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Abstract Liquid Chromatography Mass Spectrometry

(LC-MS) is a powerful and widely applied method for the

study of biological systems, biomarker discovery and

pharmacological interventions. LC-MS measurements are,

however, significantly complicated by several technical

challenges, including: (1) ionisation suppression/enhance-

ment, disturbing the correct quantification of analytes, and

(2) the detection of large amounts of separate derivative

ions, increasing the complexity of the spectra, but not their

information content. Here we introduce an experimental

and analytical strategy that leads to robust metabolome

profiles in the face of these challenges. Our method is

based on rigorous filtering of the measured signals based

on a series of sample dilutions. Such data sets have the

additional characteristic that they allow a more robust

assessment of detection signal quality for each metabolite.

Using our method, almost 80% of the recorded signals can

be discarded as uninformative, while important information

is retained. As a consequence, we obtain a broader

understanding of the information content of our analyses

and a better assessment of the metabolites detected in the

analyzed data sets. We illustrate the applicability of this

method using standard mixtures, as well as cell extracts

from bacterial samples. It is evident that this method can be

applied in many types of LC-MS analyses and more spe-

cifically in untargeted metabolomics.

Keywords LC-MS � Metabolomics � Orbitrap �
Metabolite identification

1 Introduction

Untargeted metabolomics aims to describe living systems

by the set of metabolites present in a cell at certain moment

of time and under specific environmental constraints (Fiehn

2002; Dettmer et al. 2007; Oldiges et al. 2007). Since

metabolites are the final link between the gene expression

and the phenotype exhibited by the cell, metabolomics

represents a valuable tool to achieve a better understanding

of an organism’s phenotype (Fiehn 2002; Oldiges et al.

2007). The study of the metabolome is complementary to

the other ‘‘omics’’ sciences (genomics, transcriptomics,

proteomics, fluxomics…) and fits well with the general

approach of systems biology (Arita 2009).

Important advances have been realized in the past years

for untargeted metabolite profiling in different research

fields, from human health to nutrition (Scalbert et al. 2009;

Kamleh et al. 2008). However, metabolomics is still an

emerging field in the post-genomic arena. For example, due

to the chemical diversity of cellular metabolites and the
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complexity of the cell extracts, there is no single method

which can separate, detect and identify all small molecules

present in a cell extract. Furthermore the Achilles’ heel of

metabolomics remains the identification and structure

elucidation of metabolites (Kind and Fiehn 2010). Some-

times, fragmentation patterns of the molecules can be used

for identification. For metabolomics data the detected

fragment patterns can, e.g., be matched to online databases,

like Metlin (Smith et al. 2005), and assigned to a quality

score. But in our experiments we have however observed

that the scan time of the LTQ-Orbitrap is considerably

affected by the inclusion of fragmentation steps, making

the normal LC-MS data stream fragmentary and difficult to

analyze automatically. As more convenient alternative, the

Orbitrap Exactive platform (without the linear iontrap but

with faster scan speeds) can be used to capture more data

points using the positive–negative polarity switch mode

(Lu et al. 2010). Thus, currently matching on mass alone to

databases is the most commonly used method. Unfortu-

nately, this approach to metabolite identification is very

seriously hampered by the fact that the vast majority of the

signals in the data set can be caused by contaminants in the

sample or LC-MS system (Keller et al. 2008), technical

artefacts and so-called ‘‘derivative peaks’’ (Scheltema et al.

2009). In many cases, several peaks or signals share the

same identifications, even if signals are detected with an

accuracy of better than 2 ppm, as is routinely possible

using, e.g., modern Fourier Transform mass spectrometers,

like the Orbitrap (Scheltema et al. 2008). Such spurious

peaks need to be checked manually and assigned to their

real identification or discarded if the signal shows typical

artefacts.

Our goal was to develop an analytical method that would

be able to eliminate a substantial part of the spurious signals

from the data set. This required the development of new

approaches and the collection of an unusual type of data on

biological samples and mixtures of analytical standards, to

distinguish real effects from spurious fluctuations in LC-MS

analyses and peak detection algorithms. The strategies

developed here will be generally useful for metabolomics.

2 Materials and methods

2.1 Amino acid standard mixture samples

A mixture of 38 physiological amino acid standards

(Product No. A9906, Sigma) was used. In the stock solu-

tion, amino acids and related compounds are contained at a

final concentration of 0.5 lmol/ml ± 4% in 0.2 N lithium

citrate buffer, pH 2.20, containing thiodiglycol (2% w/v)

and phenol (0.1% w/v) as antioxidant and preservative,

respectively. The concentration in the injected diluted

samples is described in Table 1.

2.2 Biological samples

Analytical samples were obtained from Streptomyces coe-

licolor wild-type M145 strain (Bentley et al. 2002). Bac-

teria were grown in 50 ml liquid minimum medium

(Nieselt et al. 2010) as described (Takano et al. 2001).

Cells from 25 ml of culture were collected on a 0.45 lm

filter by vacuum filtration and washed twice with 25 ml of

2.63% NaCl solution. For cell quenching, the filter with the

Table 1 Dilution factor and concentrations of the analysed samples

Dilution factor 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024

Concentration (lmol/ml) 0.0625 0.0313 0.0156 0.0078 0.0039 0.0020 0.0010 0.0005

Injected on column (pmol) 312.5000 156.2500 78.1250 39.0625 19.5313 9.7656 4.8828 2.4414

Table 2 Comparison of

number of the peaks extracted

for the standard mixtures

samples

The fraction of features

uniquely identified as standard

compounds is significantly

increased after application of

trend filtering

bp labelled as base peaks by

mzMatch software, rp labelled

as derivative peaks, 1 number

of peaks, 2 number of unique

identifiers

C18 HILIC

Before filtering Filtered Before filtering Filtered

1 2 1 2 1 2 1 2

Detected as standards (bp) 49 12 11 10 409 28 91 26

Detected as standards (rp) 30 27 20 20 256 30 99 28

Detected as contaminants (bp) 69 23 1 1 227 28 13 8

Detected as contaminants (rp) 40 17 5 4 147 22 22 9

Detected in ScoCyc (bp) 94 17 6 2 516 68 70 29

Detected in ScoCyc (rp) 72 37 24 23 383 92 115 58

Unidentified (bp) 1335 106 4745 493

Unidentified (rp) 1142 348 4486 1337
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collected cells was quickly moved into 60% methanol

solution (HPLC-grade, Boom, The Netherlands) pre-chil-

led at -20�C and frozen in liquid nitrogen. Samples were

stored at –80�C until metabolite extraction was performed.

Metabolites were extracted by three freeze–thaw cycles.

Cells were thawed in an ethanol bath at -20�C (*15 min),

vortexed vigorously for 1 min and, right afterwards, frozen

in liquid nitrogen for 5 min. The cycle was repeated three

times. After the third cycle, the samples were centrifuged at

4500 rpm for 10 min at -9�C. The supernatant (cell

extract) was collected and stored at -80�C until LC-MS

analysis. Before analysis, obtained samples were diluted

with the same dilution factor as for the analytical standards

mixture, resulting in eight samples with different metabo-

lite concentrations.

2.3 LC-Orbitrap MS analysis

The analytical mixtures and cell extracts were analyzed by

liquid chromatography coupled to a high-accuracy LTQ

Orbitrap XL mass spectrometer (Thermo Fisher Scientific,

Germany).

Two chromatographic columns were used: a reversed-

phase Shim-pack XR-ODS C18 column (Achrom, Belgium)

(3.0 9 75 mm, 2.2 lm, Shimadzu Corp.) and a ZIC-HILIC

column (Achrom, Belgium) (150 9 2.1 mm, 3.5 lm,

Merck Sequant AB) fitted with a ZIC-HILIC PEEK guard

column (Achrom, Belgium) (15 9 1.0 mm; 5 lm, Merck

Sequant AB).

For the C18 column, the flow rate was set to 0.6 ml/min;

the mobile phase consisted of (A) 0.1% formic acid in

water and (B) 0.1% formic acid in acetonitrile. A gradient

of 18 min was used. The elution of solvent B started at 2%

for the first 2 min and was increased to 95% within 8 min.

This composition was maintained for 2 min, after which

the elution of B was decreased to 2% within 1 min. To re-

equilibrate the system, the elution of B was held at 2% for

5 min.

For the ZIC-HILIC column, the flow rate was set to

0.1 ml/min; as buffers, (A) 0.1% formic acid in acetonitrile

and (B) 0.1% formic acid in water were used. A gradient of

40 min was applied. Solvent A was set to 80% as starting

condition. The elution fraction of solvent B was increased

to 40% within 6 min and maintained at 40% for 12 min,

after which solvent B was increased to 90% in a 4 min-

interval. This composition was held for 2 min after which

B was decreased to 20% in 2.5 min. The gradient was held

at 20% B for 13.5 min to re-equilibrate the system.
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Fig. 1 Proportional relationship between identified compounds

before and after filtering on dilution trend. Compounds labelled as

base peaks by the mzMatch software are shown. For the standards

mixture (a) where only matches to the standard compounds are

expected, a clear increase of the fraction of identified peaks can be

seen after filtering. Importantly, the fraction of uniquely identified

compounds (lighter shade of the color) is also strongly increasing.

In other words, after filtering more compounds with unambiguous,

unique identifications are retained. The same trend can be also seen in

the data for the biological samples (b), where matches to the standard

compounds and the ScoCyc data base are expected. Matches to the

contaminant compounds decrease in the filtered data, and the number

of unique identifications increases substantially (Color figure online)
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The sample volume injected was 5 ll for both columns,

and two technical replicates were recorded for the C18

analysis, and three replicates on the HILIC column.

The system was operated with the electrospray ioniza-

tion source in positive mode. Full-scan spectra were

obtained over an m/z range of 50–1000 Da.

ULC grade acetonitrile, formic acid and water were

purchased at Biosolve (Netherlands).

2.4 Data processing

Raw data files from the mass spectrometer were converted

into the mzXML format by the ReAdW.exe utility (a tool

of the Trans-Proteomic Pipeline software collection,

downloaded from http://tools.proteomecenter.org/wiki/index.

php?title=Software:ReAdW).

The CentWave (Tautenhahn et al. 2008) feature

detection algorithm from the XCMS (Smith et al. 2006)

package was used on each individual data file. Further

processing was handled by the flexible data processing

pipeline mzMatch (Scheltema et al. 2011), performing

noise removal (Windig 2004) and several steps of signal

filtering and peak matching. The first matching step

involved aligning of the chromatographic features

between technical replicates of a single sample. Peaks that

were not detected in all technical replicates were dis-

carded from further analysis. In the second matching step,

the chromatographic peaks, which were combined in

Table 3 Identified compounds in the analytical mixture

Metabolite (KEGG compound ID) Molecular formula Monoisotopic mass C18 HILIC

Corr. RT Corr. RT

Urea (C00086) CH4N2O 60.03240 -0.88 0 min 40 s -0.99 8 min 33 s

Ethanolamine (C00189) C2H7NO 61.05280 -0.94 0 min 32 s -0.99 20 min 56 s

Glycine (C00037) C2H5NO2 75.03200 -0.89 0 min 35 s -1 17 min 58 s

L-Alanine (C00041) C3H7NO2 89.04770 -0.97 0 min 35 s -0.98 14 min 58 s

c-Amino-N-butyric acid (C00334) C4H9NO2 103.06330 -0.91 0 min 37 s -0.90 13 min 56 s

L-Serine (C00065) C3H7NO3 105.04260 -0.88 0 min 35 s -1 18 min 05 s

L-Creatinine (C00791) C4H7N3O 113.05890 -0.97 0 min 34 s -0.85 14 min 44 s

L-Proline (C00148) C5H9NO2 115.06330 -0.92 0 min 38 s -0.98 14 min 26 s

L-Valine (C00183) C5H11NO2 117.07900 -0.99 0 min 48 s -0.92 13 min 18 s

L-Threonine (C00188) C4H9NO3 119.05820 -0.95 0 min 35 s -0.89 18 min 16 s

Taurine (C00245) C2H7NO3S 125.01470 -0.86 0 min 36 s -0.99 15 min 01 s

Hydroxy-L-proline (C01157) C5H9NO3 131.05820 -0.96 0 min 36 s -0.85 15 min 23 s

L-Isoleucine (C00407) C6H13NO2 131.09460 -0.99 1 min 34 s -1 11 min 48 s

L-Ornithine (C00077) C5H12N2O2 132.08990 -0.95 0 min 28 s

L-Aspartic acid (C00049) C4H7NO4 133.03750 -0.90 0 min 36 s -1 16 min 39 s

L-Lysine (C00047) C6H14N2O2 146.10550 -0.95 0 min 28 s -1 30 min 7 s

L-Glutamic acid (C00025) C5H9NO4 147.05320 -0.92 0 min 36 s -0.90 15 min 41 s

L-Methionine (C00073) C5H11NO2S 149.05100 -0.99 1 min 02 s -1 12 min 48 s

L-Histidine (C00135) C6H9N3O2 155.06950 -0.89 0 min 29 s -1 29 min 19 s

d-Hydroxylysine (C01211) C6H14N2O3 162.18700 -0.95 0 min 28 s -1 30 min 18 s

L-Phenylalanine (C00079) C9H11NO2 165.07900 -0.99 3 min 42 s -1 11 min 16 s

1-Methyl-L-histidine (C01152) C7H11N3O2 169.08510 -0.91 0 min 31 s -1 29 min 38 s

L-Arginine (C00062) C6H14N4O2 174.11170 -0.95 0 min 32 s -1 30 min 10 s

L-Citrulline (C00327) C6H13N3O3 175.09570 -0.93 0 min 36 s -1 18 min 35 s

L-Tyrosine (C00082) C9H11NO3 181.07390 -0.99 1 min 40 s -1 13 min 42 s

L-Tryptophan (C00078) C11H12N2O2 204.08990 -0.99 4 min 39 s -0.99 12 min 01 s

L-Cystathionine (C02291) C7H14N2O4S 222.06740 -0.87 0 min 35 s -1 26 min 00 s

L-Carnosine (C00386) C9H14N4O3 226.10660 -0.88 0 min 28 s -1 31 min 01 s

L-Cystine (C00491) C6H12N2O4S2 240.02380 -0.88 0 min 35 s -1 25 min 17 s

L-Anserine (C01262) C10H16N4O3 240.12220 -0.98 0 min 30 s -1 30 min 53 s

L-Homocystine (C01817) C8H16N2O4S2 268.05510 -1 0 min 44 s -1 24 min 02 s

Corr. Pearson’s correlation coefficient between sample number and the logarithm of the signal intensity, RT retention time
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single files containing technical replicates in the previous

matching step, were aligned to each other for all eight

dilutions. After combining the eight measurements in a

single file, there were still peak sets that did not include

peaks from every sample. Such gaps were filled by

extracting ion chromatograms within the retention time

and mass window of the given peak set directly from the

raw data files.

Table 4 Comparison of the number of the peaks extracted for the biological samples before and after trend filtering

C18 HILIC

Before filtering Filtered Before filtering Filtered

1 2 1 2 1 2 1 2

Detected as standards (bp) 34 13 5 5 366 22 32 15

Detected as standards (rp) 16 12 8 8 208 23 20 10

Detected as contaminants (bp) 59 20 3 2 254 28 10 8

Detected as contaminants (rp) 29 16 4 4 129 29 16 12

Detected in ScoCyc (bp) 97 25 4 4 639 78 28 24

Detected in ScoCyc (rp) 36 22 7 7 362 78 46 33

Unidentified (bp) 1235 19 4962 146

Unidentified (rp) 632 123 3053 359

The fraction of compounds with putative identifications is significantly increased after application of the trend filter

bp Labelled as base peaks by mzMatch software, rp labelled as derivative peaks, 1 number of peaks, 2 number of unique identifiers

(a)  Biological sample, m/z=142.07423 (ectoine)

(b)  Standards mixture,  m/z=142.07435 ("pseudo-ectoine ")
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Fig. 2 Example of the dilution

trends (on the left) and extracted

mass chromatograms (on the
right) for a metabolite

putatively identified as ectoine.

For the biological samples,

which are expected to contain

ectoine (Kol et al. 2010), three

technical replicates show clearly

identifiable dilution trend (trend

correlation value -0.97). For

the standard mixture, which

does not contain ectoine, a

random trend is seen in all

replicates for the signal

putatively identified as ectoine

(mass error 0.86 ppm); this

putative technical artefact can

thus be removed by the trend

filtering (Color figure online)
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Derivative signals (isotopes, adducts, dimers and frag-

ments) were automatically annotated by correlation anal-

ysis on both signal shape and intensity pattern, as described

(Scheltema et al. 2009). These peaks were not discarded

and their assigned annotations were taken into account in

the subsequent analysis.

Putative identifications were made by matching the

detected masses to a database of Streptomyces coelicolor

(ScoCyc) metabolites, a contaminants database (Keller

et al. 2008), and the list of analytical standards in the

standard mixture. The metabolite database was obtained

from a genome annotation file created by Jonathan Moore

as part of the SysMO STREAM project (https://www.

wsbc.warwick.ac.uk/groups/sysmopublic/), which is also

available for download from the BioCyc project page

(Karp et al. 2009) as a flat-file in Pathway Tools format

(Karp et al. 2002).

Pearson’s correlation of binary logarithm of the peak

intensities was applied to evaluate dilution trends in the

obtained data set. Samples for the 8 dilution points were

ordered from highest to lowest concentration, so that

metabolites matching the sample dilution trend would

show high negative correlation values between intensity

and sample number. Correlation values smaller than -0.85

were considered as indicating a significantly reproducible

dilution trend.

For low-abundance peaks, where signals for the highest

dilutions were below the limit of detection, correlation

values were calculated for the detectable consecutive

measurements (at least 3 dilution points were required).

All statistical analyses and graphical routines were

handled in R (R Development Core Team, R: A Language

and Environment for Statistical Computing, Austria: 2011;

http://www.R-project.org).

Raw data files in mzXML format, R code containing the

complete data processing pipeline, as well final peak tables

are available for download at http://mzmatch.sourceforge.

net/metabolomics.html.

3 Results and discussion

Our study was carried out in two steps. First we wanted to

validate our filtering method by applying it to the data sets

of the mixtures of analytical standards. The resulting

numbers of detected peaks are shown in Table 2. Data for

both chromatographic columns are shown: even for rela-

tively simple samples (39 compounds in the mix of stan-

dards) a huge amount of the peaks were detected (2831 peak

sets for C18 data, and 11169 for HILIC). Only about

20–30% of these signals can be identified in chemical dat-

abases or assigned to known contaminants. A significant

amount of the uninformative signals could be removed after

application of the dilution trend filter. For example, in the

unfiltered data set for HILIC data 28 unique standard

compounds were matching 409 features within 5 ppm mass

accuracy window. After application of the dilution trend

filter, this number decreased to 91 features matching 26

unique standard compounds. In other words, the number of

detected compounds is not significantly changing, while the

number of total peaks in the data set is decreasing by almost

5 times and the number of unambiguous matches is sub-

stantially increased (Fig. 1a). Manual inspection showed

that the two putative standard compounds removed by

application of the filter were artefacts, i.e. these two com-

pounds were not really detectable. Also, a very large amount

of the signals matching the ScoCyc database (which should

not be present in samples of analytical standards) was

removed by the trend filter, as were most of the unidentifi-

able compounds, which also do not match the expected

composition of the samples. Overall the fraction of correctly

identifiable compounds is dramatically increased.

A list of the standard compounds detected on both C18

and HILIC columns is shown in Table 3. The following

structural isomers could not be distinguished: L-alanine,

L-sarcosine and b-alanine; c-amino-N-butyric acid, D,L-b-

aminoisobutryic acid and L-a-amino-n-butyric acid. For

L-isoleucine/L-leucine and 1-methyl-L-histidine/3-methyl-

L-histidine two peaks eluting close to each other were

observed. Ammonium chloride was not detected on either

column (because of its low molecular weight), and

L-ornithine was not detected on the HILIC column. Almost

no separation was achieved on the C18 column (most of the

signals eluted within the first minute of the analytical run).

Surprisingly high quantification accuracy (correlation value

is close to -1, i.e. a linear relationship between intensity

and sample dilution) can be observed for almost all ana-

lytical standards on both chromatographic columns.

The resulting numbers of detected peaks after process-

ing of biological samples are shown in Table 4. Surpris-

ingly, the amount of detected peaks is comparable to the

numbers seen for the analytical standards, both in the fil-

tered and unfiltered data sets. For the HILIC data set, 639

features were putatively identified in the ScoCyc database

(78 unique compounds), but only 28 peaks (24 unique

identifiers) were retained after application of the dilution

trend filtering. Clear trends in improvement of the data set

quality are shown in Fig. 1b. Interesting compounds that

were identified (and expected) only in the biological sam-

ples on both chromatographic columns are the osmoregu-

lator compound ectoine and hypoxanthine. In Fig. 2, an

example of dilution trends and chromatographic peaks for

the biological sample (Fig. 1a) and the standard mixture

(Fig. 1b) is given. In both data sets, a peak was identified as

matching the mass of ectoine with an apparent mass error

less than 1 ppm, but in the standard mixture (which does
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not contain ectoine), this peak was successfully discarded

by the trend filter, as the signal intensity patterns (shown in

the left panel of the plot) are not following the sample

dilution trend.

The biological samples used in this illustrative example

are particularly challenging, due to a large number of peaks

with low signal intensities. Our results show that even for

such difficult data, the dilution trend filter can be applied

with no real danger of losing information of interest. It is

also quite obvious that sample dilution factors should be

adjusted according to the expected overall metabolite lev-

els in the analysed samples, to avoid over-dilution and loss

of signals of interest. To avoid the problem of large cor-

relations occurring by chance when the number of obser-

vations is low, the statistical significance of the observed

correlation can be examined and the obtained p-values can

be used to determine the threshold for peak selection. This

method can also be integrated with a quality control sample

approach (Sangster et al. 2006), where repeated injection of

a pooled randomized sample throughout the analysis serves

as a reference for quality control; this approach is com-

monly used in large populations studies (Zelena et al.

2009). This control sample can be replaced with injections

of pooled dilution samples in randomized order. Thereby,

without increasing the number of injections for a typical

analytical sample batch, it will be possible to simulta-

neously assess machine stability (as the dilution trend

should stay constant) and do a filtering of the data set on

highly reproducible signals.

The method suggested here is therefore a useful com-

plement to the commonly used relative standard deviation

(RSD) filters (Shah et al. 2000; Scheltema et al. 2008) and

the CoDA-DW filters, (Windig 2004), allowing automatic

retrieval of signals of interest, reducing the complexity of

the data and consequently speeding up the interpretation

process.

The dilution filtering approach can be easily integrated

in a complete data processing pipeline (based on mzMatch

and XCMS software tools) and used in a semi-automated

manner. This is illustrated in the R script provided as

supplementary material for this study (http://mzmatch.

sourceforge.net/metabolomics.html).

4 Concluding remarks

We have been able to demonstrate the effectiveness and

reliability of a relatively simple data filtering strategy. The

proposed trend correlation filter significantly decreases the

amount of non-informative signals in the data sets and

makes metabolite identification much easier. We could

show that even very stringent filtering of the data is not

causing a loss of informative signals.

Our illustrative application to biological samples dem-

onstrates that our approach can also be applied to assess the

performance of metabolite extraction from the samples.

This allows a more reliable estimate of the true meta-

bolomic complexity observed in a particular experiment.
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