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Spatial omics is enabling unprecedented tissue characterization, but the ability
to adequately compare spatial features across samples under different con-
ditions is lacking. We propose a quantitative framework that catalogs sig-
nificant, normalized, colocalizations between pairs of cell subpopulations,
enabling comparisons among a variety of biological samples. We perform cell-
pair colocalization analysis on multiplexed immunofluorescence images of
assembloids constructed with lung adenocarcinoma (LUAD) organoids and
cancer-associated fibroblasts derived from human tumors. Our data show that
assembloids recapitulate human LUAD tumor-stroma spatial organization,
justifying their use as a tool for investigating the spatial biology of human
disease. Intriguingly, drug-perturbation studies identify drug-induced spatial
rearrangements that also appear in treatment-naive human tumor samples,
suggesting potential directions for characterizing spatial (re)-organization
related to drug resistance. Moreover, our work provides an opportunity to
quantify spatial data across different samples, with the common goal of
building catalogs of spatial features associated with disease processes and
drug response.

The emergence of highly multiplexed spatial omics technologies is
advancing translational oncology research by enabling a more com-
prehensive understanding of the cellular organization within the
tumor microenvironment (TME)". Recent spatial biology technologies
such as multiplexed immunofluorescence?, imaging mass cytometry’
and spatial transcriptomics* are revolutionizing our ability to

interrogate the TME in solid tumors. While these diverse -omic tech-
nologies can capture spatially resolved molecular information, often at
single cell resolution, analysis and comparison of spatial data across
studies poses several challenges’. A standard spatial analysis pipeline
for images at single cell resolution includes preprocessing raw imaging
data, cell segmentation, cell type identification, and extraction of
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statistically significant spatial features. Approaches such as spatial
permutation are particularly important for evaluating the significance
of spatial features®’. As for identifying cell subpopulations, a common
approach involves clustering cells with similar expression patterns.
However, assigning cell clusters is subjective, time-consuming, and
often requires manual assessment. More recent cell-identification
methods that do not involve clustering are now available to overcome
these limitations and are providing faster and more automated tools
that can also be used to discover cell types and states’®. With these
tools, several studies have demonstrated the utility of cell-cell colo-
calization ensembles for quantifying spatial features within specific
tissues and diseases’”"°.

Translational researchers are increasingly relying on patient-
derived co-cultures as high-throughput experimental platforms to
model human diseases™"”. Examples include organoids, tumor spher-
oids, assembloids, and various other models involving cell lines or
primary cells derived from patients. While these in vitro models do not
perfectly replicate human tissue architecture, cell heterogeneity, or
the effects of environmental stimuli, their usage continues to rise due
to their accessibility, ease of gene editing, cost advantages, and
advocacy for alternatives to animal testing in research. For these rea-
sons, a standardized, quantitative way to compare and analyze spatial
data between in vitro patient-derived models and human tumor sam-
ples is an important step toward gaining clinically relevant information
from in vitro models.

In this work, we build on these concepts and propose a quanti-
tative framework, termed colocatome analysis, for comparing spatial
features across samples, conditions, and studies. We demonstrate how
the colocatome framework allows for the direct comparison of cell-cell
colocalizations between three-dimensional in vitro models and patient
specimens, enabling the identification of conserved spatial features
between different types of samples. Through our colocatome frame-
work, we combine pairwise cell-cell colocalization, spatial permuta-
tion, and normalization approaches, as a quantitative analysis for
assessing spatial features that addresses variation across conditions.
Our quantitative framework uses the colocation quotient (CLQ) spatial
metric, which we introduced in prior work for identifying cell sub-
population pairs in close proximity (positive colocalization) versus
those that are distant (negative colocalization)”. We apply spatial
randomization to assess the significance of each colocalization com-
pared to a null distribution established by permuting the cell types.
Lastly, we apply normalization to the CLQs under a given condition to
enable comparisons of statistically significant colocalizations to each
other and across different conditions, including between in vitro
assays and clinical samples.

We apply colocatome analysis to tumor-stroma assembloids
generated with lung adenocarcinoma (LUAD) epithelial organoids and
cancer-associated fibroblasts (CAFs) from spatially distinct tumor sites
(edge vs. core) and correlate these spatial features with specific LUAD
histopathological growth patterns in clinical samples. Further, we
interrogate spatial rearrangements related to drug resistance in both
assembloids and treatment-naive human tumor samples. Using the
colocatome framework, we identify which drug-resistant and drug-
sensitive cell-pairs colocalizations from the in-vitro model are present
in treatment-naive clinical samples. In summary, our quantitative fra-
mework enables direct comparison of specimens across various con-
ditions or assays with the potential to enable the spatial biology
community to advance toward a common goal of cataloging and
comparing cell-pairwise spatial features.

Results

Regionally distinct CAFs exhibit unique spatial organization in
tumor-stroma assembloid models

To study spatial organization between cancer cells and fibroblasts, we
primarily established CAF-patient-derived organoid (PDO) assembloids.

We investigated whether regionally distinct CAFs originating from a
tumor leading edge vs. the tumor core influence cell heterogeneity
and organization. In previous work, we observed that regionally dis-
tinct CAFs from the tumor edge, namely tumor-adjacent fibroblasts
(TAFs), compared to tumor core fibroblasts (TCFs) promoted striking
morphological and transcriptomic differences when cocultured with
cancer cells, as well as demonstrated the increased promigratory role
of TAFs vs. TCFs®. Here, we tested the hypothesis that regionally dis-
tinct CAFs uniquely influence tumor-stroma spatial organization using
our quantitative spatial framework with LUAD assembloids. These
assembloids were generated from single-cell suspensions of two cell
types (cancer cells and fibroblasts), incubated for up to 10 days,
embedded, sectioned, and stained with antibodies, as if they were
pathological specimens. Immunofluorescence (IF) results showed
that both assembloid types displayed inter-assembloid and intra-
assembloid spatial heterogeneity (TAFs vs. TCFs and periphery vs.
center, respectively). TAF-PDO assembloids were enriched in the per-
iphery of the matrix dome and were less dense in the center (Fig. 1a). In
contrast, TCF-PDO assembloids were more homogeneously organized
throughout the matrix dome. Our results suggest that fibroblasts
affect the spatial organization of cancer cells depending on their
regional origin within the tumor. We quantitatively assessed these
characteristics as described in the study workflow (Fig. 1b).

TAF-PDO and TCF-PDO assembloids reveal distinct fibroblast
subpopulations but similar cancer cell subpopulations

To conduct a more comprehensive quantitative assessment of
assembloid spatial organization, we used multiplexed immuno-
fluorescence PhenoCycler technology (Akoya Biosciences). We
acquired images using a panel of 15 markers (characterizing mainly
epithelial and fibroblast), to which we applied the computational fra-
mework described below to resolve tumor-stroma spatial organiza-
tion. Fibroblast and cancer cell markers were selected based on their
known associations with lung cancer (Table 1). Fibrocytes'" and
negative control markers were also included (CD45: immune; CD68:
pan-macrophage; CD56: bone marrow-derived mesenchymal stro-
mal cell).

Following cell segmentation, clustering cells with similar expres-
sion patterns is a common approach for identifying cell subpopula-
tions. However, this approach is subjective, time-consuming, and
requires manual assessment. Moreover, some clusters of mixed-cell
subpopulations can be difficult to annotate. To overcome these chal-
lenges, we expanded the scope of our CELESTA algorithm to identify
cell states. CELESTA is a semi-supervised machine learning tool that
does not involve manual gating or clustering, but which uses prior
(even partial) knowledge of cell expression profile’. Leveraging
CELESTA's fast and iterative nature and its customable thresholds, we
identified pre-defined cell types and cell states (e.g., subpopulations)
based on their expression profiles and also generated hypotheses by
systematically testing every marker combination (Supplementary
Fig. 1a). In this manner, CELESTA allows us to identify cell types and
subpopulations in a fast and automated way.

Identifying precise subpopulations in complex tissues of
unknown cell composition is difficult, even with the assistance of an
expert pathologist. Therefore, we used pre-defined fibroblasts and
organoid cultures of known cell ratios to construct tumor-stroma
assembloids, with the ultimate goal of transferring phenotype infor-
mation from assembloid analysis as a guide to phenotype complex
tissues. In total, we identified 18 cell subpopulations in the assembloids
(Fig. 1c—f and Supplementary Data 1): 8 cancer cells and 10 fibroblasts,
with additional fibroblast subpopulations specific to monocultures
(Supplementary Fig. 1b). Cell subpopulations were segregated
between PanCK+ and PanCK- (cancer cells), xSMA + (myofibroblasts)
and aSMA- (fibroblasts), and then validated on the original images
(Fig. 1c, d). Cancer cells displayed broad morphological differences,
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ranging from adherent to mesenchymal cell bundles, and myofibro-
blasts appeared more elongated than aSMA- fibroblasts. Note that the
assignment of PanCK- cells to cancer cells were confirmed by their
EpCAM+ status. We found that PDO three-dimensional monocultures
largely consisted of PanCK + /Vim-/MUCI- cancer cells (#4), whereas in
the presence of TAFs and TCFs, the dominant cancer cell subpopula-
tion was PanCK +/Vim-/MUC1+ (#3). We observed that cancer cells

transformed fibroblasts into myofibroblasts (which were mainly
absent from monocultures). Specifically, TAF-PDO assembloids were
enriched for PDPN+ fibroblasts (#17), and TCF-PDO assembloids
mainly contained aSMA+ fibroblasts (#14) (Fig. le). Interestingly,
assembloids exhibited similar cancer cell heterogeneity. The initial
one-to-one cancer cell:fibroblast ratio was mostly conserved in both
assembloid models (TAF-PDO and TCF-PDO); neither TAFs nor TCFs
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Fig. 1| Cell composition of TAF-PDO and TCF-PDO LUAD assembloids. a IF
images with two markers (PanCK, Vim) and one nuclei stain (DAPI) of OCT sections
of TAF-PDO (left) and TCF-PDO (right) LUAD assembloids. Results were repeated
in two independent experiments using biological replicates (n = 2) for each
assembloid condition. b Study workflow and mIF analysis pipeline. Figure adapted
from Servier Medical Art licensed under a Creative Commons Attribution license
CC BY 4.0 and Phenocycler image used with permission from Akoya Biosciences,
Marlborough, MA. ¢ Representative PhenoCycler images of assembloids showing
cancer cell and d fibroblast subpopulations identified with CELESTA’. PanCK-
cancer cells (#5-8) were assigned as cancer cells based on their EpCAM+ status.

Scale bar, 30 um. e Representative example of subpopulation proportions in
TAF-PDO and TCF-PDO LUAD assembloids. Additional biological replicate pie
charts visualization can be found in Supplementary data Fig. 1b. f Stacked bar graph
representing fibroblast and cancer cell ratios in TAF vs TCF-PDO assembloids from
two independent experiment using biological replicates (n=2). LUAD lung ade-
nocarcinoma, CC cancer cell, FB fibroblast. OCT optimum cutting temperature,
Vim vimentin, PanCK pan-cytokeratin, EpCAM epithelial cell adhesion molecule,
MUC1 mucin 1, PDPN podoplanin, CAV1 caveolin 1, PDGFRb platelet derived growth
factor receptor beta, FAP fibroblast activation protein, CD cluster of differentiation,
aSMA smooth muscle actin alpha 2. Source data are provided as a Source Data file.

significantly induced cancer cell proliferation (Fig. 1f). Next, we quan-
tified whether certain cell subpopulations were enriched in either the
periphery or center of assembloids. TAFs subpopulations #9-11
(expressing three or more fibroblast markers) were enriched at the
periphery, and subpopulations #14-18 (expressing only one marker)
were enriched at the center. In contrast, TCFs and cancer cell sub-
populations were not differentially enriched when comparing center
to peripheral zones (Supplementary Figs. 1c, d, 2-5).

Quantitative spatial framework analysis demonstrates that
TAF-PDO and TCF-PDO assembloids exhibit distinct tumor-
stroma spatial organization

To quantitatively evaluate and compare the spatial organization of
TAF-PDO and TCF-PDO assembloids, we introduce the general con-
cept of the “colocatome”, which refers to the complete ensemble of
colocalizations. In the context of tumor-stroma assembloids, we cat-
alog cell subpopulation pairs in close proximity (positive colocaliza-
tion) versus those that are distant (negative colocalization). While
other spatial metrics are available®'¢, our framework expands upon use
of the CLQ, a metric designed to assess the spatial association between
two distinct constituents within a complex population’. We compute
the CLQ value for each pair of cell subpopulations, using the 20 nearest
neighbors for each cell following the equation and parameters detailed
in the Methods section. Then, we assess the significance of each CLQ
value by randomly permuting the cell subpopulation labels 500 times
within each sample while preserving subpopulation ratios to generate
a CLQ null distribution for each cell pair. Observed CLQ values falling
within the tail of their respective null distribution generation by per-
mutation testing were considered as significant (non-random)
(Fig. 2a, b, Supplementary Data 2). This permutation approach
accounts for the prevalence of cell subpopulations when determining
significance. For instance, when the CLQ is computed among two
highly prevalent cell subpopulations, the null CLQ distribution tends
to be narrow, whereas rare subpopulations lead to broader null CLQ
distributions. In the latter case, observed CLQ values are more likely to
be located within the null distribution and thereby considered non-
significant; less significant CLQs represent rarer cell subpopulations.
We then normalize CLQs (see Methods) and characterize positive or
negative colocalizations as an attraction or avoidance of spatial states
between cell pairs. Only significant CLQ values (p < 0.05) consistent
across conditions were considered for downstream colocatome ana-
lysis (Fig. 2c). The normalization step enables us to consider the
colocatome as a spatial omic given its generalizability across condi-
tions and sample types.

Our results revealed that TAF-PDO, compared to TCF-PDO
assembloids, exhibited a higher number of tumor-stroma colocaliza-
tions—with approximately twice as many significant spatial features
(Fig. 2d-i). Surprisingly, more than 80% of tumor-stroma colocaliza-
tions observed in assembloids were negative, suggesting that cancer
cells and fibroblasts are primarily segregated from each other rather
than being proximally intermixed (Fig. 2d). Interestingly, TAF-PDO
assembloids and TCF-PDO assembloids shared no positive
cancer-fibroblast colocalizations, and cell subpopulations with higher

cell counts did not necessarily exhibit a higher number of statistically
significant colocalizations with other cell types. For instance, the larger
cell subpopulations (#3 in the TAF-PDO and TCF-PDO assembloids and
#14 in TCF-PDO assembloid) did not positively colocalize with any
cancer cells (Fig. 2h, i). In summary, these results demonstrate that
regionally distinct fibroblasts contribute to unique tumor-stroma
spatial organization in tumor-stroma assembloids.

Colocatome analysis reveals that erlotinib alters spatial orga-
nization of tumor-stroma assembloids

Little is known about effects of oncologic treatments on the spatial
architecture of the TME. Because CAFs protect cancer cells through
various mechanisms, they have been proposed as a cancer therapeutic
target”'®, We thus wondered whether fibroblasts can induce drug
resistance through spatial rearrangement. Given that the LUAD PDOs
used in this study harbor a mutation in the epidermal growth factor
receptor (EGFR) (Supplementary Table 1), we used EGFR-targeting
erlotinib as a means to disrupt assembloids. We found that erlotinib
reduced cell density of PDO monocultures. However, we did not
observe any significant decrease in cell density in erlotinib-treated
TAF-PDO or TCF-PDO assembloids, compared to their respective
treatment-naive controls (Fig. 3a). Moreover, none of the assembloids
cell subpopulations were affected considerably (either enriched or
depleted) when comparing naive and treatment conditions (Fig. 3b-g).
While several changes were statistically significant using chi-square
testing (Supplementary Data 4), effect sizes were small. For the vast
majority of cell subpopulations, erlotinib did not induce changes
greater than 5% across independent experiments. Interestingly, we did
observe that erlotinib induced statistically significant spatial rearran-
gements, revealing numerous emergent, persistent and sensitive spa-
tial colocalization features in both TAF-PDO and TCF-PDO
assembloids. These spatial rearrangements were not homogeneous,
enriched either at the periphery or at the center of the assembloids
(Fig. 3h-k, Supplementary Figs. 6-7, Supplementary Data 5). Numer-
ous cancer-fibroblast positive colocalizations, particularly in
TAF-PDO assembloids, persisted in the presence of erlotinib, and
emergent positive colocalizations arose in erlotinib-treated assem-
bloids compared to naive assembloid in both models, predominantly
involving Vim+ cancer cells and CAV1+ or aSMA +/CAV1+ fibroblasts
(Fig. 3h-k, Supplementary Fig. 8).

Next, we investigated the effect of erlotinib on phenotypic chan-
ges in cancer cells by assessing epithelial-to-mesenchymal transition
(EMT) states of cancer cells as another possible cause of erlotinib
resistance. To do so, we used a single cell tool developed in our lab
called EMT-MET PHENOtypic STAte MaP (PHENOSTAMP)". PHENOS-
TAMP employs a neural net algorithm to map cancer cells from dif-
ferent studies onto an EMT-MET spectrum. Although erlotinib induced
a partial EMT in PDO monocultures after 72 h (which was associated
with elevated levels of O-GlcNAc, MDR1, and MUCI, known mechan-
isms of erlotinib resistance?*?), this effect was modest (Supplemen-
tary Figs. 9-10) and unlikely to have considerably influenced the
observed resistance. Overall, these intriguing findings suggest that
TAFs and TCFs may protect cancer cells from erlotinib mainly through
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Cell-surface mucin-like glycoprotein that plays a critical role in tumor development and normal development of the lung, kidney, and lymphatic 49

Heavily N-glycosylated cell surface protein that is expressed on a variety of tumor and normal cell types including fibroblasts. Involved in cell 48
vascular systems. Associated with worse outcome in LUAD.

adhesion and cell communication. Associated with worse outcome in LUAD.
CAV1is the main component of caveolae, which are complex plasma membrane structures with important role in cellular processes such as

Cell surface tyrosine kinase receptor for members of the platelet-derived growth factor family. Involved in cellular functions such as migration,
transport and signaling. Pro and anti-tumor functions in lung cancer.

Well-accepted marker of myofibroblast differentiation, role in the production of contractile force during wound healing and fibrotic diseases.
extracellular matrix production and tissue assembly. No final conclusion on the prognostic impact of PDGFR in NSCLC.

Highly expressed in LUAD but no direct association with survival.
Cell surface antigen expressed on the reactive stromal fibroblasts of epithelial cancers. Involved in cellular functions such as migration,

extracellular matrix remodeling and immunomodulation. Highly expressed in LUAD but no direct association with survival.

Biological role in LUAD/NSCLC

Table 1| Common CAF, mesenchymal, and epithelial cancer cell markers involved in LUAD and/or NSCLC included in the mIF antibody panel
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EMT marker, which is pivotal in tumorigenesis, metastasis, and invasion in NSCLC. An overexpression of vimentin may predict progression and 50

unfavorable survival outcome in NSCLC.

EMT and pan-fibroblast marker

Vimentin

VIM

Specific isoforms of individual cytokeratin may have utility as diagnostic or predictive markers in lung adenocarcinomas. 5,572

Pan-cytokeratin  Epithelial marker

KRT

22,53-55

Glycoprotein present in normal epithelial tissue and in various cancers that can act as a lubricant, moisturizer, and physical barrier in cells.

Overexpression predicts worse survival in NSCLC patients. Associated with EGFR-mediated resistance.

Epithelial marker

Mucin-1

MUC1

Transmembrane glycoprotein involved in intercellular adhesion and cell adhesion. May have utility as diagnostic or predictive markers in lung 56-58

adenocarcinomas.

Epithelial marker

EpCAM

EPCAM

a-SMA a-smooth muscle actin, FAP fibroblast activation protein, PDGFR-f3 Platelet-derived growth factor receptor beta, CD90 cluster of differentiation 90, LUAD lung adenocarcinoma, EMT epithelial-to-mesenchymal transition, NSCLC non-small-cell lung cancer.

mechanisms associated with tumor-stroma spatial reorganization,
rather than by selecting for specific cell subpopulations.

Colocatome analysis enables discovery of treatment-resistant
tumor-stroma spatial features

To resolve the spatial organization of assembloids across treatment-
naive and erlotinib-treated conditions, we grouped all statistically
significant cell-cell colocalizations into a matrix of three possibilities.
Briefly, significant negative colocalizations were assigned -1, significant
positive colocalizations were assigned 1, and insignificant spatial fea-
tures were assigned 0. This schema allowed us to establish a simplified
yet comprehensive reference of spatial features that we designate as
the “composite tumor-stroma colocatome.” Detailed methods
describing the construction of the composite colocatome are in the
Methods section. Using hierarchical clustering on heterotypic com-
posite colocatome, we identified distinct colocation clusters
(Fig. 4a-e, Supplementary Fig. 11) that highlight groups of
cancer-fibroblast pairs that spatially behave in a similar manner. Prior
work has shown that fibroblasts promote EMT in cancer cells, and
cancer cells sustain the myofibroblast phenotype in fibroblasts* . We
corroborated these findings by showing, for example, that Vim- cancer
cells are unlikely to colocalize with myofibroblasts (aSMA +)
(Fig. 4b-f), whereas myofibroblasts are generally proximal to Vim+
cancer cells. In addition to confirming established cancer-fibroblast
colocalizations, our composite colocatome analysis provided insights
into additional spatial configurations within the TME. Notably, we
observed that MUCI+ cancer cells are unlikely to be proximal to
fibroblasts. For instance, the cancer cell subpopulation #3 (PanCK +/
Vim-/MUCI1 +) was not proximal to any fibroblast regardless of the
treatment condition. Moreover, we found that while CD90+ fibroblasts
reside in the vicinity of cancer cells, cancer cells are not necessarily in
the vicinity of CD90+ fibroblasts, showing that spatial relationships
between cancer cells and fibroblasts can be asymmetrical (Fig. 4b—e).
In summary, the composite colocatome analysis inferred from our
assembloids experiments validated known cancer-fibroblast coloca-
lizations and revealed additional tumor-stroma spatial features
potentially associated with erlotinib resistance.

Colocatome analysis demonstrates colocalizations derived from
tumor-stroma assembloids that are recapitulated in LUAD clin-
ical samples

Determining cell types or cell states in large and complex human
tumor samples can be challenging because of shared markers between
a multitude of cell types and cell states. To address these difficulties,
we leveraged the designated subpopulations identified in assembloids
as a guide to phenotype human samples, as opposed to identifying cell
subpopulations directly from clinical specimens. This approach was
found to be robust for highly heterogeneous cell types, such as
fibroblasts and cancer cells, which are not always associated with
known distinctive markers in clinical samples. Importantly, we
observed that rare features in clinical specimens were captured in the
assembloids, given their inherent abundance of cell states. We applied
our quantitative spatial framework to whole slide images from three
different LUAD patients (Supplementary Table 1) imaged with a Phe-
noCycler with a comparable antibody panel (Supplementary Data 1).
The samples were delineated into 13 histological regions, assigned as
either lepidic, acinar, or solid by an expert pathologist. Of note, pre-
dominance of these histologic growth patterns have prognostic sig-
nificance: lepidic predominant tumors are associated with a good
prognosis due to their noninvasive nature, whereas acinar and solid
predominant tumors are associated with worse prognosis, with solid
worse than acinar®®”. We compared the CELESTA cell assignment
using identical parameters, starting from either clinical specimens or
assembloids (Supplementary Data 3). Identifying cell subpopulations
directly from clinical specimens resulted in fewer identifiable cell
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Fig. 2 | Colocatome analysis enables a comparisons of cell-cell colocalizations
in TAF-PDO versus TCF-PDO assembloids. a Schematic representation of the
colocation quotient (CLQ). b Workflow of the permutation analysis to determine
statistically significant cell-cell colocalizations and, ¢ selection of statistically-
significant pairwise spatial features in each assembloid that are consistent across
the two biological replicates are carried out for downstream colocatome analysis.
More specifically, for each condition j, all CLQs are tested (for i =1 to 324) and only
CLQs that are statistically significant are included for downstream colocatome
analysis. We generated the null distribution for each CLQ by randomly permuting
500 times the cell labels. Observed CLQ values falling within the 5% tails (two-sided
test) of the null distribution were considered significant. d Heatmaps showing
significant heterotypic negative (blue) and positive colocalizations (red) in TAF-
PDO and TCF-PDO assembloids. For each assembloid condition, for each biological
replicate (i.e., TAF-PDO and TCF-PDO assembloids, for two biological replicates),
colocation analysis was conducted separately. The number of cells included in each
colocation analysis are as follows: the TAF-PDO and TCF-PDO assembloids for the
first biological replicate had 4592 cells and 1955 cells, respectively, and from the
second biological replicate, had 9055 cells and 2440 cells, respectively. For the
TAF-PDO assembloids, findings that were statistically significant (p < 0.05),
through spatial permutation analysis, in each biological replicate and consistent
across the two biological replicates are reported as the mean CLQ, highlighting
positive (red) and negative (blue) colocalizations. A similar analysis was performed

for the TCF-PDO assembloids. CLQs for all cell pairs, for each assembloid, can be
found in Supplementary Data 2, with their statistical significance values. Scale
bar =500 um. e Representative example of a significant colocalization validated on
original PhenoCycler images. Results were obtained for each of two biological
replicates for each assembloid condition, separately. White-solid arrowheads
indicate fibroblasts, and clear-filled arrowheads indicate cancer cells. Scale bar =
500 um (left panel) and 50 um (right panel). Venn diagram showing the number of
homotypic and heterotypic colocalizations in TAF-PDO (f) and TCF-PDO (g)
assembloids resulting from the analysis in (d). Only findings that are statistically
significant through spatial permutation analysis in each biological replicate

(p <0.05) and consistent across both biological replicates, for each assembloid
condition, are reported here as the number of homo- and heterotypic colocaliza-
tions. The denominators sum to 324, which is the total number of pairwise cell-cell
colocalizations. Red vs blue numbers indicate positive vs negative heterotypic
colocalizations, respectively. Bipartite graphs showing the heterotypic positive
colocalizations in TAF-PDO (h) and TCF-PDO (i) assembloids from the Venn dia-
grams illustrated in (f, g). Lines with (vs without) arrowheads represent unidirec-
tional (vs bidirectional) colocalizations with corresponding bar graphs showing the
subpopulation fractions from each biological replicate. PanCK- cancer cells were
confirmed as epithelial cells using EpCAM+ status. Source data are provided as a
Source Data file.

subpopulations (Supplementary Fig. 12a, b). Notably, assembloids
adequately recapitulated all cell subpopulations found in clinical spe-
cimens, as well as improved detection of some cell subpopulations
found rarely in tissues, but prevalent in assembloids (PanCK +/Vim-/
MUCI +; #3).

Next, we applied our quantitative spatial framework to char-
acterize the architecture of the clinical specimens (Supplementary

Fig. 12c-e and Supplementary Data 6). While numerous statistically
significant colocalizations were identified in assembloids, only sig-
nificant colocalizations shared between clinical specimens and
assembloids were included in downstream analyses. In other words,
we excluded non-clinically relevant spatial features that may have
emerged artifactually from in vitro culture conditions. See the Meth-
ods section for specific details related to generation of the LUAD
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colocatome and statistical analysis. Of 133 colocalizations identified
across 13 histological regions, most colocalizations (107/133) were
recapitulated in the assembloids (Fig. 5a-c, Supplementary Data 6).
Note that 19 interactions were categorized as avoidance (negative) in
the assembloids, and attraction (positive) in the specimens, or vice-
versa (Fig. 5a), which are indicated as inconsistencies in the coloca-
tome composite summary (Supplementary Data 6).

Hierarchical clustering of shared colocatomes between all
assembloid conditions and clinical specimens showed that solid
regions mostly grouped with TAF-PDO assembloids (mauve cluster 3,
Fig. 5d), whereas lepidic and acinar regions grouped predominantly
with TCF-PDO assembloids (pink cluster 2, Fig. 5d). These results align
with our previous results, which suggest a more tumor-promoting role
of TAFs compared to TCFs? by associating TAF-PDO spatial features
with worse prognostic growth patterns (solid) and TCF-PDO spatial

k Resistant @@ | _Emergent ®- @ |

-4

features with better prognostic growth patterns (lepidic and acinar).
The statistical significance of these clusters were independently tested
using multiscale bootstrap resampling to assess the uncertainty in
hierarchical cluster analysis using pvclust?’ (Supplementary Fig. 13).
We also found that acinar regions from different clusters displayed
distinct spatial features (Supplementary Fig. 14). Of note, these results
were not supported by hierarchical clustering based on cell composi-
tion alone, further demonstrating the added value of the colocatome
as an informative spatial omic dimension.

We also compared our quantitative spatial framework to a pub-
lished imaging mass cytometry breast cancer dataset that also uses
spatial permutation to identify significant spatial features (Schapiro
et al.®). Our analysis replicated most of the colocalizations from that
original study but also highlighted additional findings. For instance,
our approach suggests colocalization between macrophages (CD68 +)
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Fig. 3 | Effect of erlotinib treatment on tumor-stroma assembloids. a Violin plot
representing cancer cell density in treatment-naive and erlotinib-treated assem-
bloids. Results are presented as cell counts from representative areas for each
assembloid condition for one biological replicate (i.e., specimen 2 in Supplemen-
tary Table 1). The number of areas included in each analysis is as follows: treatment-
naive TAF-PDO (n=11) and TCF-PDO (n = 8) assembloids, and erlotinib-treated
TAF-PDO (n =11) and TCF-PDO (n =10) assembloids. Gray solid lines represent the
mean and gray dash lines represent quartiles. Results were repeated for a second
replicate in Supplementary Fig. 6a. b Bar graphs showing the fraction of each cell
subpopulation in the TAF-PDO and TCF-PDO assembloids, in the treatment-naive
and erlotinib-treated conditions, for each of two biological replicates. ¢ Bar graphs
showing the fraction of cancer cells and fibroblasts in the treatment-naive vs
erlotinib-treated assembloids, separately for each of two biological replicates,
described in Supplementary Table 1. d, e Venn diagram showing the number of
positive (red) and negative (blue) colocalizations following the workflow described
in Fig. 2a-c. For each assembloid condition, colocation analysis was conducted
separately for each biological replicate. The number of cells included in the colo-
cation analysis is as follows: treatment-naive TAF-PDO and TCF-PDO assembloids
for the first biological replicate had 4592 cells and 1955 cells, and for the second
biological replicate had 9055 cells and 2440 cells, respectively. For the erlotinib-
treated TAF-PDO and TCF-PDO assembloids, the first biological replicate had 4809
cells and 3403 cells, and the second biological replicate had 7401 cells and 3643

cells, respectively. For each assembloid condition (e.g., treatment-naive TAF-PDO,
erlotinib-treated TAF-PDO, treatment-naive TCF-PDO, erlotinib-treated TCF-PDO)
only findings that were statistically significant and consistent across the two bio-
logical replicates are presented, as positive or negative colocalizations. Significance
was assessed through spatial permutation testing to evaluate whether the CLQ
scores were statistically significant. f, g Volcano plots representing the differences
in cell proportions between treatment-naive and erlotinib-treated TAF-PDO and
TCF-PDO assembloids, pooled for the two biological replicates for visualization
purposes. P values are calculated using chi-square (x2) tests (two-sided) with
p<0.05 considered as significant (Supplementary Data 4), for each biological
replicate separately. Color coding refers to subpopulations in b, and throughout
study, and total number of cells analyzed per assembloid condition are detailed in
(d, e). h, i Heatmaps representing normalized pairwise CLQ values for significant
heterotypic positive colocalizations and subpopulation fractions in treatment-
naive and erlotinib-treated assembloids as described in (d, e). CLQs and cell frac-
tion heatmaps are presented as mean values across the two biological replicates.
Note that colocation analysis was conducted individually for each sample, as
detailed in (d, e). The normalized CLQs and their corresponding significance are
listed in the Supplementary Data 2 and 5. CELESTA cell assignment plots showing
representative examples of sensitive, resistant, and emergent heterotypic coloca-
lizations in (j) TAF-PDO and (k) TCF-PDO assembloids from the analysis described
in (d, e). Scale bar = 500 um. Source data are provided as a Source Data file.

and fibroblasts (spindle-shaped Vim +), neither identified in the origi-
nal study, but which we confirmed on the original mass cytometry
images (Supplementary Fig. 15). Colocalization between macrophages
and fibroblasts in breast cancer has been predicted in various
models®>*!, as well as in recent breast cancer spatial transcriptomics
studies using spot-based technologies®*®. In a contrasting example,
we found that cell phenotypes #2 and #3 (Supplementary Fig. 15a,
green boxes) were positively colocalized with histoCAT and negatively
colocalized with colocatome analysis based on the CLQ. Interestingly,
this colocalization is displayed as segregated compartments with
adjoining sections, as shown on representative breast images from the
breast dataset (Supplementary Fig. 15¢). These examples highlight the
added value of applying colocatome analysis using the CLQ alongside
other tools such as the histoCAT toolbox to increase the discovery of
potentially relevant biological colocalizations and architectural
features.

Taken together, these results suggest that colocatome analysis
based on use of the CLQ spatial metric, among other spatial metrics,
offers added value over analyses based solely on cell composition and
may help reveal spatial heterogeneity among histologically similar
regions when applied to larger datasets.

Colocatome analysis informs on suitable in vitro validation
platforms for downstream functional validation

Other advantages of integrating the spatial architecture of clinical
specimens with in vitro patient-derived models include the ability to
study spatial re-organization during treatment and to select appro-
priate models for downstream functional analysis based on spatial
features associated with resistance. To illustrate this, we compared the
shared spatial features between treatment-naive clinical specimens
and the persistent and emergent colocalizations identified in erlotinib-
treated assembloids.

We found that treatment-persistent cellular colocalizations vary
significantly depending on the origin of CAFs in the TME, and that
many spatial features associated erlotinib resistance appear in
treatment-naive tumor samples (Fig. 5f). Our observations thus sug-
gest that certain cellular colocalizations may persist after treatment,
contributing to drug resistance. As an example, we identified a
cancer-fibroblast colocalization exclusively recapitulated in TAF-PDO
assembloids, but not in TCF-PDO assembloids. Specifically, PanCK +/
Vim-/MUCI+ cancer cells (#3) negatively colocalize with CD90+
fibroblasts (#15), which appear as segregated compartments in LUAD

specimens of solid histology and TAF-PDO assembloids, but not in
TCF-PDO assembloids (Fig. 5g). These findings suggest that spatial
re-organization accompanies drug resistance. We also showed that
some cellular colocalizations in acinar regions are only recapitulated in
either TAF-PDO or TCF-PDO assembloids (Supplementary Fig. 16).
Overall, our findings suggest that using quantitative colocatome ana-
lysis to compare spatial features in assembloids and clinical samples
can (i) guide the use of in vitro validation platforms for subsequent
functional analysis and (ii) unearth unknown biology of potential
clinical relevance.

Discussion

In this study, we present the concept of the colocatome as a spatial
omic dimension that can be used to quantitatively characterize and
compare spatial organization between in vitro patient-derived models
and human tumor tissues under various conditions (Fig. 6). Our spatial
framework uses a quantitative approach to measure pairwise CLQs and
assess their statistical significance, followed by a normalization step to
enable further comparisons between conditions and across studies.
Our results confirm that this spatial framework is useful for both for
validating in vitro patient models as a means to interrogate human
cancer and as a source for generating and testing hypotheses (e.g., the
role of spatial reorganization in drug-resistance). Although we speci-
fically applied colocatome analysis to spatial proteomics data, this
general framework is applicable to other spatial -omics platforms with
single cell resolution.

We show that distinct cellular colocalizations TAF-PDO and
TCF-PDO assembloids correspond to histologic growth patterns in
clinical samples. Of note, acinar-specific spatial features were pre-
dominantly recapitulated in TCF-PDO assembloids, whereas solid-
specific features were recapitulated in TAF-PDO assembloids. These
results align with our previous work aligning TAF-PDO spatial
features® with worse prognostic growth patterns (solid). Importantly,
our analysis reproduced known findings but also generated original
hypotheses. For example, mesenchymal cancer cells expressing
vimentin are generally found in proximity to myofibroblasts, and vice-
versa, a known co-occurrence®. Through our colocatome composite
analysis, we also identified additional cancer-fibroblast spatial fea-
tures potentially associated with drug resistance. We observed, for
example, that cancer cells and fibroblasts tend to be separate rather
than intermixed. We also found that cancer cells expressing MUC1
(PanCK +/Vim-/MUC1 +, #3) were unlikely to be proximal to any
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fibroblasts: an observation confirmed with analysis of human LUAD
samples. MUCl is a glycoprotein lubricant that protects epithelial cells.
Its aberrant expression has been involved in cancer development,
invasion, metastasis, and treatment resistance, including to
erlotinib®®. Interestingly, we observed that both TAFs and TCFs

significantly increased the number of MUCI1+ cancer cells within
assembloids compared to PDO monocultures. However, MUCI+ can-
cer cells were not found in the vicinity of any fibroblasts. These find-
ings suggest that MUC1+ cancer cells may not need fibroblasts in close
proximity to survive erlotinib treatment. They also suggest more
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Fig. 4 | The tumor-stroma colocatome. a Heatmap of the statistically significant
colocalizations across conditions generated in this study establish a reference
tumor-stroma colocatome (colocatome composite). Results are presented as the
summarized positive and negative colocalizations resulting from the CLQ analysis
of a total of 37,298 cells across four assembloid conditions, each repeated under
two biological replications. The number of cells included in the analysis per is as
follows: treatment-naive TAF-PDO and TCF-PDO assembloids from the first bio-
logical replicate had 4592 cells and 1955 cells, and from the second biological
replicate had 9055 cells and 2440 cells, respectively. For erlotinib-treated TAF-PDO
and TCF-PDO assembloids, the first biological replicate had 4809 cells and 3403
cells, while the second biological replicate had 7401 cells and 3643 cells, respec-
tively. Colocalization analysis was performed independently for each assembloid
condition, for each biological replicate. For each assembloid condition, only

findings that were statistically significant and consistent across the two replicates
are presented here as binary values, either positive or negative colocalizations. If
inconsistent, results are presented as insignificant. Blue boxes represent negative
colocalizations, red boxes represent positive colocalizations, and gray boxes
represent insignificant colocalizations. b-e Hierarchical clustering of the tumor-
stroma colocatome. Colocation clusters highlight paired cell-cell colocalizations
and indicate the likelihood of cancer cells to colocalize with fibroblasts or vice-
versa. f Graphical summary of the cancer-fibroblast spatial organization inferred
from the colocatome. Solid arrows represent positive colocalization with arrow-
head identifying direction of colocalization (i.e., CD90+ fibroblasts colocalize
PanCK+MUCI- cancer cells) and dotted lines indicate segregated spatial features
that negatively colocalize. Source data are provided as a Source Data file.

complex tumor-stroma spatial configurations, such as fibroblasts sur-
rounding cancer cell nests, or other yet-to-be-revealed structures that
may be relevant for understanding and mitigating treatment
resistance.

To explore this further, we investigated spatial features involved
in treatment resistance by observing distinct spatial organization
between TAF-PDO and TCF-PDO assembloids under treatment-naive
and erlotinib-treatment conditions. Our findings suggest that TAFs and
TCFs may protect cancer cells from erlotinib through reorganization
of the tumor-stroma environment rather than by promoting cell het-
erogeneity. Moreover, our findings show an enrichment of positive
heterotypic colocalizations predominantly involving CAV1+ fibroblasts
in erlotinib-treated assembloids. Several reports, including results
from our group in which we computationally reconstructed the LUAD
interactome®, conclude that CAV1 is associated with poor outcome in
LUAD. However, some studies have suggested the opposite”, based
upon high expression of CAVI in normal lung tissue compared to lung
tumors®™*°, These conflicting findings raise further questions about
whether erlotinib potentially restore a normal-like lung spatial archi-
tecture or if CAVI’s association with poor outcomes is dependent on
specific tumor-stroma interactions. These hypotheses warrant further
study in larger cohorts to better understand the roles and interactions
of erlotinib and CAV1 expression in the TME.

While assembloids effectively recapitulated most spatial features
measured in human LUAD specimens, a wider range of cell sub-
populations were observed in vitro. We attribute this observation to
lower cell density and partially recapitulated environmental cues in
assembloids compared to LUAD specimens, which may affect cell
plasticity and overall phenotype. Moreover, while in vitro models did
not perfectly replicate tissue architecture, we demonstrated how
identifying cell subpopulations within assembloids of known compo-
sition can enhance the detection of rare cell subpopulations. As such,
our quantitative framework can also help mitigate sensitivity issues
that arise when analyzing rarer subpopulations using permutation
analysis. Permutation analysis tends to reflect a broader null distribu-
tion for smaller subpopulations, thereby increasing the likelihood of
their observed CLQ values being deemed non-significant. For example,
the presence of the PanCK+/Vim-/MUCI1+ cellular subpopulation
(which is not commonly found in surgically resected early-stage LUAD
specimens) would likely have been overlooked if we had directly
identified cell subpopulations from clinical specimens. Our method is
particularly useful for identifying highly heterogeneous cell types (e.g.,
cancer cells and fibroblasts), which often lack known unique protein
markers for identification. However, this may not apply to well-defined
lineages that have distinctive markers that easily allows their identifi-
cation in situ with high confidence, such as immune cells. Lastly, future
studies should investigate the role of cell density and other cell types
(such as immune and endothelial cells) or include additional markers.
For instance, the antibody panel used in this study may not be suffi-
cient to distinguish fibroblasts from pericytes or vascular smooth
muscle cells. Therefore, the conclusions from our analysis of CAF

subpopulations may require further validation, as we cannot exclude
the possibility that some CAF subpopulations identified in human
tumors may be mural cells. Future work should also compare spatial
findings captured with alternate colocalization metrics and statistics
beyond the CLQ and spatial permutation testing.

In conclusion, our quantitative spatial framework for colocatome
analysis provides insights into spatial configurations between cancer
cells and fibroblasts in LUAD. It can serve as a spatial readout for
characterizing, cataloging, and comparing cell-cell colocalization
ensembles in both in vitro patient-derived models and clinical samples.
Furthermore, this approach may also guide analysis of other diseases
and complex tissues, toward identifying pathological mechanisms and
improving treatment response.

Methods

Human studies

Clinical aspects of this study were approved by the Stanford Institu-
tional Review Board (IRB) in accordance with the Declaration of Hel-
sinki guidelines for the ethical conduct of research. All patients
involved provided a written informed consent. Collection and use of
human tissues were approved and in compliance with data protection
regulations regarding patient confidentiality (IRB protocol #15166).
Following surgical resection of primary tumors, lung adenocarcinoma
specimens were immediately processed to establish primary cell cul-
tures as previously described®.

Assembloid cultures

The PDOs originated from LUAD fresh specimens were kindly provided
by Dr. Calvin Kuo, Stanford University and were grown in DMEM:F12
(1:1) media supplemented with 20 ng/ml human FGF-basic, 1X N-2
supplement, 1X B-27 supplement, 10 uM rock inhibitor, 50 ng/ml
human EGF and 1X Normocin at 5% CO, and 37 °C in a Cultrex reduced
growth factor basement membrane extract solid matrix. The LUAD
primary fibroblasts were established by our group as previously
described” and grown in RPMI-1640 with L-Glutamine, supplemented
with 10% fetal bovine serum, and 5% antibiotic solution (penicillin/
streptomycin), at 5% CO, and 37 °C. Fresh, paired LUAD specimens
were collected from the tumor leading edge and tumor core of two
patients. For the first patient, TAFsl (edge) and TCFsl (core) were
harvested; for the second patient, TAFs2 (edge) and TCFs2 (core) were
harvested. Experiments involving the specimens from the two patients
are referred as biological replicates. Samples were immersed and
transferred from Stanford Hospital to the laboratory in MACS Tissue
Storage Solution (Miltenyi). Then, tumors were cut into small pieces
with dissecting scissors. The dissociation was performed using the
MACS Tumor Tissue Dissociation Kit (Miltenyi iotec) for the tumor
core samples or the Lung Dissociation Kit (Miltenyi) for the adjacent
tissues as per the manufacturer’s protocol. Cells were then washed,
resuspended in RPMI1640, and plated in a 35-mm dish for fibroblast
expansion. At confluency, all cells were trypsinized and transferred to a
25 cm?? flask until confluency, then all cells were split in two 75 cm?
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flasks for further expansion. At confluency of the 75 cm? flasks, primary
fibroblasts were divided equally and frozen in 10 vials, designated here
as passage 1. All assembloid coculture experiments were realized using
primary fibroblasts at passage 2. More precisely, one vial (passage 1)
was thawed in a 75 cm? flask, expanded until confluency, then split at a
maximum dilution ratio of 1:10 or lower into subsequent flasks,
designated here as passage 2. Passage 2 cells were collected at con-
fluency of 80% to 95% to perform assembloid cocultures. The primary
fibroblasts, PDOs and fibroblast cultures used in this study were sub-
jected to mycoplasma testing through DAPI staining. Cells were
authenticated by their expression of epithelial markers for PDOs and
vimentin for fibroblasts, as well as their morphology. Clinical

annotations and histopathological information can be found in Sup-
plementary Table 1. Race and sex information for human fibroblast
lines, organoids and LUAD tissue samples were not considered in our
analysis because of the limited sample size. Gender information was
not available.

PDOs and regionally distinct fibroblasts from the tumor edge
(TAFs) and core (TCFs) were used to generate the assembloids.
Briefly, confluent PDOs grown in a 3D solid dome of Cultrex matrix
were rinsed with PBS 1X, and detached from the bottom of the plate
with a tip. Then, the domes containing the PDOs were collected in a
tube and incubated with TRYPLE at 37 °C for 15 min under agitation.
After the incubation, the domes were gently dissociated using
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Fig. 5 | The colocatome from tumor-stroma assembloids recapitulate LUAD
spatial features. a Venn Diagram and b heatmap of the positive and negative
colocalizations found in the LUAD specimens and assembloids. All colocalizations
and corresponding p values are provided in Supplementary Data 6. CLQ results are
from the independent analysis of 13 histological regions with the number of cells
per individual region as follows: Solid 49.1: 10,765 cells, Solid 49.2: 22,858 cells,
Solid 49.5: 5145 cells, Solid 49.6: 1506 cells, Lepidic 58.6: 8504 cells, Lepidic 60.4:
1673 cells, Acinar 58.2: 2590 cells, Acinar 58.3: 23,121 cells, Acinar 58.4: 172 cells,
Acinar 58.5: 403 cells, Acinar 60.1: 2472 cells, Acinar 60.2: 31,269 cells, and Acinar
60.3: 9626 cells. Statistical significance was determined through spatial permuta-
tion testing for each region individually (p < 0.05) and CLQ values consistent across
more than half of the regions of a same growth pattern were included in the
heatmap. Results were integrated with the assembloids results described at Fig. 4a
in which treatment-naive TAF-PDO and TCF-PDO assembloids the first biological
replicate had 4592 cells and 1955 cells, and from the second biological replicate had
9055 cells and 2440 cells, respectively. For erlotinib-treated TAF-PDO and TCF-

PDO assembloids, the first biological replicate had 4809 cells and 3403 cells, and
the second biological replicate had 7401 cells and 3643 cells, respectively. ¢ Cell
proportions identified with CELESTA for each histological region (lepidic, acinar,
solid) analyzed from three different LUAD samples from patients #49, #58, and
#60. d Hierarchical clustering of the normalized CLQ values shared between
assembloids and clinical specimens. e Hierarchical clustering of the LUAD speci-
mens and assembloids according to their cell composition f, Heatmap of the
resistant spatial features that overlapped between erlotinib-treated assembloids,
and solid growth patterns. Non-significant CLQ values and self-colocalizations were
excluded for visualization purposes. Yellow boxes highlight a negative colocaliza-
tion between CD90+ fibroblasts and MUCI+ malignant cells from a representative
LUAD solid region and recapitulated in the TAF-PDO, but not in TCF-PDO
assembloids, and (g) validated on the original Phenocycler images. CLQs are from
the independent colocalization analysis performed on four solid regions and
assembloid samples from two biological replicates per condition as described in
(b). Source data are provided as a Source Data file.
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Fig. 6 | Schematic overview of the colocatome analysis spatial framework. The
main steps of the colocatome framework are summarized as follows: (1) Multi-
plexed immunofluorescence imaging; (2) Cell subpopulations and states annota-
tion using the CELESTA tool’; (3) Quantification of positive and negative colocation
quotients (CLQ), followed by a spatial permutation test to establish significance and

normalization for comparing cell pairs and conditions; (4) Evaluation of treatment
effects on pairwise CLQs; and (5) Comparison of cell-cell colocalization patterns
between in vitro models and patient histopathological specimens. Phenocycler
image used with permission from Akoya Biosciences, Marlborough, MA.

repeated pipetting. In parallel, primary fibroblasts cultures at pas-
sage 2 were grown in a monolayer until reaching 75-80% confluency.
Next, cells were rinsed with PBS 1X, incubated 5 min with TRYPLE,
collected and spun down to remove debris. A 1:1 fibroblast: PDO
mixture totalizing 300k cells was prepared, spun down to remove
the remaining liquid, then resuspended in cold liquid Cultrex. Next,
40 ul of the cell mixture was added at the bottom of a 24-well plate
pre-warmed at 37 °C. Cell mixtures were incubated at 37 °C for up to
30 min or until the domes solidified. Then, DMEM:F12 (1:1) media
formulation supplemented as described above was added to the

wells to cover the solidified assembloids. Assembloids were culti-
vated for a period of 7 days, followed by treatment with a 2uM
erlotinib solution, which was replenished every 24 h. The LUAD PDOs
employed in this study carry an EGFR dell9 mutation that is
responsive to erlotinib. Naive assembloids did not receive any
treatment and were used as controls. After 72 h, the whole assem-
bloids were rinsed with PBS 1X and embedded in OCT. OCT blocks
were kept at -80 °C until sectioning at 7 um with a cryostat on slides
or coverslips (22 x 22 mm) pre-treated with poly-L-lysine overnight,
washed 5x with double-distilled water (ddH20), and dried.
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In total, four assembloid conditions (1. TAF-PDO naive,
2.TCF-PDO naive, 3. TAF-PDO erlotinib-treated and 4.TCF-PDO erlo-
tinib-treated) were performed with patient-matched primary fibro-
blasts (edge vs core), across two biological replicates; in other words,
each assembloid condition was analyzed using fibroblasts established
from two different patients.

Immunofluorescence

TAF-PDO and TCF-PDO assembloids sections on slides were rinsed 3x
with a cold solution of 5% BSA (diluted in PBS 1x) and cells were fixed
for 10 min in PFA 4% (diluted in PBS 1x). Then, slides were incubated in
0.1% Triton X-100 for 10 min, rinsed with PBS 1x, blocked with 10% goat
serum diluted in PBS 1x for 30 min and incubated with the PanCK and
vimentin antibodies in blocking solution in a humidified chamber
overnight at 4 °C. After 3 washes in PBS 1x, the slides were incubated
with the Cy3-conjugated goat anti-mouse IgG and Cy5-conjugated goat
anti-rabbit IgG in blocking solution for 1 hat RT in the dark. The slides
were intensively washed with PBS 1x and mounted on slides with a drop
of mounting medium containing DAPI. The sections were observed
under a BZ-X800 fluorescence microscope. All antibodies and
reagents are listed in the Supplementary Data 7.

PhenoCycler® image acquisition and data processing
Phenocycler imaging requires the antibodies to be conjugated to DNA
barcodes available from Akoya Biosciences according to the manu-
facturer protocol or can be purchased directly from the manufacturer
if available. All antibodies were manually verified via standard immu-
nofluorescence staining on appropriate tissues using the staining
protocol from Akoya Biosciences to determine protein abundance and
specificity. Results were compared to current literature and The
Human Protein Atlas online database. The list of reporters and anti-
bodies with target (clone), barcode, vendor and catalog number can be
found in the Supplementary Data 7.

All imaging acquisition were performed with a PhenoCycler®
(formerly CODEX) connected to a Keyence BZ-X800 fluorescence
microscope equipped with a 20x objective (Nikon CFI Plan Apo 20x/
0.75). Before imaging, the region and the z-stack were configurated on
the Keyence software and the number of cycles with targets were
designated in the Akoya’s PhenoCycler® Instrument Manager (version
1.29.3.6) as described in the CODEX user manual (Akoya Biosciences,
2021a). Acquired images were processed, stitched, and segmented
using the CODEX Processor set at default manufacturer values with a
radius of 10 for segmentation (Akoya Biosciences, 2021b). Final data
were then viewed using the CODEX Multiplex Analysis Viewer (MAV)
plugin (Akoya Biosciences, 2021c) for FIJI (Image])* and the Enable-
Medicine Visualizer tool (beta version).

Cell assignment with CELESTA

CELESTA is an an unsupervised machine learning algorithm for indi-
vidual cell identification using the cell’s marker expression profile and,
when needed, its spatial information’. The CELESTA package was
downloaded from GitHub under https://github.com/plevritis-lab/
CELESTA. As an initial step, a cell type signature matrix that relies on
prior knowledge of markers was designed and used as CELESTA input,
along with the segmentation data as previously described’. Our initial
cell type signature matrix included all the possible combinations of a
pre-selected set of markers from our antibody panel to identify cancer
cells (panCK, VIM, MUCI) and fibroblasts (aSMA, CD90, PDGFRDb,
PDPN, CAV1), along with other general markers to identify sub-
populations. Every cell subpopulation (designated by unique combi-
nation of markers) with a cell fraction smaller than 2% across all
samples were removed from the cell type signature matrix before a
subsequent iteration of CELESTA, until reaching a final cell type
assignment. Note that Vim+PanCK-EpCAM- cells were assumed as
fibroblasts, and that we used the expression of EpCAM to confirm that

PanCK- cancer cells were not fibroblasts. The cell type signature matrix
and the CELESTA thresholds can be found in Supplementary Data 1. All
CELESTA annotations were manually verified by comparing the cell
assignment dot plots with the original images. Thresholds were
adjusted by increasing to impose stricter conditions or decreasing to
relax the conditions accordingly if cells were erroneously assigned, as
described in the CELESTA user guide’.

Flow cytometry analysis

After TRYPLE incubation, PDOs were dissociated into single-cell sus-
pension. Cells were counted and aliquots of 1 x10° cells per condition
were prepared. The samples were incubated for 5 minutes with 1 uL of
Zombie Aqua™ fixable viability dye in PBS 1X, then washed with flow
cytometry buffer (FCB, 0.5% BSA, 0.02% NaN; and 2 mM EDTA in PBS
1X) and centrifuged (500 x g, 5 min) before adding PFA at a final con-
centration of 1.6% for 10 min at room temperature in FCB. Cells were
then centrifuged at 500 x g for 5min at 4 °C to pellet cells, PFA was
removed, and cells were washed again with FCB. Cells were either long-
term stored at -80 °C in 500 pL of FCB or permeabilised with 100 pL of
eBioscience™ Permeabilisation Buffer diluted at 1X concentration for
30 min on ice with a master mix of primary antibodies (see Supple-
mentary Data 7). After the incubation with primary antibodies, cells
were washed with FCB and spun down at 500 x g for 5 min at 4 °C (2X).
Then, cells were resuspended in 500 pl of FCB, strained and analysed
using a BD LSRFortessa™ X-20. Results were analysed using Cytobank
single-cell analysis software with the gating strategies described in
Supplementary Fig. 9.

EMT analysis with PhenoSTAMP

PHENOSTAMP was downloaded from GitHub under https://github.
com/anchangben/PHENOSTAMP. Briefly, FCS files previously gated in
Cytobank according to singlets and Live/Dead (Supplementary Fig. 9),
were uploaded into R, and the PHENOSTAMP algorithm was used to
project the PDOs on the 2D EMT-MET state map, as previously
described here®.

Colocatome analysis

To quantify the tumor-stroma spatial organization within the assem-
bloids, we used the CLQ and identified positive (proximate) and
negative (distant) cell-cell spatial features between each cell sub-
population as previously described”*>. CLQ calculations were per-
formed on the complete scans of the assembloids. Briefly, we use the
CLQ to quantify how a cell subpopulation co-locates spatially with
another cell subpopulation among a set of nearest neighbors, defined
here as 20. The number of neighbors was set to 20 after evaluating the
statistically significant colocalizations obtained with spatial permuta-
tion testing and varying the number of neighbors. This metric was
chosen because it represented the elbow point where the curve started
to plateau and reflecting a realistic number of cells for a biological
neighborhood (Supplementary Fig. 11a). CLQs were calculated for
pairwise cell types identified under naive and treatment conditions
using the following equation: CLQps, = (Cp>a/Ng) / (Np/(N —1)) where
Cp-q is the number of cells of cell type b among the defined nearest
neighbors of cell type a, N is the total number of cells and N, and N, are
the numbers of cells for cell type a and cell type b, respectively. We use
a Euclidean distance bandwidth parameter, which is determined based
on the segmented X and Y coordinates, with a default value set to 100
according to the recommendations from the authors of the original
CELESTA manuscript to always ensure 20 neighboring cells in the
vicinity’. This CLQ is sometimes referred to be as the “observed CLQ”
to distinguish it from the normalized CLQ, defined below.

We generated the null distribution for each CLQ by randomly
permuting 500 times the cell labels, thus preserving the sub-
population proportions. The number of permutations was set to 500
as we found it generated an adequate CLQ distribution within a
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reasonable compute time and larger numbers of permutations did
not change the findings. Observed CLQ values falling within the 5%
tails of the null distribution were considered significant, associating
statistical significance with a p <0.05. Of note, rare subpopulations
were more likely to yield a broader null distribution of CLQ values. A
broader distribution increases the likelihood of categorizing the
observed CLQ value as statistically insignificant. Only statistically
significant colocalizations consistent between biological replicates
per condition were included in downstream colocatome analy-
sis (Fig. 2¢).

The normalized CLQ is reported throughout the manuscript. We
normalize the observed CLQ (defined above), in order to compare
spatial features across different conditions and assays (ex: assem-
bloids vs histopathological specimens). We observed that the dis-
tribution of CLQs under each condition generally followed a
Gaussian-shaped distribution independent of region size (Supple-
mentary Fig. 12d). Hence, for a given condition, we computed the
normalized CLQ as the Z-score, calculated as the observed CLQ
values minus (-) the mean of the observed CLQs under the given
condition, divided by the standard deviation of the observed CLQ
distribution for that condition. When the observed CLQ is O, the
normalized CLQ is -1; when the observed CLQ is the maximum value
of the null distribution, the normalized CLQ is 1; and when the
observed CLQ is the mean value of the null distribution (set here to
the number of neighbors; 20), the normalized CLQ is near 0. Note
that when the observed CLQs is greater (or smaller) than the max-
imum (or minimum) value of the CLQ distribution, it is in the 5% tail
of the distribution and significant, and the observed CLQ is set to the
maximum (or minimum) value of the CLQ distribution, so that the
upper (or lower) bound of the normalized CLQ is 1 (or -1). Normalized
CLQ values were calculated only for cell counts greater than 5 in any
given sample, excluding irrelevant cell subpopulations with low
counts. This was necessary because certain samples or regions did
not express all cell types in significant amounts.

Additionally, CLQ calculations were repeated in the periphery and
center regions of the same assembloid to evaluate whether specific
spatial features were enriched in a particular region. To determine
each region, the assembloid sections were considered as circular, and
periphery and center zones were established with a consistent ratio to
the diameter, ensuring uniform zone ratios regardless of the total area
that can vary between samples (Supplementary Fig. 7). All CLQ values
with their statistical significance are listed in Supplementary
Data 2 and 4.

Composite colocatome of assembloids

To establish a comprehensive reference colocatome, we identified
colocalizations consistent across biological replicates as described in
Fig. 2 for each of the four assembloid conditions. Briefly, all negative
colocalizations (cells repelling each other or segregated) were
assigned to -1, and positive colocalizations (cells found in proximity)
were assigned to 1. Unsignificant spatial features were assigned to O.
The final colocatome composite include all assembloid conditions
(treatment-naive TAF-PDO and TCF-PDO assembloids and erlotinib-
treated TAF-PDO and TCF-PDO assembloids) and regions (whole
assembloid, periphery and center). Cell pairs colocalized under one
condition, but negatively colocalized under another were assigned to 1
in the final composite colocatome, as the reference colocatome
intended to generate a matrix of possibilities of cells that can be found
in proximity in some, but not necessarily all instances. Next, we used
hierarchical clustering on the full (homo- and heterotypic spatial fea-
tures) or partial (heterotypic spatial features) colocatome to group cell
subpopulations into subclusters with similar colocalization partners.
Then, we ordered the subclusters, namely colocation clusters,
according to their likelihood of being found in proximity or segregated
from each other.

LUAD clinical samples

To validate the clinical significance of our assembloid-derived colo-
catome, we transposed the cell subpopulations identified in the
assembloids to a small LUAD cohort generated in our lab. Briefly, the
same panel of markers for cancer cell and fibroblasts were used, but
additional immune and endothelial markers were added. The full list of
antibodies and reporter used are listed in Supplementary Data 7. The
antibody conjugation and the staining were done according to the
manufacturer’s protocol (Akoya Biosciences) at the exception of an
additional photobleaching step before the incubation with the primary
antibody cocktail solution. Briefly, tissues fixed on coverslips were
incubated in 4.5% H,0, and 20 mM NaOH solution diluted in 1X PBS
(5 ml/well) in a translucid vessel in between two white LED light panels
(White light; Light intensity: 20,000 Lux) for 90 min at RT. Details
regarding primary antibody, vendors, catalog numbers and barcode
assignments are listed in the Supplementary Data 7. Data acquisition,
software configuration and data were done as described above under
the PhenoCycler image acquisition and data processing section.

The cell signature matrix developed for the assembloids was used
to guide the identification of fibroblast and cancer cell subpopulations
in LUAD specimens (Supplementary Data 1 and 3) of unknown cell
composition and architecture. Lepidic, acinar and solid regions were
defined by a pathologist, overlayed on the Phenocycler images using
the EnableMedicine Beta visualizer tool, and cells were assigned to a
histological growth pattern (lepidic, acinar or solid). The LUAD sam-
ples were then broken into histopathological regions associated with a
growth pattern, on which we repeated the pipeline described above to
reconstruct the cancer-fibroblast lepidic, acinar and solid coloca-
tomes. Significant CLQ values consistent across more than half of the
regions of a same growth pattern were considered as significant. If the
majority of the normalized CLQ values for pairwise colocalization were
negative, the interaction was considered avoidance, or vice versa for
attraction. Pairwise interactions with equal number of regions with
positive and negative CLQ values, which did not allow us to determine
if cells were being attracted or repelled, were excluded. Hierarchical
clustering was performed on the assembloid colocatome composite vs
clinical specimens using R (version 4.3.1).

Hierarchical clustering on spatial colocalizations was also per-
formed on all the significant spatial features shared between assem-
bloids and clinical specimens. Pairwise colocalizations with more than
20% missing values across all conditions and self-colocalizations were
excluded to improve visualization. The significance of the clusters
obtained was assessed using the pvclust R package”, a tool for
assessing the uncertainty in hierarchical cluster analysis using multi-
scale bootstrap resampling with the complete method, Euclidean
distance, and 10,000 iterations for bootstrap resampling as input
parameters. The approximate unbiased (AU) p-values were used as
recommended in the user guide, and a p value of 0.05 was considered
significant (Supplementary Fig. 13).

Breast cancer imaging mass cytometry dataset

The imaging mass cytometry dataset® comprising 49 breast cancer and
3 normal breast images was generously provided by Dr. Denis Schapiro
from the Heidelberg University Hospital. The centroids of each cell
were extracted from the segmentation masks provided with the ima-
ges using MATLAB (R2023b). The colocalization analysis was repeated
as described above, utilizing CLQ calculation and permutation analy-
sis. Cell annotations were preserved from the original manuscript, and
the number of neighbors was set to 5, consistent with the average
number of neighbors per cell used in the original study. CLQ values
with a p <0.05 were considered as significant.

Statistical analysis
The significance of the CLQ values were obtained by randomly per-
muting 500 times the cell labels while preserving the subpopulation
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proportions. CLQ values falling outside or at the tail of the distribution
generated by the permutation analysis were considered significant,
whereas values within the distribution were deemed non-significant, as
they can be reproduced after spatial randomization. In assembloids,
CLQs consistently significant between biological replicates of a same
condition were included, and for clinical specimens, spatial features
significant across more than half of the regions of a same histology
were considered as significant. The significance of the hierarchical
clustering was assessed using multiscale bootstrap resampling with
the pvclust R package”. P<0.05 were considered as significant. See
methods, results and figure captions for additional details about
individual statistical analyses used in this study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The assembloids imaging data generated in this study have
been deposited on the EnableMedicine platform at https://app.
enablemedicine.com/portal/atlas-library/studies/2e12f499-027b-
4f06-813f-e16491ab34c1?sid=496, which allows both direct visuali-
zation and local download of the images. Due to the extremely large
number of files and their substantial size, segmentation data,
CELESTA cell annotations, and raw unprocessed images for all sam-
ples will be made available upon request. The publicly available mass
cytometry breast data® used in this study is available through the
Bodenmiller group Github at https://github.com/BodenmillerGroup/
histoCAT?tab=readme-ov-file. Reagents and antibodies used are
available in Supplementary Data 7 and Reporting Summary. Further
information and requests for resources and reagents should be
directed to, and will be fulfilled by, the lead contact, S.K.P.. This study
did not generate new unique reagents or cell lines. The remaining
data are available within the Article, Supplementary Information or
Source Data file. Source data are provided with this paper.

Code availability

The R scripts used in this study are deposited on the Plevritis lab
Github at https://github.com/plevritis-lab/Spatial_Permutation_and_
Normalization.git and a permanent version is available at https://doi.
0rg/10.5281/zenodo.13909851*,
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