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Abstract

Dietary and physical activity behaviors formed early in life can increase risk for childhood

obesity and have continued negative consequences for lifelong health. Previous research

has highlighted the importance of both genetic and environmental (e.g., cultural environ-

ment or parental lifestyle) contributions to obesity risk, although these studies typically

involve genetically-related individuals residing in the same household, where genetic simi-

larity and rearing environment are inextricably linked. Here we utilize a sibling-adoption

design to independently estimate genetic and environmental contributions to obesity risk in

childhood and describe how these influences might vary as children age. As part of a pro-

spective adoption study, the current investigation used data from biological siblings reared

either apart or together, and nonbiological siblings reared together to estimate the contribu-

tions of genetics and environment to body mass indices (BMI) in a large cohort of children

(N = 711). We used a variance partitioning model to allocate variation in BMI to that which is

due to shared genetics, common environment, or unique environment in this cohort during

middle childhood and adolescence. We found 63% of the total variance in BMI could be

attributed to heritable factors in middle childhood sibling pairs (age 5–11.99; 95% CI

[0.41,0.85]). Additionally, we observed that common environment explained 31% of varia-

tion in BMI in this group (95% CI [0.11,0.5]), with unique environment and error explaining

the remaining variance. We failed to detect an influence of genetics or common environment

in older sibling pairs (12–18) or pairs spanning childhood and adolescence (large sibling age

difference), but home type (adoptive versus birth) was an important predictor of BMI in ado-

lescence. The presence of strong common environment effects during childhood suggests

that early interventions at the family level in middle childhood could be effective in mitigating

obesity risk in later childhood and adolescence.
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Introduction

Childhood obesity is a pervasive public health problem that affects more than 13.7 million chil-

dren in the United States [1]. The Centers for Disease Control and Prevention (CDC) reports

increases in obesity prevalence as children age, estimating that 13.0% of 2- to 5-year olds and

20.6% of 12- to 19-year olds struggle with obesity in the United States [2]. Children with obe-

sity are more likely to experience negative health and psychological outcomes compared with

peers of normal weight, such as asthma, high blood pressure, type 2 diabetes, anxiety, and

depression [3–5]. Furthermore, childhood obesity often persists into adulthood. A U.S.

national, longitudinal study found that 90% of adolescents with obesity continued to struggle

with obesity throughout adulthood [6], sustaining their heightened risk for poor health and

psychological outcomes.

To better understand and ultimately mitigate the rising incidence of childhood obesity and

its life-long challenges, it is important to examine factors predisposing children to obesity.

Twin and adoption studies have been paramount in developing our understanding of how a

combination of genetic and environmental factors influence obesity risk [7]. However, these

studies have yielded varied results about the relative influences attributed to genetics or envi-

ronment, and often focus on a single age group or adults. Multiple meta-analyses of twin and

family studies have identified repeated patterns in genetic and environmental influences on

BMI from childhood to adulthood by combining existing cohort data [8–10]. Across twin and

family study designs, heritability estimates tend to increase as children age, but begin to

decrease into adulthood, after age 18 [8]. Of relevance to the age range of the current sample,

heritability estimates range from 0.58 to 0.89 for studies including children aged 5–18 years

[8]. Additionally, previous longitudinal studies corroborate meta-analysis findings over time

in twin and adoption cohorts, with heritability of BMI increasing over early to middle child-

hood [11, 12], even despite obesogenic environments thought to solidify suboptimal health

behaviors [13]. Furthermore, previous work in adult cohorts of adoptees and their relatives

demonstrates that shared environmental effects wain in adulthood, and most of the variance

in BMI can be explained by heritable factors [14–16].

While we cannot alter a child’s genetic makeup (in the absence of gene therapies), environ-

mental factors that influence obesity risk represent potentially malleable targets for interven-

tions that may alter gene expression. Environmental factors can include those that are

experienced by all children in a household (common environment), and those that are unique

to each child in a household (unique environment). Examples of potential common environ-

mental factors associated with childhood obesity include access to physical activity opportuni-

ties, green space, and healthy foods, and parental support for healthy eating and exercise

behaviors [17–19]. Some of these factors could also serve as unique environmental exposures

for children if siblings in a family are exposed to them at different levels, or if siblings spend

different amounts of time in the home. Understanding and harnessing the contributing influ-

ences of common and unique environmental factors during childhood and adolescence is of

critical importance to identifying age-appropriate intervention targets to prevent obesity

before it becomes a life-long problem.

Here we build upon previous BMI research using an adoption design where biological sib-

lings are reared together or apart from birth, or are reared from birth with other nonbiological

siblings. Previous twin and adoption studies have used traditional ‘ACE’ structural equation

modeling approaches developed specifically for twin and family designs [20]. Traditional ACE

modeling approaches assume that the environments experienced by individuals sharing a

home affect the phenotype of interest equally, regardless of the level of genetic relatedness (the

‘equal environment assumption’), and that results from twin studies are generalizable to
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broader populations [20]. While these models perform well when statistical assumptions are

met, they are challenging to implement under exceedingly complex and varied family struc-

tures. Utilizing a statistical approach from non-human quantitative genetics [21] which is ame-

nable to the natural factorial design of relatedness and home sharing combinations found in

an adoption dataset, we are able to obtain estimates of genetic and environmental contribu-

tions to child BMI that are unconfounded by the effects of co-rearing. Furthermore, our data-

set is unique from previous adoption studies of BMI [7, 14–16] because the children were

adopted at birth (median age = 2 days; SD = 12.45; range = 0–91 days) and measurements used

in this study were taken during childhood when the effects of common environment on BMI

can be detected. In addition, this project includes the biological siblings of the adoptees who

were reared with the birth parents, and additional siblings living in either adoptive or birth

home.

The objective of this study was to parse the relative contributions of genetics and environ-

ment to the BMI of children using this unique sibling-adoption study design to better under-

stand the etiology of BMI across childhood. Following common practice in twin and family

studies, we further decomposed the contribution of environment into those factors common

for all members of a household (common environment) and those that are unique to each

individual [unique environment; 22] or are due to error. Based on the meta-analyses of twin

and family studies in which siblings were co-housed from birth [8–10], we expected the rela-

tive contribution of genetic influences to increase with age, and environmental influences to

vary by age group, with the BMI of younger children being largely influenced by genetic and

common environmental factors and the BMI of older children being largely influenced by

genetic and unique environmental factors.

Methods

Human subjects

The study sample was drawn from the Early Growth and Development Study [EGDS; 23] and

its companion study, Early Parenting of Children [EPoCh; 24]. Together, these studies encom-

pass a prospective adoption cohort that includes participants who were domestically adopted

at birth into a non-biological adoptive home, the adoptees’ biological siblings who remained

living with the birth parent(s), and additional nonbiological siblings living in either study

home. Participants were included in the current study if: (a) they shared a home with a biologi-

cal sibling, (b) they had a biological sibling living in a different home, or (c) they shared a

home with a nonbiological sibling. Participants were excluded from this sample if: (a) they had

missing data on their genetic relationship to their rearing parents or their genetic relationship

to other siblings in the study, or were missing BMI data or (b) if their data included extreme

outliers for observations of age-corrected BMI (putatively because of reporting error). Using

an established approach recommended by the Centers for Disease Control and Prevention,

children with BMI z-scores below -4 and above 8 after age-correction were removed [25].

Exclusion of these individuals did not affect the overall sample mean for BMI (t = 0.45,

df = 1769.3, p = 0.66).

From an original sample of 897 participants between the ages of 5 and 18, the final sample

for the current analysis included 711 children from 414 households with different levels of

genetic relatedness (monozygotic twins (12 pairs), full siblings or dizygotic twins (115 pairs),

half-siblings (192 pairs), and nonbiological siblings (260 pairs)) residing in the same or differ-

ent homes, for a total of 579 pairs. The sample was 54% male and children ranged in age from

5 to 18 years old (mean age = 11.30 years; SD = 3.22 years). The mean age difference among all

related and unrelated siblings was 3.56 years (SD = 2.35 years); half siblings were an additional
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1.06 years apart in age on average compared to full siblings (t = -3.84, df = 275.3, p-value <

0.001). Since heritability has been previously demonstrated to vary across developmental stages

[8, 26], we categorized children into middle childhood (age 5.0–11.99) or adolescent groups

(age 12.0–18.99) and ran models for these age groups separately (see statistical approach).

Child and reporting parent demographic information is described in Tables 1 and 2, respec-

tively. All adult participants (parents/guardians) were provided an information sheet prior to

the beginning of an online survey by which data about the child were collected. Consent was

implied if the parent or guardian decided to complete the online survey. No data were col-

lected directly from children in this study. The research and consent process received approval

by the Institutional Review Board at the University of Oregon.

Table 1. Child descriptive statistics by home type.

Full Sample Adoptive Home Birth Home

Mean child Body Mass Index (sd) 19.6 (4.7) 19.2 (4.1) 20.4 (5.8)

Mean child age (sd) 11.3 (3.2) 11.5 (3.0) 11.8 (3.8)

Child sex (% male) 53.6 54.6 51.2

Child race (%)

Caucasian 58.8 59.8 56.4

Multiracial 21.9 22.0 21.3

African American 17.9 16.4 21.8

Native American <1.0 <1.0 <1.0

Asian <1.0 <1.0 -

Native Hawaiian/ Pacific Islander <1.0 <1.0 -

Unknown <1.0 1.0 -

Child ethnicity (%)

Non-Hispanic/unknown 87.1 87.4 86.3

Hispanic 12.9 12.6 13.7

Reared by biological parent (%) 39.2 13.8 99.5

Total sample size (n) 711 500 211

https://doi.org/10.1371/journal.pone.0236261.t001

Table 2. Reporting parent descriptive statistics by home type.

Full Sample Adoptive Home Birth Home

Mean parent age (sd) 47.3 (8.6) 51.0 (6.2) 38.2 (6.6)

Parent sex (% male) 42.5 47.2 31.1

Parent race (%)

Caucasian 84.0 91.0 67.0

Multiracial 2.8 1.2 6.7

African American 9.0 4.3 20.6

Native American <1.0 - 1.9

Asian 1.3 1.4 1.0

Native Hawaiian/ Pacific Islander <1.0 <1.0 -

Unknown 2.1 1.8 2.9

Parent ethnicity (%)

Non-Hispanic/unknown 95.6 98.0 89.5

Hispanic 4.4 2.0 10.5

Total sample size (n) 720 511 209

https://doi.org/10.1371/journal.pone.0236261.t002
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Measures

BMI. We collected child BMI data from parents using online survey tools. Parents

reported their child’s height, weight, age, sex, race, and ethnicity. These data were used to cal-

culate BMI age-corrected z-scores for all children using the US 2000 CDC Growth Charts ref-

erence [27]. Parent-report of child height and weight has been demonstrated to yield accurate

estimates of BMI in this age group when compared to medical record data [28].

Home. Home type was assigned based on the original study design where ‘adoptive’

homes contained the original study (EGDS) adopted children, and ‘birth’ homes were the

homes of the birth mothers of the original adoptees. Children raised in the same household

were considered to share a home in this analysis. Overall, adoptive families had higher mater-

nal education, higher incomes, and more supportive parenting styles than birth homes [29];

these characteristics are consistent with social and physical environments associated with

lower childhood obesity risk [30]. We therefore included home type as a variable in each

model in an effort to capture broad differences in these household metrics, not to describe the

child’s relatedness to their rearing parents. Relatedness to rearing parents was calculated sepa-

rately, included as a separate factor in the model, and described the biological relationship of

each child to their rearing parent(s) (i.e., whether a child was reared by at least one biological

parent). We included biological relationship to the parents in our model to account for any

variation in BMI due to passive gene-environment correlation [31], which could otherwise

falsely inflate the common environmental variance estimate.

Sibling pair genetic relatedness. Genetic relatedness among sibling pairs was computed

based on maternal report data collected earlier in the study. Values of relatedness were

assigned based on assumed pedigree relationships (monozygotic twins = 1.0; dizygotic twins

or full siblings = 0.50; half siblings = 0.25; nonbiological siblings = 0.0). Twin zygosity was

determined using the zygosity questionnaire [32].

Statistical approach

A difference in BMI means by home type (adoptive versus birth) was assessed using a Welch’s

two-sample t-test. The complex nature of the study design with many multi-level connections

among participants—both in relatedness and common household—provides a unique oppor-

tunity to employ a novel statistical approach for the field of human quantitative genetics using

existing R software. We used a profiled restricted maximum likelihood model (pREML) in the

R package varComp [33] to partition variance in BMI using biological and nonbiological sib-

lings reared apart and together. To partition the variance due to shared genetics and shared

environment, we assigned pairwise relatedness (monozygotic twins = 1.0, full siblings = 0.50,

half siblings = 0.25, unrelated = 0.0) and home sharing (same home = 1, different homes = 0)

matrices as the correlation structure of the random effects in each model [34]. This approach

is conceptually similar to that used in the traditional ACE twin model, where shared genetics

varies categorically across levels of relatedness (e.g., monozygotic versus dizygotic twins) and

shared environment often reflects shared household (these approaches are formally compared

in [35]). However, the flexibility of the current matrix-based approach allows for the simulta-

neous consideration of all pairwise relationships and home sharing, including those arising

from rare or complex family structures (e.g., a household with a large number of children of

many pairwise relatedness combinations). The varComp package uses these matrices to assign

linear variance-covariance structure and returns the estimated proportions of variance attrib-

utable to the structure specified by each matrix of pairwise correlations. As in ACE models, we

then used these estimates to partition the total variance observed in BMI into that which can

be explained by genetic background (VA), common environment (VC), and residual- or

PLOS ONE Genetic and environmental influences on child BMI

PLOS ONE | https://doi.org/10.1371/journal.pone.0236261 July 20, 2020 5 / 15

https://doi.org/10.1371/journal.pone.0236261


unique environmental- variance (VE; error). Broad-sense heritability (h2) and the effect of

common environment (c2) were estimated as the proportion of total variance in BMI that can

be explained by additive genetic factors (sibling relatedness) or common rearing environment

(home), respectively, over the total variance observed in BMI, Vp. These estimates range from

0 to 1, and express the proportion of the total variance in BMI explained by each factor.

As heritability should be estimated within a population of individuals at the same develop-

mental stage, we separated individuals into two age groups which broadly accounted for differ-

ences in both development and expected environment. Children age 5.0–11.99 were included

in the ‘middle childhood’ group, while those age 12–18 were classified as ‘adolescent.’ These

age ranges are consistent with those used in previous work and reflect long standing, broadly

accepted life stage age windows in child research involving populations in the Western world

[36, 37]. We hypothesized that children age 5.0–11.99 spend more time in the home, thus

experience a more similar common environment, while adolescents have more of a unique

environment compared to their siblings. We then ran three variance portioning models

including the following subsets: (1) middle childhood sibling pairs (n = 260 children across

169 pairs), (2) adolescent sibling pairs (n = 200 children across 132 pairs), and (3) sibling pairs

that spanned age groups (each pair included one child 5.0–11.99 years old and one child 12–18

years old; n = 428 children across 278 pairs). Due to the complex relatedness structure among

individuals within a family unit, 177 children (out of total N = 711) were included in multiple

models because they had multiple siblings across the two age groups. To account for this non-

independence among the subsamples, we applied a false discovery rate (FDR) correction to all

fixed effect and variance component p values and report these adjusted q values [38].

The full initial pREML models included sex, race, ethnicity, home type (adoptive or birth),

whether a child was reared by at least one biological parent, and the interaction of home type

and parent biological status. Because of low representation in some racial groups, race was

recoded for subsequent analyses as a factor with three levels: ‘Caucasian’, ‘African American’,

or ‘Other’. Pairwise comparisons among racial groups are considered significant below a Bon-

ferroni corrected alpha level of 0.017 (0.05/3). Age was not included as a covariate, as BMI

scores were already age-adjusted and sibling pair groupings were based on age. BMI observa-

tions were natural log (ln) transformed to meet the assumptions of normality of the model.

Model fit of all possible reduced models were compared using Akaike’s Information Criterion

(AIC) with the ‘dredge’ function in the R package MuMIn [39]. We then used likelihood ratio

testing in the R package lmtest [40] to verify that the inclusion of multiple variance compo-

nents in the final model significantly improved the model fit, or if a more simple correlation

structure in the random effect was sufficient [34]. Heritability and c2 and standard errors and

confidence intervals were estimated using the ‘h2GE’ function in the R package gap [41]. We

then used a permutation test to assess significance of the observed h2 and c2 estimates by ran-

domizing BMI across individuals for 999 iterations of the final variance component model to

build a unique sampling distribution for each variance component. We then calculated the p-

value for each component as the proportion of model runs in which each variance component

estimate was greater than or equal to the observed value. To determine if h2 or c2 estimates

were significantly different across age group models, we used a Levene’s test for heterogeneity

of variance in the lawstat R package [42] to compare model residuals in cases when variance

component confidence intervals overlapped. To do this, we reran the final variance compo-

nent models for each age group containing only that single variance component (e.g., only the

relatedness matrix), extracted the residuals from each model, and compared the variance of

these residuals using a Levene’s test. If the variance in residuals was not statistically significant

among models, we would conclude that the variance component accounted for a similar

amount of variance in both models and the resulting h2 or c2 estimates were not significantly
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different. Post-hoc power calculations were run in the sjstats package [43]. All statistical analy-

ses were performed in R v3.5.1 [44].

Results

Age-corrected BMI in this dataset ranged from 11.2 to 47.9, with 55 underweight children

(BMI<5th percentile), 441 children of normal weight (5th percentile<BMI<85th percentile),

105 overweight children (85th percentile<BMI<94th percentile), and 110 children with obesity

(BMI>95th percentile) for their age. Obesity prevalence in our sample was 15.5%, reflective of

the current national prevalence in the United States [2]. Mean BMI differed significantly

between the two home types, with children reared in the birth home having an average age-

adjusted BMI of 20.43 and children reared in the adoptive home having an average age-

adjusted BMI of 19.23 (t = -2.71, df = 302.8, p = 0.007).

The final pREML models for BMI variance component estimation for middle childhood

pairs and pairs that spanned age groups included child race and home type, while the final

model for adolescent pairs included only home type (birth versus adoptive; Table 3), suggest-

ing that associations of these factors with BMI vary over development. Home type was the only

predictor retained in all models, with adolescent children in a birth home having a 14% higher

BMI on average than adolescent children in an adoptive home (p< 0.001). Birth home was

also associated with a 5% increase in BMI in middle childhood pairs (p = 0.060) and marginally

in sibling pairs that spanned age groups (p = 0.053). Differences among the three racial groups

remained non-significant after Bonferroni correction (α = 0.017). The final model for middle

childhood sibling pairs had a significantly higher log likelihood when both genetic and home

sharing matrices were included, versus an identity matrix (default) as the correlation structure

of the random effect (ΔLL = 11.40, df = 2, χ2 = 22.83, p< 0.001). Furthermore, a model with a

default correlation structure for the random effect had a lower log likelihood than models with

either the relatedness (ΔLL = 7.80, df = 1, χ2 = 14.24, p< 0.001) or home-sharing matrix alone

(ΔLL = 7.10, df = 1, χ2 = 14.39, p< 0.001). Taken together, these results support the inclusion

of both genetic relatedness and common environmental matrices as non-zero variance compo-

nents in the final model for siblings age 5.0–11.99 [34]. In contrast, there was no evidence that

information about relatedness or home-sharing improved the fit of the final model for BMI in

adolescent sibling pairs (ΔLL = 0.60, df = 1, χ2 = 1.26, p = 0.26), suggesting that unique envi-

ronment is a main driver of variation in this group. However, this result should be interpreted

cautiously, as a power analysis revealed that a sample size of 350 adolescent children (here,

n = 200) is required in this model to detect a heritability estimate at least as large as was

detected in middle childhood sibling pairs. Additionally, when we compared model residuals

between the models of middle childhood and adolescent pairs, the Levene’s test for heteroge-

neity of variance revealed no significant difference (test statistic = 0.38, p = 0.54), suggesting

that the genetic variance components did not explain significantly different proportions of var-

iance between these models.

In the model for siblings that spanned the two age groups, inclusion of either the genetic

relatedness (ΔLL = 0.70, df = 1,χ2 = 0.514, p = 0.474) or the common environmental matrix

(ΔLL = 0.00, df = 1, χ2 = 0.038, p = 0.845) did not improve model fit. This model was also

underpowered (required n = 600 children; here, n = 428). We observed the overall variance in

sibling pairwise differences in BMI to be higher in the adolescent and across age group datasets

than the middle childhood group (‘within-family’ variance; varMIDDLE = 0.040, varADOL =

0.091, varACROSS = 0.072). The inverse relationship between within-family variance and power

would require larger sample sizes to detect the diminishing heritable and common environ-

mental effects in older sibling pairs.
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In middle childhood, we estimated a heritability of 0.63 (SE = 0.11; p = 0.008) for BMI, and

an effect of common environment of 0.31 (SE = 0.10; p< 0.001), with unique environment

(error) contributing little to the explainable variance (0.06). Heritable influences and common

environment did not significantly contribute to variance in BMI in either adolescent siblings

Table 3. Heritability of child body mass index (BMI) by age group.

Middle childhood sibling pairs (n = 260 inds) Estimate (SE)a t-value q-value�

Intercept 16.54 (1.02) 131.03 <0.001

Raceb

Caucasian vs African American 1.08 (1.04) 2.05 0.087

Caucasian vs Other 1.07 (1.03) 1.95 0.078

Other vs African American 1.00 (1.04) 0.15 1.000

Home Type (Birth Parent Home)c 1.05 (1.03) 1.89 0.060

Variance Componentsd

VA 0.025 (0.005)

VC 0.012 (0.004)

VE 0.003 (0.002)

h2 = 0.63 (0.11) CI (0.41,0.85) 0.024

c2 = 0.31 (0.10) CI (0.11,0.51) 0.003

Adolescent sibling pairs (n = 200 inds) Estimate (SE)a t-value q-value�

Intercept 20.73 (1.02) 174.73 <0.001

Home Type (Birth Parent Home)c 1.14 (1.04) 3.78 <0.001

Variance Componentsd

VA 0.011 (0.010)

VC 0.000 (0.000)

VE 0.033 (0.010)

h2 = 0.24 (0.23) CI (-0.21,0.69) 0.240

c2 = 0.00 (0.00) CI (0.00,0.00) 1.000

Sibling pairs across age groups (n = 428 inds) Estimate (SE)a t-value q-value�

Intercept 18.41 (1.01) 195.73 <0.001

Raceb

Caucasian vs African American 1.06 (1.03) 1.91 0.087

Caucasian vs Other 1.09 (1.03) 3.58 0.078

Other vs African American 0.97 (1.03) -1.10 0.819

Home Type (Birth Parent Home)c 1.05 (1.02) 2.13 0.053

Variance Componentsd

VA 0.005 (0.008)

VC 0.000 (0.000)

VE 0.039 (0.008)

h2 = 0.12 (0.17) CI (-0.21,0.45) 0.240

c2 = 0.00 (0.00) CI (0.00,0.00) 1.000

�q-values are the false discovery rate (FDR) adjusted p-values based one 3 non-independent models. Uncorrected fixed effect p-values were estimated using profiled

restricted maximum likelihood models (pREML) while variance component p-values were estimated using permutation tests; α = 0.05.
aFixed effect estimates are natural log (ln) back-transformed and represent a multiplicative increase in median BMI.
bThe reference group for each pairwise comparison among racial groups is listed first. P-values for multiple comparisons among racial groups are compared to a

Bonferroni-corrected alpha level of 0.017.
cAdoptive home is the reference group.
d95% confidence intervals are reported for each h2 and c2 estimate.

https://doi.org/10.1371/journal.pone.0236261.t003
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or those sibling pairs that spanned age groups, suggesting that unique environment explained

most of the variation in BMI in these age groups (Table 3). Overall, we observed increased sim-

ilarity in BMI in middle childhood among pairs who were genetically related, especially when

reared in the same home (significant intraclass correlations were observed in half siblings

(r = 0.64), full siblings (r = 0.49), and monozygotic twins (r = 0.98) reared together), but

this pattern did not persist into adolescence or in sibling pairs that spanned age groups

(Figs 1 & 2).

Discussion

Using a sibling-adoption design in a large cohort, we were able to confirm the unique influ-

ence of genetics on child BMI, while simultaneously highlighting the potential importance of

the rearing environment for weight status in middle childhood. We obtained significant, non-

zero estimates of both heritable (h2) and common environmentally driven (c2) variance com-

ponents in middle childhood, suggesting important contributions of both genetic and com-

mon environmental factors to childhood obesity risk. The obtained heritability estimate of

0.63 falls toward the lower end of the range for other genetically-informed studies that have

Fig 1. Pairwise difference in BMI by age group. Boxplots depicting the distribution of observed values of pairwise

differences in BMI among pairs of varying relatedness and home sharing status within each age group. Each point is a

pairwise difference in BMI for a given pair of children in the dataset. In general, differences in BMI were smaller in

related children in the middle childhood group, and in those sharing a home environment.

https://doi.org/10.1371/journal.pone.0236261.g001

Fig 2. Intraclass correlations for BMI by age group. We observed a general trend of increasing correlation among

BMI estimates of related pairs and those sharing a home in middle childhood sibling pairs. Number of pairs of each

type are reported above each bar and correlations different from zero are marked with an asterisk (p< 0.05).

https://doi.org/10.1371/journal.pone.0236261.g002
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used more traditional twin methods within similar age groups (e.g., range 0.58–0.89; [8] and is

within the range of estimates previously observed in adoption cohorts [7, 15].

Although the heritability of weight status is found to be high in many twin study popula-

tions, the influence of common environment is often removed during the model selection pro-

cess [8]. Prior studies of genetically related children reared together may thus underestimate

the role of common and unique environment on child BMI, or may include the effects of non-

additive genetic factors in the heritability estimate. Interestingly, this is not the case in previous

adoption cohorts, where meta-analysis reveals a variable but sustained influence of common

environment until age 13 [7], as was also observed in the middle childhood group here. Fur-

ther, there is mounting evidence of the influential role of children’s social and physical envi-

ronments on their learned health behaviors during critical developmental stages [45]. Many of

the factors contributing to health behaviors (e.g., socioeconomic status, parental education,

food insecurity, access to healthy foods, neighborhood safety, familial stress, and parenting

practices; [30, 46] are likely experienced by all children in a home, and would therefore be

absorbed into the common environmental variance for a given health outcome. The impor-

tance of the home rearing environment is further indicated by the differences seen in BMI

between adoptive and birth homes. Aligning with previous work, our results suggest that inter-

vention strategies applied at the level of the family or community context may be effective in

mitigating obesity risk in childhood. For example, parenting programs, often involving home

visits, are particularly effective at reducing the risk of childhood obesity, whether they target

obesity or not [46, 47]. These programs employ ecological or family-systems approaches and

primarily aim to foster more secure parent-child relationships and interactions, while simulta-

neously promoting children’s physical activity and dietary intake at home, at school, and in the

community through programs (e.g., youth sports, Safe Routes to School, federally-subsidized

meals), policies (e.g., nutrition standards for school foods and beverages, required minimum

minutes of Physical Education), and built environmental changes [e.g., installation of cross-

walks and sidewalks, improved parks; 18, 19, 48, 49].

Children also learn health behaviors from role modeling and support provided by those in

their household. For instance, parental dietary intake and physical activity behaviors associate

with a child’s obesity risk throughout early childhood [30, 50]. Additionally, parent physical

activity and support for physical activity, whether emotional (e.g., encouragement) or instru-

mental (e.g., transportation) in nature, are associated with children’s physical activity [30, 50,

51]. Similarly, interventions to promote children’s healthy eating and self-regulation are more

effective when parents are highly involved [49], leading to improved psychological wellness

(e.g., better self-regulation and reduced stress), engagement in healthy behaviors (e.g.,

increased physical activity and reduced caloric intake), and years later, improved weight status

compared to control groups [52, 53].

Our estimate of common environmental influences on BMI during childhood is higher

than those obtained in co-housed twin cohorts of similar ages, where the common environ-

mental variance component is often dropped during model selection [8]. As siblings age, their

environments generally become more dissimilar, shifting more of the explainable variance

from aspects of the common environment to the unique environment component, leading to

instability in variance component estimates in datasets with large age ranges [54]. Here we

have accounted for and modeled this variability by splitting sibling pairs into younger and

older groups based on established, developmentally and culturally relevant age ranges [36, 37].

Interestingly, in the model for adolescent sibling pairs, we did not detect an effect of common

environment, but we did detect a 14% increase in average BMI in adolescents residing in the

birth home. Overall, adoptive families had higher maternal education, higher incomes, and

more supportive parenting styles than birth homes [29], which is consistent with
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environments associated with lower childhood obesity risk [30]. This result, taken with the

influence of the common environment in middle childhood pairs, suggests that the immediate

home environment drives variation in BMI in middle childhood, but broad level differences in

education, socioeconomic status, peer contexts, or parenting style may explain variation in

BMI in adolescence. These environmental factors may also interact with genetic risk of obesity.

For example, higher education is associated with lower obesity levels in individuals at high

genetic risk for obesity compared to those individuals of lower education with similar genetic

risk [55]. Heterogeneity in influences on BMI during different stages in childhood may offer

insight into intervention targets across age classes, focusing more on the immediate home

environment in younger children and shifting to the unique contextual environment during

adolescence. We were underpowered to detect a significant estimate of heritability in the ado-

lescent sibling pairs model and therefore were unable to replicate previous findings of increas-

ing heritable influences on BMI as children age [7–9]. However, previous twin and family

studies do not account for broad differences in households between siblings, since siblings in

these studies are co-reared. Here, household type explained significant differences in median

BMI between adolescent sibling pairs and siblings that span age groups who were not reared

together, suggesting that previous estimates of genetic influences may be inflated by the effects

of co-rearing.

In the current study, we introduced a novel statistical approach for estimating variance

components for human health outcomes. Building upon foundational work in twin and family

designs, we presented a flexible statistical approach amenable to datasets of any relatedness or

home sharing structure. This approach provides a complimentary tool to traditional twin

model approaches which are limited to datasets containing sibling pairs that share both genes

and environments. Conventional twin methods used to study BMI and obesity must assume

that all environmental factors affecting these outcomes are equally correlated for identical and

fraternal twins, an assumption difficult to prove [the equal environments assumption EEA;

56]. Applying these methods in an adoption cohort- where related siblings are reared in differ-

ent environments- partially circumvents the EEA.

Though this adoption study provides a novel contribution to our overall understanding of

the drivers of variation in BMI in children in a Western population, it is not without limita-

tions. Technical limitations of the design include the use of parent-reported height and weight,

the cross-sectional nature of the study, and the geographically and culturally-limited scope of

inference. Though parent-reported height and weight have been demonstrated to be accurate

in this age group [28], medical records are the gold standard source for assessing child health

outcomes. We also detected low power in the adolescent sibling pair and the cross-age models,

which could be improved by repeated measures in this cohort. Though this statistical approach

is appropriate given the varied family structures in our dataset, methodological limitations of

the study design include the possible presence of a violation of the EEA in families with two or

more children, and the inability of this sibling-adoption design to detect non-additive genetic

contributions to BMI. Future research in this study will include additional characterization of

the home environment to add resolution to the home sharing (or home similarity) matrix by

including measurable family and community factors previously identified to contribute to obe-

sity risk (e.g., parent-child relationship quality, parent health behaviors, stress, neighborhood

walkability). This would allow us to further characterize the main drivers of differences in chil-

dren’s BMI across birth and adoptive households, that could serve as potential intervention

targets. We could also examine how heritable predispositions for physical activity and healthy

eating interact with environmental factors, such as parental support and children’s health

behaviors and how these influences might vary geographically and culturally.
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This sibling-adoption design allowed us to estimate the contributions of genetic back-

ground and home environment to child BMI status without confounding genetic relatedness

and home sharing between siblings. In addition to replicating the role of genetic variance

found in prior studies, we obtained a non-zero estimate of common environmental variance,

revealing the importance of common rearing environment in child BMI status in middle

childhood. These results support the importance of childhood intervention strategies aimed

at modifying the family or contextual rearing environment to mitigate obesity risk in

children.

Supporting information

S1 Dataset. BMI and covariate data. This dataset contains measures from deidentified sub-

jects including BMI, sex, race, age, home type, whether each child was reared by a biological

parent and age-grouped model inclusion information (n = 711).

(CSV)

S2 Dataset. Pairwise relatedness matrix. This dataset includes the pairwise pedigree-based

relatedness values for all children in the study (n = 711).
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