation and the initial

condition is δN (t0) = 0. The timescale for fast shrinkage dynamics is governed by the rate con-

stants k±. The slower process of length recovery is governed by the production rate of new sub-

units. We used a least-squared minimization process to determine the production rate rp by

fitting our model with the experimental data [27]. The final results are shown using a rescaled

time t − t0. Our fitted model quantitatively captures the experimentally measured flagellar

length dynamics (Fig 3C-right).

Centrosome size regulation

Kinetic self-assembly model. Centrosomes are membraneless spherical organelles con-

sisting of a pair of centrioles at the center (Fig 4A), surrounded by a porous scaffold-like struc-

ture [34] called the pericentriolic matter (PCM). In cells preparing to enter mitosis, the two

centrosomes are spatially separated and grow by recruiting PCM material around the centri-

oles [8, 35–38]. While the mechanics of PCM assembly is a subject of ongoing debate [39], the

molecular components for PCM growth must ensure robust size control of centrosomes dur-

ing mitosis. Otherwise, small stochastic variations in the sizes of maturing centrosomes could

amplify through the process of maturation, leading to large difference in the two growing cen-

trosome size. Furthermore, experimental data show that centrosome size scales with cell size,

through multiple rounds of cell divisions in the early C. elegans embryo, suggesting that cen-

trosome size is determined by a limiting pool of building blocks [1, 8]. Since the limiting pool

model cannot maintain the size of two structures competing for the same subunit pool (Fig 1),

additional feedback controls must be necessary for centrosome size regulation.

Fig 3. Flagellar size regulation. (A) Flagellum assembly in C. reinhardtii is regulated by IFT particles that incorporate tubulin dimers at the flagellum

tip. This assembly process combined with the conservation of IFT amount in flagellum gives rise to an assembly rate that decreases with flagellum

length. (B) Decrease in flagellar size with increasing number of flagella while the cell size is kept constant. (C, Left) We model the flagellar re-growth

experiment [28], where one of the two flagella is amputated and regrowth is observed. The intact flagellum starts shrinking immediately after the

amputation, indicating a shared pool of building blocks. (C, Right) Fit to the experimental data for the length dynamics of the two flagella with the

growth curves from simulation show good quantitative agreement. The plotted time shows the duration after amputation. Parameters: tubulin

concentration = 5 μM, α = 1, β = 0, tubulin size = 10 nm, k+ = 120 μm3 min−1, k− = 100 min−1, t0 = 1000 min, production rate of new subunits rp =

0.0016 min−1.

https://doi.org/10.1371/journal.pcbi.1010253.g003
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While the assembly of PCM is coordinated by many different proteins, Centrosomin (Cnn)

and Spindle defective-2 (Spd-2, or Dspd-2 in Drosophila) are the most essential components of

PCM, in the absence of which PCM assembly does not occur [38]. Furthermore, increased

amount of Cnn and Spd-2 leads to the formation of larger mitotic centrosomes [35, 40]. It is

reported that both these proteins assemble very close to the centriole and then migrate out-

wards during PCM scaffold formation and growth [38, 41]. Thus the assembly rate of PCM

will depend on the centriole size that remains constant during PCM assembly, resulting in a

constant assembly rate k+ that is centrosome size-independent but centriole size-dependent.

Our consideration is consistent with experimental data reporting smaller (damaged) centrioles

forming smaller centrosomes during PCM assembly [42].

Fig 4. Centrosome growth by localised assembly and distributed disassembly. (A) Localized assembly around the centriole and disassembly

throughout the pericentriolic matter generate a size-dependent disassembly rate which ensures robust size control. (B) Size dynamics of a pair of

identical centrosomes that are initialized with equal size. Here Vcell = 5000 μm3 (C) Centrosome volume decreases with increasing centrosome number,

nc, during C. elegans embryonic development, where the embryo rapidly divides into many cells with decreasing cell size. Model: solid black line,

Experimental data: orange. (D) Centrosome volume, Vc, scales linearly with cell volume, Vcell. Parameters: subunit concentration = 1.67 μM, α = 0, β =

1, subunit size = 5.8 × 10−7 μm3, k+ = 103 μm3min−1, k− = 10−3min−1.

https://doi.org/10.1371/journal.pcbi.1010253.g004
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The PCM scaffold is an amorphous and porous structure [35], where the disassembly of the

scaffold proteins and other associated PCM proteins occurs throughout the PCM volume. The

disassembly rate can thus be assumed to be proportional to the centrosome volume, given by

k−n, where n is the number of PCM building blocks incorporated in the centrosome and k− is

the bare disassembly rate. Based on these considerations, we propose a simple kinetic model

for the growth of centrosomes that assemble PCM building blocks from a limiting cytoplasmic

pool. PCM assembly is localized around the centriole, and disassembly can occur throughout

the volume of the porous PCM giving rise to a size-dependent disassembly rate (Fig 4A). A

deterministic description for this growth process is given by,

_n ¼ kþ
ðN � nÞ

V
� k� n ; ð8Þ

where V is the volume of the cell, and N is the total amount of the PCM building blocks that

can be estimated from proteomics data. Knowing V and N from independent measurements,

the rate constants k+ and k− can be determined by fitting experimental data for the steady-state

size of the centrosome k+N/(k+ + k−V), and the timescale for reaching the steady-state (k+/V +

k−)−1. The growth model in Eq (8) directly maps to our general model for size-dependent

growth with (α, β) = (0, 1) (Fig 2). Since α + β> 0, the model ensures robust size control of

two centrosomes assembled from a shared resource pool.

We use the stochastic description of (8) to demonstrate size control of a pair of centrosomes

growing to be of the same size in a limiting pool of the subunits (Fig 4B). Aside from ensuring

size control, our model for centrosome assembly can quantitatively capture the scaling of cen-

trosome size with centrosome number (Fig 4C) and cell volume (Fig 4D), as measured during

early C. elegans embryonic development [8]. Our simplified growth description does not cap-

ture the sigmoidal nature of growth thus it may be more applicable to Drosophila centrosome

growth rather than C. elegans [9].

Liquid-liquid phase separation model. Recent studies have suggested the role of liquid-

liquid phase segregation (LLPS) in centrosome maturation and growth control [9], but the

role of LLPS in centrosome size control remains a highly debated issue [39]. Here we discuss

centrosome growth using the LLPS model developed by Zwicker et al [9], to show how it com-

pares to our kinetic self-assembly model. We specifically discuss PCM droplet growth in the

limit where phase segregation is strong and growth is limited by chemical reaction (i.e., fast

diffusion of PCM components).

The growth of the centrosome, considered as a liquid droplet of volume V, is given by

dV
dt
¼ ðk�A

1
� kBAÞV þ Q

�
A
1

c�
þ kAB

�
A
0
Vc

Nc�
ð9Þ

where ϕA and ϕB are the volume fractions for the soluble (A) and the phase segregated (B)

forms of the PCM components, respectively, and ψ− is the volume fraction of B inside the

droplet. Here kAB, kBA and k are the reactions rates for A! B, B! A and AB! B, respec-

tively. The bulk volume fraction of the A and B forms, away from the droplet, is given by �
A
0

and �
B
0

respectively and �
A
1

is the volume fraction of A inside the droplet. The chemical activity

of the centriole, volume of the cell, and the number of centrioles growing are given by Q, Vc
and N, respectively.

We neglect spontaneous production of phase segregated form B away from the centriole

(kAB = 0), and the volume fraction of B inside the droplet is considered to be unchanged, i.e.,
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ψ−= constant. The volume fractions of A in the bulk and inside the droplet are given by

�
A
0
¼ �� � c�

NV
Vc

� �

ð10Þ

�
A
1
¼ ð1 � c� Þ�

A
0

ð11Þ

where �� is the average volume fraction of the total PCM material. We define �� ¼
VAþVB
Vc
¼

Ntot
Vc

,

where Ntot is the total amount of PCM material that remains constant during the droplet

growth. We also write c� ¼
nBdv
V , where nB and δv are the number of B subunits inside droplet

and characteristic volume of each subunit respectively. Now we can rewrite �
A
0
¼

Navdv
Vc

and

�
A
1
¼ ð1 � c� Þ

Navdv
Vc

� �
where Nav = Ntot − nB is the available amount of subunits that can con-

tribute to the droplet growth. Finally using the definition of ψ− we get the nB dynamics given

by

dv
c�

� �
dnB
dt
¼
dV
dt

ð12Þ

and this simplifies to

dnB
dt
¼ ð1 � c� Þ knB þ �Qð Þ

Navdv
Vc

� �

� kBAnB ð13Þ

where �Q ¼ Q
dv

. This above description then can be rewritten as

_nB ¼ ðC0 þ C1nBÞ
Nav

Vc

� �

� C2nB ð14Þ

where C0 = (1 − ψ−)Q, C1 = (1 − ψ−)kδv and C2 = kBA. In the case of C1 * C0 (closer to passive

phase separation limit), this growth description maps to our size dependent growth model

with α = −1, β = 1. Thus, this growth mechanism will lie on the limiting pool line, α + β = 0,

which does not guarantee size control for multiple structures. In the limit C0� C1, where the

phase segregation is strongly controlled by centriole chemical activity (Q), the LLPS model

results are very similar to our localized assembly model, and is able to provide robust size con-

trol for multiple centrosomes. Our theory assumes a strong regulation of centrosome growth

by the size and chemical activity of centriole. Thus our theory naturally predict that irregulari-

ties in centrosome size regulation may arise from errors in centriole assembly. This can be

important in pathological scenarios like cancer where centrosome irregularities has been

observed [43].

Nucleus size control: A case for coupled growth of filaments and an

organelle

Nucleus is a highly complex organelle, but in a very simplified manner it can be considered to

be composed of two key components—the inner nucleoplasm (NP), surrounded by the outer

nuclear envelope (NE). During nucleus growth, both the NP and NE components grow from

their respective pool of building blocks. However, which one of these two components controls

nucleus size (i.e., nuclear radius) and growth remains an open question [44]. Though there are

many studies reporting the scaling of nucleus size with cell size [45–47], it is not well under-

stood how nucleus size is regulated. To this end, we present a simple two-component model for

nucleus—an outer spherical shell representing NE, and an interior spherical body representing
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the NP. We demonstrate how the geometric design of NE and NP assembly leads to nuclear

size regulation, and compare our model predictions with available experimental data.

Growth of nucleus by nuclear envelope assembly. We first consider a model for nucleus

growth by nuclear envelope (NE) assembly, taking inspiration from a recent in vitro study in

Xenopus levis egg extract [48], where nucleus growth is coupled to the growth of microtubule

asters surrounding the nucleus [48–50]. Here, NE assembly occurs through active incorpo-

ration of nuclear membrane vesicles/fragments (building blocks of NE) by dynein motors

moving along astral microtubule tracks (Fig 5A). The microtubule aster is a collection of many

dynamic microtubules surrounding the nucleus, where each individual filament grows from a

cytoplasmic pool of tubulins (building blocks of microtubules) (Fig 5A). The rate of NE assem-

bly is proportional to the size of the microtubule aster, as the number of available NE building

blocks scales with the volume spanned by the the aster. As the NE grows in size maintaining a

constant thickness, we assume that the NP volume expands accordingly to accommodate the

increase in nuclear surface area. The deterministic rate equations for the growth of one nucleus

is given by

_n ¼ Kþð�L;RnÞ
N � n
V

� �

� k� n ; ð15Þ

_Li ¼ kþm
Nm �

P
iLi

V

� �

� k�mLi ; ð16Þ

where Rn is the nucleus radius, n and Li are the sizes of NE (in building block units) and the ith

microtubule filament, respectively. The total amount of tubulin and NE building blocks are

given by Nm and N, respectively, and V is the cell (or system) volume. Here k± and k�m are the

bare rates of assembly and disassembly for NE and microtubules, respectively.

Since assembly occurs at the surface, size of the nucleus is determined by the relation

4pR2
n ¼ ndA, as n building blocks, each of area δA, make up the NE. The size-dependent assem-

bly rate is given by Kþð�L;RnÞ ¼ kþð4p=3Þðð�L þ RnÞ
3
� R3

nÞ, proportional to the volume acces-

sible to the aster structure, and �L is the average length of the microtubules. Initially, the

assembly rate induces a positive feedback on NE growth as �L≪Rn. As assembly progresses, the

filaments become longer to yield �L � Rn, such that K+ becomes independent of Rn. Disassem-

bly occurs uniformly throughout the NE surface, yielding a size-dependent disassembly rate,

k−n, which provides a negative feedback on NE growth. The later stages of NE growth can thus

be mapped to our general growth model with (α, β) = (0, 1) (Fig 2 and S6 Text), ensuring

robust size control. Length dynamics of microtubules is implemented using the antenna

model [22, 23], where the filament disassembly rate increases linearly with filament length (see

S5 Text).

We simulated the stochastic dynamics of nucleus growth using the model in (15) and (16),

with the model parameters calibrated from in vitro data [48]. Both the filaments and the

nuclear envelope reach a well-defined steady-state mean size (Fig 5B). Initially, NE size

increases rapidly due to size-dependent assembly rate (K+), whereas growth slows down at

later times when K+ balances the rate of NE disassembly (Fig 5B). Our model quantitatively

captures the experimentally observed scaling between nucleus size and nuclei number, when

multiple nuclei are assembled from a limiting pool of subunits (Fig 5B, inset). The nuclear size,

Rn, decreases with increasing nuclei number, as expected from a limiting pool of building

blocks. This coupled growth model of NE and microtubules can also explain the nucleus size

dependence on the size of confinement as reported in in vitro experiments [48]. Here, the

microtubule growth is hindered by the confinement wall, and hence a smaller system size will
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Fig 5. Growth of nucleus surface and volume assembly. (A) Modelling the growth of nucleus, coupled to the dynamics of the astral microtubule

structure. Building blocks for nuclear envelope (NE) are actively transported by dynein motors along the astral microtubules surrounding the nucleus.

Filaments in the aster grow by incorporating tubulins from the cytoplasmic pool. (B) Dynamics of nucleus size (normalised radius Rn) and single

microtubule length (normalised). (Inset) Nucleus size decreases with increasing nuclei number in a given volume, in agreement with in vitro data [48].

(C) Effect of the size of confinement, Rsys, on nucleus size Rn, where Rn increases with increasing Rsys, eventually saturating for large Rsys. Solid line is

model fit, and black triangles represent experimental data [48]. The confinement radius was increased while keeping the confinement volume constant,

as in experiments [48]. (D) Scaling of nucleus volume, Vn, with cell volume Vcell. Theory predicts that size scaling is quadratic if Vn is controlled by the

growth of NE, but the scaling is linear if Vn is regulated by NP assembly. The linear scaling fits quantitatively with the nucleus-to-cell size scaling

measured in an eukaryotic cell [10]. Parameters: NE subunit concentration = 8.0 μm−3, α = 0, β = 1, NE subunit size (δA) = 0.215 μm2, k+(NE) =

5 × 10−3 μm3min−1, k−(NE) = 10−1min−1, NP subunit concentration = 0.75 μm−3, NP subunit size (δV) = 0.1 μm3, k+(NP) = 2.0 μm3min−1, k−(NP) =

10−3 min−1, MT subunit concentration’ 0.67 μM, MT subunit size (δL) = 5 nm, kþm ¼ 2:0 μm3min−1, k�m ¼ 10� 2 min−1.

https://doi.org/10.1371/journal.pcbi.1010253.g005
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generate a smaller aster structure. As a result, the assembly rate will be smaller giving rise to a

smaller nuclear size (Fig 5C). However, the maximum nucleus size is set by the steady-state

length (�L) of the microtubule filaments (when all other conditions remain unchanged). There-

fore, increasing the confinement size larger than �L does not generate a larger nucleus (Fig 5C).

This can explain why an isolated nucleus grows to be larger in size than a group of closely

packed nuclei in multinucleated cells. This is because the presence of neighbouring nuclei hin-

der microtubule growth [50], resulting in reduced nuclear size. A recent study on sea urchin

nucleus growth suggests that perinuclear endoplasmic reticulum may act as a limiting resource

pool for the NE and nucleus size scaling is controlled by scaling of perinuclear endoplasmic

reticulum volume during embryonic development [51]. Such results indicate the importance

of considering the nuclear envelope growth to understand nuclear size regulation.

Growth of nucleus by nucleoplasm assembly. During nuclear growth in Xenopus levis
egg extract, many NP proteins such as lamin-A, importin-α [11] are transported inside the

nucleus and contribute to NP growth [52, 53]. The nucleoplasm being very complex in struc-

ture and composition, the NP proteins do not necessarily assemble into a bigger structure to

span the necleoplasm rather, in this context, by assembly we mean that the NP proteins con-

tribute to nucleoplasm volume. To model growth of nucleus by NP assembly, we use the rate

equations in (15) and (16), with the important difference that the size of nucleus is determined

by the relation: Vn ¼
4p

3
R3
n ¼ ndV , where Vn is the nucleus volume and δV is volume of individ-

ual NP subunits. Thus, when NP regulates nucleus size, Vn is proportional to the number of

NP subunits incorporated, n. This model for nucleus growth by NP assembly does not alter

the effect of confinement, but predicts the scaling relation, Rn � n1
3. This scaling is different

when nucleus size is regulated by NE assembly, where, Rn � n1
2 (Fig 5D). This difference can

be understood by relating NE-growth and NP-growth with growth of a spherical shell of con-

stant thickness and the growth of a solid sphere, respectively. By comparing our simulation

results with experimental data [10, 46], we find that the experimentally observed linear scaling

of nuclear size with cell size cannot be achieved when nucleus size is purely regulated by NE

assembly (Fig 5D), but NP-growth model leads to Vn/ Vcell. While our simplified description

can capture experimentally reported nuclear size scaling and the effect of confinement on

nuclear growth, the question of whether NP or NE regulate nucleus size and growth cannot be

answered without considering the diverse modes of nuclear envelope remodeling [54, 55].

Interestingly, a recent study on spindle size regulation shows that both area dependent and

volume dependent regulation of size can co-exist to give rise to a non-linear scaling behaviour

[7]. Our modeling framework provides a possible way to test the different underlying mecha-

nisms of nuclear growth and size control. To keep our model description simple we have not

considered the nuclear pore complexes (NPCs) which plays a vital role in regulating nuclear

import [56], but NPC density and activity can be conceptualized as the factor controlling the

K+ parameter in our model.

Bistable size regulation from autocatalytic growth

So far we focused on robust size control of multiple structures via size-dependent negative

feedback on growth (i.e., α + β> 0). In the opposite case of size-dependent positive feedback,

α + β< 0, the dynamics are qualitatively different. For a single structure, positive feedback on

growth implies an assembly (disassembly) rate that increases (decreases) with increasing struc-

ture size, resulting in autocatalytic growth. When the effective growth rate is small κ< κ0,

where κ0 is a threshold, the structure fails to grow significantly and show large size fluctuations

compared to the mean size (Fig 6A). The size dynamics is bistable and gives rise to a bimodal

size distribution in an intermediate range of growth rate (Fig 5B and S4 Fig). At a growth rate
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Fig 6. Bistable size distribution emerges from autocatalytic growth. Bistability in a single structure growth occurs in a range of κ value. (A) The

structure does not grow substantially for very small growth rates (κ< κ�) but (B) it shows bistability and bimodal size distribution in an intermediate

range of growth rates. (C) For growth rates higher than a critical value κ> κc, the structure takes up almost the whole pool and grows to be very large as

expected in autocatalytic growth. Parameters for A-C: N = 50, α = −1, β = 0. (D) Probability distribution for the size of two identical structures (κ1 = κ2

= κ = k+/k−) assembled via autocatalytic growth. The structures do not grow at very low growth rates, leading to an exponential distribution peaked at 0.

At high κ, the size distribution is bistable. Parameters: N = 50, α = −0.2, β = 0. (E-F) Dynamics of the size of the two structures in the bistable regime at

two different growth rates κ = 0.0022 (E) and κ = 0.0025 (F). Parameters: N = 50, α = −1.0, β = 0. (G) Residence time (τR) of a single structure increases

exponentially with increasing concentration of subunits. Dashed line—exponential fit, solid circles—simulation data. (H) Stochastic selection of a single

structure when multiple structures compete for a limiting subunit pool, for α + β< 0 and high subunit concentration. Here, the residence time of a

single structure becomes seemingly infinite, so the stochastically chosen large structure can remain stable for long timescales. Parameters: N = 2000, κ =

0.0125, α = −1, β = 0, and number of structures = 20. (I) State diagram of the system, showing different growth regimes as a function of κ and the

strength of positive feedback, −α (with β = 0). By increasing κ at any non-zero value of −α, the system transitions from a “no-growth” state (black dots),

to a “shoulder” state (purple dots) at intermediate κ, and finally a bistable state (red dots) for high κ. At very high κ, τR can be very large to effectively

give rise to a single-structure. Increasing the strength of positive feedback promotes a bistable state at smaller κ. Parameters: β = 0, V = 1 and N = 50.

https://doi.org/10.1371/journal.pcbi.1010253.g006

PLOS COMPUTATIONAL BIOLOGY Size regulation of intracellular structures and organelles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010253 June 17, 2022 16 / 32

https://doi.org/10.1371/journal.pcbi.1010253.g006
https://doi.org/10.1371/journal.pcbi.1010253


higher than a critical value κc (κ> κc) the size dynamics becomes monostable and the single

structure grows to be large, by depleting almost the entire subunit pool (Fig 6C and S4 Fig).

Thus, bistable size regulation of a single structure is observed in a range of growth rate (κ� < κ
< κc). See S2 Text for further analysis of autocatalytic growth of a single structure from a limit-

ing subunit pool.

The result becomes less intuitive when there are two identical structures (with equal assem-

bly/disassembly rates) competing for a shared subunit pool. When the growth rate is small, the

structures do not grow significantly and attain an almost exponential size distribution (Fig 6D,

blue) with large fluctuations compared to the mean size (S6 Fig). With sufficiently large growth

rate, the structures initially grow at equal rates, but due to transient size differences arising

from stochastic fluctuations, the bigger structure starts assembling faster than the smaller

structure and ends up incorporating most of the building blocks. However, at this stage, sto-

chastic fluctuations can make the larger structure lose enough building blocks to make a sud-

den transition to a smaller structure, while the other structure grows to be larger (Fig 6E and

6F). Thus, above a critical growth rate, we get bistable size dynamics and a bimodal size distri-

bution of two structures competing for a shared pool (Fig 6D, yellow). There is an intermediate

regime where the structures show large size fluctuations without bistable dynamics, and the

size distribution exhibits a “shoulder” and a longer tail (Fig 6D, red).

To characterize the kinetics of state transitions between the two steady states of the struc-

ture, we compute the residence time τR, which is the average duration the structure is found in

one of the steady states. We find that τR increases with the growth rate (Fig 6E and 6F), as well

as increases exponentially with the total pool size N (Fig 6G). This phenomenon of dynamic

switching between a small and a large size is a consequence of stochastic growth and cannot be

understood from a purely deterministic description. The statistics of state transitions, charac-

terized by τR, depends on the individual values of α and β (S4 Fig). In the case of multiple

structures (M> 2) the size dynamics remain qualitatively similar with dynamic transitions

among states characterized by a larger size of one of the structures and a small size for all other

structures (S11 Fig).

Bistable size distribution has been reported in microtubule/kinesin-8 in-vitro systems [57],

where kinesin-8 motors bind to the microtubules, walk towards the plus end and disassociate

from the filament by removing a tubulin dimer [17, 22, 23]. This active disassembly depends

on the motor concentration profile, which in turn depends on the filament length [18]. This

can lead to a reduced concentration of motors at the tip of a longer filament, generating a posi-

tive feedback which can be approximately mapped to our minimal model with α = −2 and β =

1, (Fig 2 yellow-black square, S7 Text) and bimodal length distribution (S5 Fig).

In the limit of high subunit concentration, a stochastically selected larger structure will con-

sume all the building blocks to increase in size, but stochastic fluctuations may take a very long

time to make the structures switch states. Depending on the strength of the positive feedback,

growth rates and building block concentration, residence time of the bigger structure can be

so large that the transition to a smaller structure may not occur within a realistic timescale.

Thus an autocatalytic growth process (α + β< 0) can be used to regulate the formation of a

single structure starting from noisy initial state containing many structures. This phenomenon

can be related to the process of polarity establishment in budding yeast, where the budding

mechanism requires the formation of one single concentrated patch of the polarity protein

Cdc42 that marks the budding location to initiate the subsequent process of budding [58].

Many studies have linked positive feedback with the process of Cdc42 patch formation via var-

ious physical mechanisms [59, 60] but the mechanism of polarity formation is not fully under-

stood. Our model for autocatalytic growth of structures from size-dependent positive feedback

is in good agreement with the previously stated mechanism of polarity establishment. In our
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case if we start with many structures only a few can survive to gain considerable size, but finally

the stochastically chosen largest structure will win to form a single large structure while the

other structures eventually die out (Fig 6H).

Interestingly, Cdc42 proteins also exhibit recurring polarity patch formation (flickering)

during polarity establishment in budding yeast [60, 61] and oscillations during growth in fis-

sion yeasts [62]. Our model predicts that at an intermediate concentration of building blocks,

multiple growing structures enter a dynamic state (S12 Fig), where the residence time is small

enough to promote transitions between large- and small-sized structure within experimentally

relevant timescales. This is in good qualitative agreement with recent studies of Cdc42 polarity

establishment [60, 61], where a decrease in overall protein amount or feedback strength pro-

motes flickering recurrent polarity patches, generating many transient structures instead of

one single large structure. The negative feedback needed for these dynamic transitions stems

from the limited amount of the subunit pool. With increasing strength of positive feedback,

bistability can occur at smaller growth rates (Fig 6I). Furthermore, an increase in system size

(i.e., increase in total pool size as the total subunit concentration is kept constant) can drive a

transition from multiple coexisting structures to the growth of a single structure (S10 Fig).

This size-dependent transition is a feature of stochastic dynamics, and can coordinate size-

dependent symmetry breaking and pattern formation in developmental systems that follow

similar feedback motifs [63].

Constant subunit concentration

Next we ask how cells regulate the size of intracellular structures when the subunit pool is not

limited, but is maintained a constant homeostatic concentration. When the cell maintains a

constant subunit concentration, ρ, the deterministic growth dynamics for M number of struc-

tures growing from a shared pool can be written as

_ni ¼ kþi r � k�i ð17Þ

where k�i is the assembly and disassembly rates for ith structure and ni is the size of the ith struc-

ture in number of subunits. The structures will keep growing without bound when _ni > 0.

This unbounded growth occurs above a critical subunit density ρc given by _ni ¼ 0 -i.e.,

rc ¼ k�i =k
þ
i . Below this critical density the structures do not grow at all. Recovery from this

failure in size control occurs when the growth process has size-dependent negative feedback

_ni ¼ kþi rð1þ niÞ
� a
� k�i n

b
i ð18Þ

where α + β> 0. This growth mechanism is distinct from the limiting pool model in a manner

that results in structures growing independently of each other and features such as bistability

of size cannot be seen. To explore the features of such growth, we study the stochastic dynam-

ics of two structures growing from a shared subunit pool that is maintained at a fixed concen-

tration (Fig 7A). The resulting master equation can be analytically solved to find the marginals

given by

Pðn1;2Þ ¼
X1

n1;2¼0

k
n1
1 k

n2
2 r

n1þn2

ðn1!Þ
aþb
ðn2!Þ

aþb

 !

Pð0; 0Þ; ð19Þ

where P(ni) is the probability of finding the ith structre in size ni and P(0, 0) is the probability

of finding both the structures at zero size (see S8 Text for details). We compute this sum

numerically to calculate the discrete size distributions. We can easily see that taking α = 0, β =

0 we get a probability distribution that is not normalizable, signifying unbounded growth and
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the non-existence of a steady-state size distribution, unless ρ is smaller than the critical subunit

density rc ¼ k�i =k
þ
i , giving rise to non-growing structures. With α + β> 0 we obtain size con-

trol of multiple structures with or without inherent differences in bare growth rates (Fig 7B

and 7C). While individual size control is achieved, this growth mechanism does not provide

access to information on cell/system size. Thus it is not possible to get structure size scaling

with cell size or structure number, when subunit concentration is maintained at a constant

value (Fig 7D).

Fig 7. Growth of structures with constant subunit concentration. (A) Schematic representation of the growth of two structures, where the cell

maintains a fixed cytoplasmic density of subunits. (B-C) Size-dependent negative feedback enables robust size control of two structures with (C) or

without (B) inherent difference in bare growth rates. The steady-state size distributions for the two structures in (B) and (C), computed analytically by

solving the master equation. (D) The constant subunit concentration model does not lead to any scaling between the structure size and the system size,

when multiple structures growing from a shared subunit pool. The plot shows time series for the size of 10 (green), 20 (yellow) and 40 (red) structures

grown from a pool of concentration ρ = 2, with κ = 100.

https://doi.org/10.1371/journal.pcbi.1010253.g007
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Structure size scaling

Size of intracellular structures or organelles often scale with cell size [8, 46, 47] for proper phys-

iological functionality, but it may also be desirable for organelle sizes not to scale with cell size.

Our proposed model for structure growth control by size-dependent negative feedback,

enables us to tune the structure-to-cell size scaling. To illustrate this, we take the examples of α
= 0, β = 1 (disassembly rate increasing with structure size) and α = 1, β = 0 (assembly rate

decreasing with structure size). We further assume that all structures grow with the same bare

assembly and disassembly rates, i.e., k�i ¼ k�, which leads to identical steady-state sizes (n�)
for all the M number of growing structures, such that ∑i ni = Mn�. For α = 0, β = 1 the deter-

ministic rate equations are given by,

_ni ¼ kþ
N �

PM
i¼1
ni

V

� �

� k� ni ; ð20Þ

which leads to the steady-state solution,

n� ¼
kN

kM þ V
; ð21Þ

where κ = k+/k−, V is the cell volume and M is the number of structures. The overall subunit

density, ρ0 = N/V, is a constant independent of cell size V and total pool size N. We can thus

rewrite the steady-state size as,

n� ¼
kr0V
kM þ V

: ð22Þ

In the limit κM� V, the structure size scales linearly with cell size as n�* ρ0V/M (Fig 8A),

and scales inversely with number of organelles assembled (Fig 8B). By contrast, when κM� V
then n�* κρ0, i.e., the structure size is independent of cell size and M (Fig 8C and 8D). For α
= 1, β = 0 the deterministic rate equations are,

_ni ¼ kþ
N �

PM
i¼1
ni

V

� �

ð1þ niÞ
� 1
� k� ; ð23Þ

which leads to the steady-state solution

n� ¼
ðkr0 � 1ÞV
kM þ V

: ð24Þ

As before, in the limit κM� V we get linear scaling of structure size with cell size,

n� � ðkr0 � 1ÞV
kM , and inverse scaling with the number of organelles. However, in the limit κM�

V we get n�* κρ0 − 1, such that the structure size is independent of cell size and the number

of organelles assembled. These results where the structure size scaling becomes weak or sub-

linear with cell size has been observed for nuclear size scaling at higher cell volume [10, 51,

64].

Effect of cellular growth on structure size control

So far we have considered the system size or the cell size to remain unchanged during structure

growth. However in reality cells can grow in size, divide and undergo various morphological

changes while different intracellular structures are growing. Here we discuss the effect of cellu-

lar growth on the size control of intracellular structures. We assume that a cell starts growing

with an initial subunit abundance N0 and volume V0. Depending on the cell type, single-cell

PLOS COMPUTATIONAL BIOLOGY Size regulation of intracellular structures and organelles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010253 June 17, 2022 20 / 32

https://doi.org/10.1371/journal.pcbi.1010253


Fig 8. Structure size scaling with system size. The size-dependent growth model (with α = 0, β = 1) exhibits a regime where structure size does not

scale with cell/system size (V) or the number of assembled structures, M. Growth rate of the structures can be tuned to achieve scaling of structure size

with cell size. (A-B) shows the regime of structure size scaling with cell size, whereas (C-D) shows the regime no size scaling.

https://doi.org/10.1371/journal.pcbi.1010253.g008
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growth can be described using a linear or an exponential growth law [65]. Here for simplicity,

we assume a linearly growing cell modeled by the following equations:

_V ¼ g dV ;

_N ¼ g ;
ð25Þ

where g is the growth rate and δV is a constant representing the unit cell volume. Thus the

timescale associated with cellular growth is τg = 1/g. We have considered the case of two struc-

tures growing from a shared pool. We implemented the growth of cell size and subunit abun-

dance in a stochastic Gillespie simulation, and varied the timescale of structure growth to

study the effect of cell growth on organelle size control. Specifically, we compare two distinct

structure growth mechanisms—(i) the limiting pool α + β = 0, and the (ii) size-dependent

growth model α + β = 1. The timescales of these two growth mechanisms are tLP �
1

kþ and

tab �
1

kþþk� , respectively.

In the limiting pool model, when structure growth is much faster than cellular growth (τg
� τLP) large anti-correlated size fluctuations persist and there is no control of individual struc-

ture size (Fig 9B). But when the structure growth rate is comparable (or less than) to cellular

growth (τg* τLP), transient control of structure size is observed, with suppressed size fluctua-

tions (Fig 9A). In both cases, the individual mean size (over a time period *τLP) increases as

the total pool size increases in time. When there is competition between two non-identical

structures, the faster growing structure takes up all the subunits and grows with cell size

(Fig 9B,inset). The size-dependent growth model however, ensures local temporal control of

structure size, with the mean size increasing with the growing cell size (Fig 9C and 9D). Size

control is ensured at both the limits τg� ταβ and τg* ταβ in the size-dependent growth

model.

Discussion

In this study, we developed a theory for size-dependent growth of intracellular structures and

organelles to uncover the design principles for robust size regulation of intracellular structures

in the noisy environment of the cell, where stochastic fluctuations may be significant. Our

study reveals that a size-dependent negative feedback control of the net growth rate of individ-

ual organelles underlies robust size control, when multiple of them compete for the same sub-

unit pool. While the need for negative feedback in size homeostasis is well appreciated in

literature, we demonstrate that our proposed feedback motif for size control is utilised by

diverse subcellular structures, from one-dimensional filaments to three-dimensional organ-

elles. In doing so, we connect our kinetic theory with known molecular processes in the cell.

We show that our growth control model can also be utilized to assemble non-identical stable

structures that may be important for cellular processes involving anisotropy and asymmetry. It

is important to contrast our model with the limiting pool model for organelle growth control

[1]. The latter provides a mechanism for organelle size scaling with cell size by sensing the sub-

unit pool size, but fails to maintain the individual size of multiple competing organelles. The

limiting pool model, however, succeeds in regulating the size of single structures because sens-

ing the pool size is complementary to sensing the individual structure size in the case of a sin-

gle structure.

Our growth model can also ensure size regulation of multiple structures in the case of sub-

unit homeostasis when there is negative feedback between structure size and growth rate.

Growth with subunit homeostasis does not lead to structure size scaling with cell size and the

number of structures, emphasizing the need for a limiting subunit pool to preserve structure-

to-cell size scaling. Subunit homeostasis can be important when structures are required to be
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Fig 9. Effect of cellular growth on structure size control. (A,B) In the limiting pool model (α + β = 0), fast structure growth shows characteristic

large fluctuations and loss of size control. In the slow growth regime, transient size control is observed without significant size fluctuations

(B, Inset) With difference in growth rates of the structures (e.g., here κ1 = 2κ2), a winner-takes-all dynamics ensues and the structure with larger

growth rate (blue) increases in size, while the other structure (red) remains small in size. (C,D) The size-dependent growth model (α + β = 1)

provides local temporal control of structure size, with the structure size growing at the same rate as cellular growth.

https://doi.org/10.1371/journal.pcbi.1010253.g009
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maintained at a specific size regardless of cell size. In our proposed size-dependent growth

model, it is possible to modulate the structure size to scale with cell size or be independent of

cell size, by combining the features of subunit homeostasis and the limiting pool model. Indi-

vidual structure size would scale with the cell size when the cell volume V is smaller than

~V ¼ Mk, and saturates at V � ~V , where M is the number of structures assembled. This non-

linearity in scaling behaviour due to size-dependent growth rates may be the underlying rea-

son for the experimentally observed sub-linear scaling of organelle size with cell size at larger

cell sizes [5, 10, 66].

Subunit abundance can increase during cell growth, as the abundance of many regulatory

proteins increases with increasing cell size. It is therefore relevant to investigate the effect of

cell growth (increasing cell size and subunit pool size) on the size control of intracellular struc-

tures. If cell growth rate is faster compared to the assembly rate of the structures, the limiting

pool mechanism can maintain transiently stable sizes for multiple structures grown from a

shared subunit pool. But when cell growth is much slower than structure growth, then the lim-

iting pool model fails to regulate the size of individual structures, exhibiting large size fluctua-

tions. In this case, a size-dependent negative feedback control of growth rate is required to

achieve robust size control.

One of the key assumptions of our model is that the subunit pool is well mixed in the cyto-

plasm. In S3 Text, we relax this assumption and study the effect of subunit diffusion on the

growth and size control of intracellular organelles. We find that the results of the spatially

extended model with finite diffusion of subunits remain qualitatively similar to the predictions

of our kinetic model for size-dependent growth in different parameter regimes. While the

assembly of structures with slower diffusion of subunits takes longer to reach the steady state,

the nature of the steady state or the size dynamics do not depend on the magnitude of the dif-

fusion constant (S10 Fig). This can be simply understood from the fact that with slower diffu-

sion and increasing distance between the structures, the growth kinetics of individual

structures will quickly attain an equilibrium with the local subunit pool, but will take longer to

interact with other structures to reach a global equilibrium.

In the presence of positive feedback between structure size and growth rate, we find bistable

size distribution where structures dynamically fluctuate between a larger and a smaller assem-

bly. Interestingly, the transition rate from the larger to the smaller structure becomes vanish-

ingly small when the subunit pool is large (S12 Fig), giving rise to a single stochastically chosen

large structure that is maintained for very long timescales. This elucidates a mechanism of

spontaneous symmetry-breaking and polarity establishment, which is relevant for understand-

ing the mechanism of bud formation in S. cerevisiae from the autocatalytic growth of Cdc42

clusters. We further show that with increasing size of the system (or cell) we can make a transi-

tion from dynamic, transient structures in small system size to a long-lived single structure in

larger system size (S12 Fig). This result indicates the possibility of a size-dependent regulation

of cell polarity enabling a cell state transition from apolar to polar, depending on cell size.

Methods

Stochastic simulations

We use the Gillespie algorithm [67] to simulate the stochastic growth of one or multiple struc-

tures from a common pool of subunits. At any time t the Gillespie algorithm uses two random

variables drawn from an uniform distribution (r1; r2 2 Uð0; 1Þ), and the instantaneous pro-

pensities for all of the possible reactions to update the system in time according to the defined

growth law. The propensities of the relevant reactions, i.e., the assembly and disassembly rates

of the ith structure are given by Kon
i and Koff

i respectively. For our growth model these
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propensities are functions of subunit pool size (N) and structure size (ni),

Kon
i ¼ kþ

N �
PM

i¼1
ni

V

� �

ð1þ niÞ
� a
;

Koff
i ¼ k� nbi ;

ð26Þ

where we are considering growth of M structures from a shared pool. The Gillespie algorithm

computes the time for the next reaction at t + τ given the current state of the system (i.e., the

propensities for all reactions) at time t where τ is given by-

t ¼
1

PC
i¼1

Ri

log
1

r1

� �

; ð27Þ

where Ri is the propensity of ith reaction and C is the total number of all possible reactions

which is equal to 2M in our case. The second random variable r2 is used to select the particular

reaction (jth reaction) that will occur at t + τ time such that

Pj� 1

i¼1
Ri

PC
i¼1

Ri

� r2 <

Pj
i¼1

Ri
PC

i¼1
Ri

: ð28Þ

The condition for the first reaction (j = 1) is 0 � r2 <
R1PC

i¼1
Ri

. The two steps defined by Eqs 27

and 28 are used recursively to compute the growth dynamics in time. We allow the structures

to grow from the state ni = 0, but disallow disassembly by setting Koff (ni = 0) = 0, as the struc-

ture size cannot be negative.
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S1 Fig. Failure of the limiting pool in controlling the size of multiple structures. (A) For a

single structure, the limiting pool model can provide robust size control. The structure reaches

a steady state size after an initial period of fast growth. (B) The steady state size distribution

shows a unimodal peaked distribution, characterising a well-defined mean size for the
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structure. (C) The limiting pool mechanism captures structure size scaling with cell size. (D-E)

Limiting pool fails to control the individual size for two structures grown from a shared pool

of subunits, giving rise to large anti-correlated fluctuations (D). The total size of the structures

is a well controlled quantity, with temporal stability (D) and unimodal peaked distribution (E).

The individual size distributions are almost uniform in a range of 0 to N − κ−1V (E). (F) For

many structures, the individual size distributions converge to an exponential distribution—

i.e., the standard deviation of size fluctuations are as large as the mean size, which is indicative

of poor size control.

(PDF)

S2 Fig. Growth of structures with no size-dependent feedback: α + β = 0. (A) We study the

growth dynamics of structures A, B and C with coefficients α and β that lie on the line α + β =

0. B corresponds to the canonical limiting pool model. (B) For the case A, there are two fixed

points and linear stability analysis indicates one to be a saddle node and the other to be an

unstable fixed point near origin. (C) The fixed points in case A move away from each other as

κ increases. (D) For case C, we find a single fixed point and linear stability indicates that the

fixed point is stable. (E) The steady-state size given by the stable fixed point increases with κ,

saturating at high κ values. The blue ( _n1 ¼ 0) and yellow ( _n2 ¼ 0) lines (in panels B and D)

are the nullclines and the red arrows represent the flow in the n1 − n2 phase plane. (f) Structure

size distributions in the three cases in (A), given by the solution chemical master equation

solution (solid line) and stochastic simulations (points). (G-I) Structure size dynamics

obtained from stochastic growth simulations show large anti-correlated fluctuations (in all

three cases), leading to a failure in size control. Parameters: N = 50 and κ = 0.1.

(PDF)

S3 Fig. Growth of structures in robust size control regime: α + β> 0. (A) We study the

dynamics of structure growth at four points A, B, C and D on the α + β = 1 line which lies in

the regime where there is negative feedback control of structure growth. (B) For the case A we

find four fixed points—one unstable node, one stable node and two saddle nodes inferred

from linear stability. (C-E) In all three cases B, C and D we find a single stable node from linear

stability. The blue ( _n1 ¼ 0) and the yellow ( _n2 ¼ 0) lines (in panels B-E) are the nullclines and

the red arrows represent the flow in the n1−n2 phase space. (F) The chemical master equation

solution (black line) and stochastic simulations (points) predicts the same size distributions in

all four cases, with a well defined mean value and comparatively small standard deviation,

reflecting size control. (G-J) The temporal dynamics from stochastic simulations show well

defined mean size at all times. Despite the difference in individual α, β values the statistical

properties of the size dynamics are the same in all the four cases.

(PDF)

S4 Fig. Growth of a single structure in the autocatalytic growth regime: α + β< 0. (A) We

study the size dynamics of a growing structure at six different parameter regimes, namely the

points A, B, C, D, E and F lying on the line α + β = −1. In this regime, there is a size-dependent

positive feedback on the growth of the structure. (B) Stability diagram showing growth rate

_n ¼ FðnÞ vs structure size n in the deterministic model. Top row: For β< 0 there are only two

fixed points, one stable and the other unstable, showing no apparent presence of bistability.

The second stable fixed point (open circle) is obtained from treating the divergence at bound-

ary (n = 0) and considering Koff(0) = 0. Bottom row: when β> 0, there are three fixed points—

two stable and one unstable, and thus the system is bistable. (C) Structure size distribution

obtained from solution to the chemical master equation solution (solid line), and from sto-

chastic simulations (points), showing bimodality of size distributions in all six parameter
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regimes. Inset: Temporal evolution of structure size in cases A and F, illustrating that residence

times in the two stable states is dependent on the α and β values. (D) Evolution of the fixed

points (solid lines) as a function of growth rate κ showing that for a single structure the bist-

ability is only present in the range κ� < κ< κc. The black and red lines indicate the position of

the stable and unstable fixed points, respectively. Heatmap shows dn/dt. (E) Steady-state prob-

ability distribution P(n), as a function of κ and n. For all calculations N = 50 and κ = 0.0022

(except in e panel) was taken.

(PDF)

S5 Fig. Growth of two structures in bistable regime: α + β< 0. (A) We study the size

dynamics of two growing structures with coefficients α and β satisfying the condition α + β =

−1 (points P, Q, R and S). (B-E) The phase portrait in n1 and n2 plane show that there are two

fixed points when β� 0 (panels B-D), one saddle node and another unstable node. We obtain

the additional boundary fixed points (open circles) by separately treating the divergence at the

boundary. We get one stable and one unstable fixed points at the proximity of each boundary

n1 = 0 and n2 = 0. In contrast when β> 0 (panel E), we find two stable nodes, leading to bis-

table size dynamics. (E, inset) There are four more fixed points at small size—one stable, one

unstable and two saddle nodes. The stable point in small size has a very small basin of stability

and it disappears at higher κ values. (F) The chemical master equation solution (solid line) and

results from stochastic simulations (points) show that size distributions in all four cases are

bimodal arising from bistability in size dynamics. Inset: Temporal evolution of the size of the

structures in cases P and S, illustrating that residence times in the two stable states is depen-

dent on the individual α and β values. For all calculations, N = 50 and κ1 = κ2 = κ = 0.005

(except in the last panel) were taken.

(PDF)

S6 Fig. Effect of growth rate and subunit abundance on structure size regulation. Here we

show the failure of size regulation for small growth rate or subunit density. (A) Mean size and

standard deviation in size increases monotonically and eventually saturates with increasing

growth rate κ. (B) CV in size decreases as κ increases. The high CV value at small κ shows that

the small structures at very low growth rates lacks robust control of size. (C) Mean size and

standard deviation in size increases monotonically with increasing the total pool size N. (D)

CV in size decreases as N increases. (E) Size fluctuations are larger than the mean size for very

small values of growth rate κ. (F) CV is also larger than unity for small growth rates. We define

the critical growth rate κ0 to be the growth rate where CV = 1. (G-H) The structures do not

grow to be much larger in the low growth rate regime, and the size distribution can be fitted

well to an exponential function, P(n) = λe−λn, where λ is a constant. (I) CV decreases with

increasing growth rate κ and total pool size N, underlying a transition of size dynamics from

no-growth to robust size regulation for κ> κ0. The κ0 value decreases as the total pool size

increases indicating that this transition in size dynamics can occur due to reduction in subunit

density. For all the results discussed up to this point we take α + β = 1. (J-K) Large size fluctua-

tions compared to the mean size and a characteristic exponential size distribution for κ< κ0 is

also present in the limit α + β = 0. (L-M) Large size fluctuations compared to the mean size

and a characteristic exponential size distribution for κ< κ0 is also seen in the case of autocata-

lytic growth (α + β< 0). The effects of feedback in the growth becomes apparent when κ> κ0.

These results were obtained from the solution to the master equation for two growing struc-

tures with N = 50.

(PDF)
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S7 Fig. State transition diagram for stochastic size dynamicsof M competing structures.

Illustration of all possible transitions into and from the state {n1, n2, . . ., nM} via assembly and

disassembly processes.

(PDF)

S8 Fig. Size distribution for the growth of multiple identical structures competing for a

limiting subunit pool. (A-C) Individual size distribution of M identical structures in the limit

α + β = 0. (D-F) With negative feedback control of growth (α + β> 0), robust size regulation is

achieved for any M number of structures, with the mean size decreasing with increasing M
with fixed pool size N. (G-I) The size dynamics is bistable in the presence of positive feedback,

α + β< 0. The parameter values are N = 50, κ = 1 for all cases except (F) and (I), where N = 20.

(PDF)

S9 Fig. Length-dependent disassembly rate ensures length control of multiple actin fila-

ments. Length dependent disassembly rate arises when monomers switch between different

states with distinct disassembly rates. (A) Schematic of filament growth with monomer state

switching. (B) At steady-state the probability of ATP-bound monomer Pb(x) decreases towards

the pointed end with a length scale λ−1. Parameters: k+ = 2, k�b ¼ 0:5, k�u ¼ 2:5, w1 = 0.01 and

w2 = 0.02. (C) The effective disassembly rate of the filament, computed from a stochastic simu-

lation (using Gillespie algorithm) of filament growth with nucleotide hydrolysis and in a limit-

ing subunit pool. keffd ðLÞ increases linearly with filament length. Parameters: k�b ¼ 10 s−1,

k�u ¼ 200 s−1, ρ0’ 3 μM, w1 = 0.005 s−1 and w2 = 0.01 s−1. The parameter k+ was varied to

span the range of filament lengths.

(PDF)

S10 Fig. Effect of diffusion on size-dependent growth. (A,B) Size regulation fails in the

parameter regime α + β = 0 in the presence of diffusion. In the case of slower diffusion, the size

distribution takes longer time (T, in simulation units) to converge to the almost uniform size

distribution predicted by solution to the chemical master equation. The colours indicate the

simulation time T, and the curves of same color represent the size distribution of the two struc-

tures that converge to the same distribution at longer times. (C,D) In presence of negative

feedback, α + β> 0, the size distribution quickly relaxes to the steady state distribution and

this relaxation timescale does not depend on the diffusion constant. (E) In presence of positive

feedback, α + β< 0, we see bistability and the resulting bimodal size distribution does not

depend on the value of the diffusion constant. (F,G) The diffusion affects the statistical proper-

ties of the size dynamics. A slower diffusion (F) will lead to a longer residence time in one of

the steady states. The parameter values are N = 50 and κ = 1 everywhere except in (E-G) where

κ = 0.005.

(PDF)

S11 Fig. Autocatalytic growth of multiple structures. (A-C) We study growth of multiple

structures from a common pool of subunits, with size-dependent positive feedback α + β =

−0.2. This makes the growth process autocatalytic. We see a transition in the size dynamics as

we increase the overall density of subunits (by changing total amount N while keeping volume

V fixed). (A) The structures hardly grow at low subunit density. (B) At intermediate subunit

density, bistability in size distribution emerges. The bigger structure captures most of the sub-

units, but suddenly starts declining in size due to stochastic fluctuations, when the other struc-

tures grow to be bigger. This creates a “flickering” growth pattern of multiple structures. (C)

At a higher subunit density, we observe an initial growth of multiple structures. At a later time

only a single structure forms while the others “die-out” in the competition. This mechanism

can be used to make sure only a single structure gets built inside the cell which is important in
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various cases of polarity establishment and spontaneous symmetry breaking.

(PDF)

S12 Fig. System size dependent polarity transition in autocatalytic growth of multiple

structures. (A-D) We study growth of multiple structures (M = 4) from a common pool of

subunits in a system size V, with size-dependent positive feedback α = −1, β = 0. This makes

the growth process autocatalytic. We see a transition in the size dynamics as we increase the

system size V while keeping the subunit density the same. This shows a size dependent polarity

establishment process where below a critical size of the system all structures grow and shrink

dynamically. But above a critical size, the residence time becomes exceedingly large making

transitions virtually impossible in an experimentally relevant timescale. Thus only a stochasti-

cally selected structure remain in large size, establishing a polarity in the cell. The pool size N
and cell volume V was changed 20%, 30% and 50% in panels B,C and D, respectively. Parame-

ters (for panel A): N = 20, V = 1, κ = 0.02.

(PDF)
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37. Pelletier L, Ozlü N, Hannak E, Cowan C, Habermann B, Ruer M, et al. The Caenorhabditis elegans cen-

trosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication.

Curr Biol. 2004; 14:863–873. https://doi.org/10.1016/j.cub.2004.04.012 PMID: 15186742

38. Conduit PT, Richens JH, Wainman A, Holder J, Vicente CC, Pratt MB, et al. A molecular mechanism of

mitotic centrosome assembly in Drosophila. eLife. 2014; 3(e03399). https://doi.org/10.7554/eLife.

03399 PMID: 25149451

39. Raff JW. Phase separation and the centrosome: a fait accompli? Trends in Cell Biology. 2019;. https://

doi.org/10.1016/j.tcb.2019.04.001 PMID: 31076235

40. Conduit PT, Brunk K, Dobbelaere J, Dix CI, Lucas EP, Raff JW. Centrioles regulate centrosome size by

controlling the rate of Cnn incorporation into the PCM. Curr Biol. 2010; 20:2178–2186. https://doi.org/

10.1016/j.cub.2010.11.011 PMID: 21145741

41. Conduit PT, Feng Z, Richens JH, Baumbach J, Wainman A, Bakshi SD, et al. The centrosome-specific

phosphorylation of Cnn by Polo/Plk1 drives Cnn scaffold assembly and centrosome maturation. Devel-

opmental cell. 2014; 28(6):659–669. https://doi.org/10.1016/j.devcel.2014.02.013 PMID: 24656740

42. Kirkham M, Müller-Reichert T, Oegema K, Grill S, Hyman AA. SAS-4 is a C. elegans centriolar protein

that controls centrosome size. Cell. 2003; 112(4):575–587. https://doi.org/10.1016/S0092-8674(03)

00117-X PMID: 12600319

43. Levine MS, Bakker B, Boeckx B, Moyett J, Lu J, Vitre B, et al. Centrosome amplification is sufficient to

promote spontaneous tumorigenesis in mammals. Developmental cell. 2017; 40(3):313–322. https://

doi.org/10.1016/j.devcel.2016.12.022 PMID: 28132847

44. Webster M, Witkin KL, Cohen-Fix O. Sizing up the nucleus: nuclear shape, size and nuclear-envelope

assembly. J Cell Sci. 2009; 122:1477–1486. https://doi.org/10.1242/jcs.037333 PMID: 19420234

45. Conklin EG. Cell size and nuclear size. J Exp Embryol. 1912; 12:1–98.

46. Neumann FR, Nurse P. Nuclear size control in fi ssion yeast. J Cell Biol. 2007; 179: 593–600. https://

doi.org/10.1083/jcb.200708054 PMID: 17998401

47. Jorgensen P, Edgington NP, Schneider BL, Rupes I, Tyers M, Futcher B. The size of the nucleus

increases as yeast cells grow. Mol Biol Cell. 2007; 18:3523–3532. https://doi.org/10.1091/mbc.E06-10-

0973 PMID: 17596521

48. Hara Y, Merten CA. Dynein-based accumulation of membranes regulates nuclear expansion in Xeno-

pus laevis egg extracts. Dev Cell. 2015; 33:562–575. https://doi.org/10.1016/j.devcel.2015.04.016

PMID: 26004509

49. Ewald A, Zünkler C, Lourim D, Dabauvalle MC. Microtubule-dependent assembly of the nuclear enve-

lope in Xenopus laevis egg extract. Eur J Cell Biol. 2001; 80:678–691. https://doi.org/10.1078/0171-

9335-00207 PMID: 11824787

PLOS COMPUTATIONAL BIOLOGY Size regulation of intracellular structures and organelles

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010253 June 17, 2022 31 / 32

https://doi.org/10.1083/jcb.41.2.600
http://www.ncbi.nlm.nih.gov/pubmed/5783876
https://doi.org/10.1083/jcb.47.3.777
http://www.ncbi.nlm.nih.gov/pubmed/5497553
https://doi.org/10.1083/jcb.200812084
https://doi.org/10.1083/jcb.200812084
http://www.ncbi.nlm.nih.gov/pubmed/19805630
https://doi.org/10.7554/eLife.42599
http://www.ncbi.nlm.nih.gov/pubmed/31596235
https://doi.org/10.1016/j.cub.2012.09.040
http://www.ncbi.nlm.nih.gov/pubmed/23084989
https://doi.org/10.1083/jcb.92.1.170
http://www.ncbi.nlm.nih.gov/pubmed/7056798
https://doi.org/10.1016/j.cell.2017.05.030
https://doi.org/10.1016/j.cell.2017.05.030
http://www.ncbi.nlm.nih.gov/pubmed/28575671
https://doi.org/10.1098/rstb.2013.0459
http://www.ncbi.nlm.nih.gov/pubmed/25047613
https://doi.org/10.1016/S1534-5807(04)00066-8
https://doi.org/10.1016/S1534-5807(04)00066-8
http://www.ncbi.nlm.nih.gov/pubmed/15068791
https://doi.org/10.1016/j.cub.2004.04.012
http://www.ncbi.nlm.nih.gov/pubmed/15186742
https://doi.org/10.7554/eLife.03399
https://doi.org/10.7554/eLife.03399
http://www.ncbi.nlm.nih.gov/pubmed/25149451
https://doi.org/10.1016/j.tcb.2019.04.001
https://doi.org/10.1016/j.tcb.2019.04.001
http://www.ncbi.nlm.nih.gov/pubmed/31076235
https://doi.org/10.1016/j.cub.2010.11.011
https://doi.org/10.1016/j.cub.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21145741
https://doi.org/10.1016/j.devcel.2014.02.013
http://www.ncbi.nlm.nih.gov/pubmed/24656740
https://doi.org/10.1016/S0092-8674(03)00117-X
https://doi.org/10.1016/S0092-8674(03)00117-X
http://www.ncbi.nlm.nih.gov/pubmed/12600319
https://doi.org/10.1016/j.devcel.2016.12.022
https://doi.org/10.1016/j.devcel.2016.12.022
http://www.ncbi.nlm.nih.gov/pubmed/28132847
https://doi.org/10.1242/jcs.037333
http://www.ncbi.nlm.nih.gov/pubmed/19420234
https://doi.org/10.1083/jcb.200708054
https://doi.org/10.1083/jcb.200708054
http://www.ncbi.nlm.nih.gov/pubmed/17998401
https://doi.org/10.1091/mbc.E06-10-0973
https://doi.org/10.1091/mbc.E06-10-0973
http://www.ncbi.nlm.nih.gov/pubmed/17596521
https://doi.org/10.1016/j.devcel.2015.04.016
http://www.ncbi.nlm.nih.gov/pubmed/26004509
https://doi.org/10.1078/0171-9335-00207
https://doi.org/10.1078/0171-9335-00207
http://www.ncbi.nlm.nih.gov/pubmed/11824787
https://doi.org/10.1371/journal.pcbi.1010253


50. Xue JZ, Woo EM, Postow L, Chait BT, Funabiki H. Chromatin-bound Xenopus Dppa2 shapes the

nucleus by locally inhibiting microtubule assembly. Dev Cell. 2013; 27:47–59. https://doi.org/10.1016/j.

devcel.2013.08.002 PMID: 24075807
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