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Mitophagy is a key mitochondrial quality control mechanism for effective and selective
elimination of damaged mitochondria through the autophagy-lysosome machinery.
Defective mitophagy is associated with pathogenesis of important human diseases
including neurodegenerative diseases, heart failure, innate immunity, and cancer. In
the past two decades, the mechanistic studies of mitophagy have made many
breakthroughs with the discoveries of phosphatase and tensin homolog (PTEN)-
induced kinase protein 1 (PINK1)-parkin-mediated ubiquitin (Ub)-driven pathway and
BCL2/adenovirus E1B 19 kDa protein-interacting proteins 3 (BNIP3)/NIX or FUN14
domain containing 1 (FUNDC1) mitochondrial receptor-mediated pathways. Recently,
several isoforms of dual phosphatase PTEN, such as PTEN-long (PTEN-L), have
been identified, and some of them are implicated in the mitophagy process via their
protein phosphatase activity. In this review, we aim to discuss the regulatory roles of
PTEN isoforms in mitophagy. These discoveries may provide new opportunities for
development of novel therapeutic strategies for mitophagy-related diseases such as
neurodegenerative disorders via targeting PTEN isoforms and mitophagy.
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INTRODUCTION

Autophagy is an evolutionarily conserved process to degrade or recycle intracellular materials
through lysosomes or vacuoles (Mizushima, 2018). In mammalian cells, there exist three different
types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy
(CMA). Among them, macroautophagy (referred to as autophagy hereafter) is the most well-
studied form, which is orchestrated by a group of proteins encoded by autophagy-related-genes
(ATGs) and characterized by the formation of double-membraned autophagosomes (Zachari and
Ganley, 2017; Dikic and Elazar, 2018; Mizushima, 2018). The formation of autophagosomes
can be briefly divided into three main steps: (1) The initiation step is regulated by unc51-like
activating kinase 1 (ULK1) complex comprised of ULK1, ATG13, FIP200, and ATG101 to form
the phagophore; (2) the vesicle nucleation step is regulated by Beclin1-ATG14 and Vps34/class
III phosphatidylinositol 3-kinases (PI3K) complex to generate phosphatidylinositol 3-phosphate
(PI3P); and (3) the vesicle elongation step is mediated by two ubiquitination conjugation systems,
ATG12-ATG5-ATG16L1 and LC3-PE (phosphatidylethanolamine) systems, as well as ATG9-
containing vesicles to form the autophagosomes (Mizushima et al., 2011; Hurley and Young,
2017; Lahiri et al., 2019). Autophagy can be either a general non-selective process to randomly
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uptake cargos for degradation (bulk autophagy) or a selective
process to remove or degrade specific organelles, aggregated
proteins, DNA, and/or invading pathogens (selective autophagy).
Up to date, several types of selective autophagy have been
recognized, including mitophagy, ribophagy, xenophagy,
reticulophagy, lysophagy, and aggrephagy (Rogov et al., 2014;
Kirkin, 2020).

Among them, mitophagy represents the most well-studied
form of selective autophagy to degrade dysfunctional or
superfluous mitochondria through the autophagy-lysosome
machinery, which is regulated by multiple factors with distinct
posttranslational modifications (Montava-Garriga and Ganley,
2020; Wang et al., 2020). The phenomenon of mitophagy was
first described by Christian De Duve and Robert Wattiaux in
1966 when they observed that mitochondria were engulfed by
autophagic vacuoles (De Duve and Wattiaux, 1966). The term
of “mitophagy” was coined by John J. Lemasters to distinguish
this selective autophagy that degrades mitochondria from the
bulk autophagy (Lemasters, 2005). Mitophagy is usually initiated
by an “eat me” signal, such as labeling damaged mitochondria
with ubiquitin (Ub) or autophagy receptors (Harper et al.,
2018; Pickles et al., 2018; Wang et al., 2020). Owing to its
critical role in maintaining mitochondrial homeostasis and close
implication in multiple human diseases, such as Parkinson’s
disease (PD) and Alzheimer’s disease (AD) (Williams and Ding,
2018; Lou et al., 2019), the machinery of mitophagy has drawn
substantial attention in the past two decades. The discoveries of
PINK1-Parkin-mediated Ub-driven pathway and BNIP3/NIX or
FUNDC1 receptor-mediated pathways represent the milestones
in the mitophagy field. In this review, we will discuss some
of these key factors, especially the newly identified protein
phosphatase, in the regulation of mitophagy.

PINK1-PARKIN-MEDIATED
UBIQUITIN-DRIVEN MITOPHAGY

One breakthrough in the understanding of the molecular
mechanisms of mitophagy is the discovery of PINK1-Parkin-
mediated pathway (Narendra et al., 2008, 2010; Vives-Bauza et al.,
2010). PINK1 (encoded by the PARK6 gene) is a serine/threonine
kinase, which was identified in 2001 (Unoki and Nakamura,
2001) and contains a mitochondrial targeting sequence (MTS)
at its N-terminus as well as an outer mitochondrial localization
signal (OMS) next to the transmembrane domain (TMD)
(Okatsu et al., 2015a). Two homozygous mutations, including
G→A in transition in exon 4 and G→A transitions in exon
7, in PINK1 were found in autosomal recessive early onset
familial forms of PD patients (Valente et al., 2004). Parkin
(encoded by the PARK2 gene) is an E3 Ub ligase, which
was identified in 1998 and was named “Parkin” due to its
important roles in the pathogenesis of autosomal recessive
juvenile parkinsonism (AR-JP) (Kitada et al., 1998; Lucking
et al., 1998; Abbas et al., 1999). Parkin contains a Ub-
like (UBL) domain, a classic RING (RING1) domain, three
zinc-coordinating domains termed in between RING (IBR)
domain, a RING2 domain, and a RING0 domain that is a

Parkin unique domain (Hristova et al., 2009; Trempe et al., 2013;
Walden and Muqit, 2017). Numerous studies have reported that
PINK1 and Parkin work in the same pathway to remove
dysfunctional mitochondria and to maintain mitochondrial
homeostasis, with the well-established feedforward model of
PINK1-Parkin mitophagy activation (Harper et al., 2018; Pickles
et al., 2018; Wang et al., 2020).

When mitochondria are healthy, PINK1 is constantly
maintained at a low level due to mitochondrial import, protease
cleavage, and proteasome degradation (Jin et al., 2010; Deas
et al., 2011; Lazarou et al., 2012; Sekine et al., 2019). Upon
mitochondrial damage and depolarization, PINK1 is rapidly
accumulated on the outer mitochondrial membrane (OMM)
and activated through dimerization and autophosphorylation
(Okatsu et al., 2012, 2013; Aerts et al., 2015; Rasool et al.,
2018). Therefore, PINK1 acts as a mitochondrial damage sensor
to initiate mitophagy. Once activated, PINK1 phosphorylates
mitochondrial pre-existing Ub at Ser 65 (pSer65-Ub) (Kane
et al., 2014; Kazlauskaite et al., 2014; Koyano et al., 2014; Shiba-
Fukushima et al., 2014). pSer65-Ub serves as a key receptor
to recruit Parkin from cytosol to mitochondria through direct
binding (Shiba-Fukushima et al., 2014; Okatsu et al., 2015b).
Binding to pSer65-Ub releases the UBL domain of Parkin from
its RING1 domain (Sauve et al., 2015; Wauer et al., 2015a;
Aguirre et al., 2017), which promotes the phosphorylation of the
UBL domain by PINK1 at Ser 65 (pSer65-Parkin) (Kondapalli
et al., 2012; Shiba-Fukushima et al., 2012; Wauer et al.,
2015a; McWilliams et al., 2018). Subsequently, the phospho-UBL
domain rebinds to the RING0 domain of Parkin to release the
catalytic RING2 domain to achieve full activation (Gladkova
et al., 2018; Sauve et al., 2018). Activated Parkin then conjugates
more Ub onto OMM proteins for PINK1 phosphorylation, which
mediates further rounds of Parkin translocation to mitochondria;
thus, PINK1, pSer65-Ub, and Parkin form a positive feedforward
amplification loop to initiate mitophagy.

Another important function of pSer65-Ub is to recruit
autophagy receptors, such as NDP52 (CALCOCO2) and
Optineurin (OPTN) to damaged mitochondria, a process that
is TANK-binding kinase 1 (TBK1) dependent (Heo et al.,
2015; Lazarou et al., 2015; Richter et al., 2016). TBK1 is a
serine/threonine kinase and phosphorylates these autophagy
receptors to promote their binding ability to various Ub chains
(Heo et al., 2015; Richter et al., 2016). Interestingly, activation
of TBK1 also requires OPTN binding to Ub chains in the
presence of PINK1 and Parkin (Heo et al., 2015; Richter et al.,
2016). In the prevailing model of mitophagy, after binding to
the pSer65-Ub chains, OPTN and/or NDP52 recruit phagophore
onto mitochondria by directly binding to LC3 through their
LC3-interacting regions (LIR motifs) (Gatica et al., 2018;
Palikaras et al., 2018). However, emerging studies suggest that
LC3/GABARAP family proteins are dispensable in the selective
recognition of damaged mitochondria, based on the observation
that, in LC3/GABARAP knockout cells, mitochondria can still be
engulfed by autophagosomes (Itakura et al., 2012; Nguyen et al.,
2016; Padman et al., 2019). One very recent study has highlighted
the role of NDP52 to recruit ULK1 complex to damaged
mitochondria (Vargas et al., 2019). NDP52 directly interacts with
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FIP200 in a TBK1-dependent manner to recruit ULK1 complex,
leading to autophagosome biogenesis on damaged mitochondria
and initiation of autophagy machinery.

Interestingly, besides PINK1-mediated pSer65-Ub, several
other PINK1-independent phosphorylation sites of Ub have
been identified, including pThr7-Ub, pSer20-Ub, and pSer57-
Ub (Wauer et al., 2015b). Among them, pSer57-Ub has been
reported to hyperactivate Parkin (George et al., 2017). Obviously,
more studies are needed to understand the functional implication
of such Ub phosphorylation in mitophagy. In addition to
Ub and Parkin as described above, a number of additional
PINK1 substrates have been reported. For instance, PINK1
phosphorylates mitofusin 2 (MFN2) at Thr 111 and Ser 442,
leading to Parkin mitochondrial recruitment through promoting
the interaction between MFN2 and Parkin, suggesting that
MFN2 may serve as a mitochondrial receptor for Parkin (Chen
and Dorn, 2013). However, another study indicates that MFN2
antagonizes mitophagy through tethering mitochondria and
endoplasmic reticulum (ER) and limiting the accessibility of
other mitochondrial proteins to PINK1 and Parkin (McLelland
et al., 2018). It is known that some OMM proteins such as
MFN2 undergo ubiquitination and proteasomal degradation at
the beginning of the mitophagy (Tanaka et al., 2010; Ding et al.,
2012; McLelland et al., 2018). Therefore, it is possible that such a
process may facilitate mitophagy by removing the barrier among
PINK1, Parkin, and other mitochondrial proteins. PINK1 can
also phosphorylate Miro (also called RhoT) at Ser156, which
recruits Parkin onto mitochondria and results in ubiquitination
and proteasomal degradation of Miro, and thus blocking
mitochondrial motility (Wang et al., 2011; Shlevkov et al.,
2016). Interestingly, a recent report found that Miro, through
direct protein–protein interaction, recruits Parkin at healthy
mitochondria independent of PINK1, and such pre-existing
Parkin is essential for Parkin further recruitment and activation
upon mitochondrial damage in a PINK1-dependent manner
(Safiulina et al., 2019). In addition, in a phosphoproteomic
screening study for PINK1 substrates, Lai and colleagues reported
that the phosphorylation of Rab GTPases such as Rab8A at
the conserved Ser 111 is indirectly regulated by PINK1, and
this phosphorylation can block the phosphorylation of Rab8A
at Thr72 by leucine-rich repeat kinase 2 (LRRK2), suggesting
the interplay of PINK1 with other PD-related genes (Lai et al.,
2015; Vieweg et al., 2019). Thus, identification of more PINK1
substrates will not only provide new insights into the molecular
mechanisms of PINK1-Parkin-mediated mitophagy but also
provide deeper understanding of the molecular mechanisms of
important neurodegenerative disorders such as PD.

BNIP3/NIX (BNIP3L)-MEDIATED
MITOPHAGY

BNIP3, a member of prodeath BCL2 family proteins, was first
found as an E1B 19-kDa interacting proteins (Boyd et al.,
1994). NIX (also named BNIP3L) is a homolog of BNIP3 with
∼55% identical similar amino acid sequence (Matsushima et al.,
1998). Both proteins contain an atypical BCL2-homology 3

(BH3) domain and C-terminal TMD, which is essential for their
proapoptotic activity and mitochondrial localization (Yasuda
et al., 1998; Imazu et al., 1999). Moreover, BNIP3 and NIX both
contain an identical LIR motif, which makes them to interact
with LC3s/GABARAP subfamilies and recruit autophagosomes
to sequester damaged mitochondria, especially under hypoxia
conditions (Novak et al., 2010; Hanna et al., 2012; Birgisdottir
et al., 2013). Under hypoxia, the expression of BNIP3 and NIX
are increased through the transcriptional regulation of hypoxia-
inducible factor 1α (HIF-1α) or FOXO3 (Sowter et al., 2001;
Mammucari et al., 2007; Zhang et al., 2008). Mutation of the
LIR motif abolishes the interaction of BNIP3/NIX with LC3 and
thereby attenuates mitochondrial clearance (Novak et al., 2010;
Hanna et al., 2012; Zhu et al., 2013), while phosphorylation of
the LIR motif enhances the interaction with LC3 and promotes
mitophagy (Zhu et al., 2013; Rogov et al., 2017). However, the
kinase(s) and phosphatase(s) regulating this phosphorylation of
LIR remain to be identified.

It should be noted that NIX, but not BNIP3, plays an
important role in the development of reticulocytes through
the regulation of mitophagy. Mitochondria were not cleared
in reticulocytes when NIX is deficient (Diwan et al., 2007;
Schweers et al., 2007; Zhang and Ney, 2008; Zhang J. et al., 2012).
Interestingly, treatment with mitochondrial uncoupling agents
could restore the removal of mitochondria in the absence of
NIX, suggesting that the regulatory effect of NIX on mitophagy
was probably due to its role in regulating mitochondrial
depolarization (Sandoval et al., 2008; Zhang and Ney, 2008).
However, there is still no direct evidence to show that NIX
could cause mitochondrial depolarization, and further studies
are thus needed.

Intriguingly, several studies have revealed the crosstalk
between BNIP3/NIX receptor-mediated pathway and PINK1-
Parkin-mediated pathway. For instance, both BNIP3 and NIX
can promote Parkin mitochondrial recruitment (Ding et al.,
2010; Lee et al., 2011), while NIX can also be ubiquitinated
by Parkin to promote autophagy receptor recruitment to
damaged mitochondria (Gao et al., 2015). In addition, BNIP3
is able to inhibit PINK1 proteolytic degradation and stabilize
PINK1 on OMM to facilitate Parkin mitochondrial recruitment
and mitophagy (Zhang et al., 2016). These findings suggest
that these pathways cooperate with each other to ensure
efficient mitophagy.

FUNDC1-MEDIATED MITOPHAGY

FUNDC1 is another important hypoxia-induced mitophagy
receptor (Liu et al., 2012). As a mitochondrial outer membrane
protein, FUNDC1 contains three TMDs and an LIR motif in
its N-terminus exposed to the cytosol that interacts with LC3
to recruit autophagosome (Liu et al., 2012; Wu et al., 2016).
Mutation or deletion of LIR motif of FUNDC1 significantly
reduces or blocks mitophagy (Liu et al., 2012). Similar to the
cases of other mitophagy key factors, the activity of FUNDC1
is also regulated by phosphorylation and dephosphorylation.
Under normal conditions, FUNDC1 is phosphorylated by Src
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and CK2 at the sites of Tyr18 and Ser13, which blocks the
interaction of FUNDC1 with LC3 (Liu et al., 2012; Chen
et al., 2014). Another study showed that FUNDC1 can be
phosphorylated by ULK1 at Ser17 to promote mitophagy
(Wu et al., 2014). However, upon induction of hypoxia, Src
and CK2 are inhibited, then phosphoglycerate mutase family
member 5 (PGAM5), one unique mitochondrial phosphatase,
dephosphorylates FUNDC1 at Ser13, which in turn promotes the
interaction between FUNDC1 and LC3 to facilitate mitophagy
(Chen et al., 2014). Interestingly, the same group reported that
FUNDC1 is accumulated at the ER-mitochondrial contact site
in response to hypoxia, which is essential for the mitochondrial
recruitment of DRP1 to facilitate mitochondrial fission prior to
mitophagy (Wu et al., 2016).

CANONICAL PTEN (PTEN-SHORT) AS A
NEGATIVE REGULATOR OF MITOPHAGY

PTEN is a powerful tumor suppressor with both lipid
phosphatase and protein phosphatase activity, which was
identified in 1997 (Li and Sun, 1997; Li et al., 1997;
Steck et al., 1997). PTEN contains 403 amino acids with a
N-terminal phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2]-
binding domain (PBD), a catalytic phosphatase domain, a C2
domain, a C-tail domain, and a PDZ-binding motif (Figure 1A;
Lee et al., 1999). Loss of PTEN leads to cancer, neurological
disorders, metabolic diseases, and tissue homeostasis defects
(Backman et al., 2001; Kwon et al., 2006; Chen et al., 2018; Lee
et al., 2018). PTEN is also vital for embryonic development, as
its homozygous deletion causes lethality in mice (Di Cristofano
et al., 1998; Stumpf and den Hertog, 2016). All these findings
reveal that PTEN’s function is not only important for tumor
suppression but also vital for other biological processes.

The probably most important function of PTEN is to block
the activation of pro-oncogenic class I PI3K–AKT–mTOR
signaling pathway through its lipid phosphatase activity (Cantley
and Neel, 1999). PI3K phosphorylates PI(4,5)P2 to generate
phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3],
which recruits AKT at the cell membrane, and then AKT
is phosphorylated via PDK1 and mTORC2 to indirectly
activate mTORC1 (King et al., 2015). PTEN opposes this
pathway through dephosphorylating PI(3,4,5)P3 to PI(4,5)P2
via its lipid phosphatase activity, leading to reduced AKT
phosphorylation and inactivation (Worby and Dixon, 2014).
Thus, the phosphorylation level of AKT has been widely used as
an indicator for PTEN activity.

Due to the inhibitory effects of PTEN on the PI3K–AKT–
mTOR signaling pathway, several studies have shown that PTEN
can positively regulate autophagy (Arico et al., 2001; Ueno et al.,
2008; Cai et al., 2018). Intriguingly, two independent groups
reported that inhibition of AKT signaling impaired PINK1
accumulation, Parkin recruitment, and subsequent efficient
mitophagy in response to mitochondrial depolarization (McCoy
et al., 2014; Soutar et al., 2018). However, the role of PTEN in
the regulation of mitophagy is still largely unclear. Harper and
colleagues reported that RAB7A could be directly phosphorylated

by TBK1 at Ser 72 (pSer72-RAB7A) to facilitate the efficient
recruitment of ATG9A vesicles to damaged mitochondria
and promote PINK1-Parkin-mediated mitophagy, and non-
phosphorylated RAB7A failed to support this process (Heo et al.,
2018). Importantly, PTEN has been found to dephosphorylate
pSer72-RAB7A via its protein phosphatase activity (Shinde and
Maddika, 2016; Hanafusa et al., 2019), thus suggesting a potential
role of PTEN in regulating mitophagy. A more direct study
showed that deletion of PTEN increased MFN2 expression and
rescued mitophagic flux via the AMP-activated protein kinase
(AMPK)–cAMP response element-binding protein (CREB)
pathways (Li et al., 2019). Interestingly, both PTEN and MFN2
have a distribution at ER-mitochondrial contact site (de Brito
and Scorrano, 2008; Bononi et al., 2013; Naon et al., 2016).
As discussed above, MFN2 can be phosphorylated by PINK1
and serves as a mitochondrial receptor for Parkin (Chen
and Dorn, 2013). Moreover, phosphorylated MFN2 dissociates
mitochondria from ER to initiate mitophagy (McLelland et al.,
2018). Thus, it will be interesting to explore whether PTEN
can dephosphorylate MFN2 at the ER-mitochondrial contact site
to suppress mitophagy. In addition, overexpression of PTEN
inhibits mitophagy via blockage of Toll-like receptor 4 (TLR4)–
c-JUN N-terminal kinase (JNK)–BNIP3 pathway (Li M. et al.,
2018).

Moreover, several in vivo studies have highlighted that PTEN
deletion in dopamine neurons provides neuroprotective effects in
both genetic and neurotoxin-induced PD mouse models (Diaz-
Ruiz et al., 2009; Domanskyi et al., 2011; Zhang Y. et al.,
2012). Another study showed that the protein level of PTEN
is significantly increased in neurotoxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine-hydrochloride (MPTP)-treated mice
and 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y
cells, leading to enhanced neurotoxicity and apoptosis (Zhao
et al., 2020). In addition, inhibition of PTEN is able to attenuate
amyloid-β (Aβ)-induced synaptic toxicity and rescue cognitive
function in AD models (Knafo et al., 2016). Consistently, a
PTEN inhibitor, bisperoxovanadium-pic [bpV(pic)], provides
neuroprotective effects in Aβ-induced neurotoxicity in a human
neuroblastoma cell model (Liu et al., 2017). Apparently, more
studies are needed to explore whether the above processes are due
to the regulative effects of PTEN on mitophagy.

NOVEL PTEN-L (PTEN-LONG) AS A
BRAKE OF MITOPHAGY

PTEN-L is the first characterized isoform of canonical PTEN,
which was identified in 2013 (Hopkins et al., 2013). PTEN-
L and PTEN shares the same mRNA, but PTEN-L translates
from a non-AUG start codon (CUG start codon), adding an
alternatively translated region (ATR) at the N-terminus of PTEN
(Hopkins et al., 2013). PTEN-L can be secreted from one
cell and taken up by other neighboring cells to inhibit PI3K–
AKT signaling pathway both in vitro and in vivo (Hopkins
et al., 2013). Intriguingly, Liang et al. reported that PTEN-L
(also termed as PTENα) is a mitochondrial protein to regulate
mitochondrial energy metabolism (Liang et al., 2014). They
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1(AUG) 403(UGA)

174(AUG)1(CUG)
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B

PDZ

576(UGA)
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FIGURE 1 | Domain structure of phosphatase and tensin homolog (PTEN) isoforms. (A) PTEN-short (canonical PTEN), translated from an AUG start codon, contains
five functional domains: a N-terminal PtdIns (4,5) P2 (PIP2)-binding domain (PBD), a dual phosphatase domain, a C2 domain, a C-tail domain, and PDZ-binding
motif. (B) PTEN-long (PTEN-L) is translated from a CUG start codon upstream from the classic AUG start codon. In addition to the same five functional domains with
the canonical PTEN, PTEN-L contains an alternatively translated region (ATR) adding 173 amino acids at the N-terminus. The extended ATR is composed of a
secreted polyalanine signal sequence (Poly-A, residues 12–17), a cell permeable polyarginine motif (Poly-R, residues 47–52), a nuclear localization sequence (NLS,
QKKPRH, residues 150–155) as well as a membrane-binding α-helix (MBH, residues 151–173).

found that somatic deletion of PTEN-L resulted in much smaller
mitochondria with irregular shape and led to mitochondrial
depolarization (Liang et al., 2014). It is known that, in addition
to the same domains with canonical PTEN (PTEN-short), the
extended ATR of PTEN-L contains a secreted polyalanine signal
sequence (Poly-A), a cell permeable polyarginine motif (Poly-
R), a nuclear localization sequence (NLS, QKKPRH) as well
as a membrane-binding α-helix (MBH) (Figure 1B; Hopkins
et al., 2013; Malaney et al., 2013; Masson et al., 2016; Shen
et al., 2019). In addition, most parts of the ATR are intrinsically
disordered and probably contain various postmodification sites
and protein-binding motifs (Malaney et al., 2013; Masson et al.,
2016), indicating that PTEN-L may modify distinct substrates
compared with PTEN.

Recently, our group has revealed that PTEN-L functions as a
protein phosphatase for Ub and antagonizes the PINK1-Parkin-
mediated mitophagy pathway (Wang et al., 2018a,b). First,
topology assay and immunogold electron microscopy revealed
that a significant proportion of PTEN-L was associated with the
mitochondrial outer membrane. Second, PTEN-L overexpression
blocked mitophagy induced by mitochondrial damage agents
including carbonyl cyanide 3-chlorophenylhydrazone (CCCP),
combination of oligomycin and antimycin A (O/A), and
valinomycin, whereas PTEN-L knockout accelerated mitophagic
flux. Third, PTEN-L overexpression was able to strongly
prevent Parkin mitochondrial recruitment, autoubiquitination,
and subsequent activation of its E3 ligase activity. Finally, PTEN-
L could dephosphorylate various types of pSer65-Ub chains
in vivo and in vitro via its protein phosphatase activity but
independent of its lipid phosphatase activity, leading to the
disruption of the feedforward amplification loops formed by
PINK1, Parkin, and pSer65-Ub chains. Since Ub modification is
a vital posttranslational process in mitophagy, deubiquitinating

enzymes (DUBs) become potential regulators to maintain the
mitochondrial homeostasis, especially in the PINK1-Parkin-
mediated Ub-driven mitophagy pathway. There are more than
100 putative DUB genes in humans, which can be grouped
into two classes: cysteine proteases and metalloproteases. Among
them, ubiquitin-specific proteases (USPs), which are encoded by
58 different genes, such as USP30, USP15, and USP8, have been
widely studied in the field of mitophagy (Bingol et al., 2014;
Cornelissen et al., 2014; Durcan et al., 2014; Marcassa et al.,
2018; Ordureau et al., 2020). Recently, USP36 has been reported
as a positive regulator of mitophagy; knockdown of USP36
impairs Parkin mitochondrial translocation, leading to blockage
of mitophagy (Geisler et al., 2019). Interestingly, they also found
that the protein level of PTEN-L was increased after USP36
knockdown, which was associated with reduced pSer65-Ub level
and consistent with our findings (Geisler et al., 2019).

Intriguingly, Li et al. demonstrated that PTEN-L promotes
mitophagy through interaction with Parkin by its MBH motif to
promote Parkin self-association and mitochondrial localization
(Li G. et al., 2018). Further studies are thus needed to examine
the precise role of PTEN-L in this pathway and more importantly
to explore whether PTEN-L is implicated in the pathology of
mitophagy-related diseases, such as PD and AD.

CONCLUSION AND FUTURE
DIRECTIONS

Mitochondria are one of the essential organelles in eukaryotic
cells, with critical functions including energy (ATP) production,
cell survival/cell death, cell signaling, and immune response.
Dysfunctional mitochondria are implicated in many pathological
processes and diseases such as cell death, inflammation,
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FIGURE 2 | Key effectors involved in mitophagy machinery. When mitochondria are healthy, phosphatase and tensin homolog-induced kinase protein 1 (PINK1) is
imported into the mitochondria, cleaved by protease, and degraded by proteasome, while Parkin keeps in an inactive conformation in the cytosol through
intradomain–domain interactions. Upon mitochondrial damage or depolarization, PINK1 is stabilized and activated at the outer mitochondrial membrane (OMM) À,
which leads to the phosphorylation of its downstream targets, such as ubiquitin (Ub) Á. Parkin has a high affinity to phosphorylated Ub (pSer65-Ub), which recruits
Parkin from cytosol to mitochondria Â. Several other factors, such as mitofusin 2 (MFN2), Miro, Rab7A, as well as BCL2/adenovirus E1B 19 kDa protein-interacting
proteins 3 (BNIP3) are also involved in Parkin mitochondrial recruitment. Binding to pSer65-Ub releases the Ub-like (UBL) domain of Parkin from RING1 domain,
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dephosphorylates Ub to inhibit mitophagy, whereas PTEN in the cytosol suppresses mitophagy through targeting Rab7A, MFN2, or BNIP3.

neurodegenerative diseases, and cancer. Thus, removal of
damaged mitochondria by mitophagy has been shown to
be an important mitochondrial quality control mechanism
to maintain the mitochondrial homeostasis. However, this
process must be restricted to dysfunctional mitochondria.
Excessive degradation of essential mitochondria will cause cell
death (Ordureau and Harper, 2014; Shi et al., 2014; Guo
et al., 2016; Sharma et al., 2019). In addition, during the
mitochondria fission process, the membrane potential of healthy
mitochondria is temporarily compromised (Twig et al., 2008),
which possibly activates PINK1-Parkin pathway to remove
healthy mitochondria. Therefore, the mitophagy machinery
is orchestrated by key mitophagy effectors with reversible
posttranslational modifications, such as phosphorylation and
dephosphorylation, to determine a finely tuned mitophagic
activity in response to diverse stresses (Figure 2).

We now appreciate that phosphorylation of Ub by PINK1
(pSer65-Ub) plays central roles in the regulation of Ub-
dependent mitophagy pathway. pSer65-Ub levels are very
low in healthy mitochondria, but dramatically increased after

mitochondrial damage and also increased during aging or in PD
patient brain, which highlights its roles in diseases (Fiesel et al.,
2015; Hou et al., 2018). Although PINK1 is the only reported
kinase to generate pSer65-Ub, pSer65-Ub could be detected in
PINK knockout cells (Ordureau et al., 2014) and in PINK1-
deficient yeast (Swaney et al., 2015), suggesting another kinase
exists to phosphorylate Ub at Ser 65. However, the function of
PINK1-independent pSer65-Ub remains largely unclear. Another
question is whether pSer65-Ub can be involved in other selective
autophagy, such as xenophagy, which shares several key factors
with mitophagy, including TBK1, NDP52, OPTN, and SQSTM1.

Recent studies have indicated that PTEN family proteins
are involved in the regulation of both PINK1-Parkin-mediated
Ub-driven and BNIP3 receptor-mediated mitophagy. Some
important questions need to be further addressed. First is how the
cells determine the expression level of different PTEN isoforms to
function under different conditions. Second is whether there is a
specific recruitment of PTEN-L and PTEN to mitochondria in
response to mitochondrial damage. Third and more importantly
is whether PTEN isoforms can serve as molecular targets for
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development of novel interventional approaches in the regulation
of mitophagy to benefit mitophagy-related human diseases.
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