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Fall risk assessment and fall detection are crucial for the prevention of adverse and

long-term health outcomes. Wearable sensor systems have been used to assess

fall risk and detect falls while providing additional meaningful information regarding

gait characteristics. Commonly used wearable systems for this purpose are inertial

measurement units (IMUs), which acquire data from accelerometers and gyroscopes.

IMUs can be placed at various locations on the body to acquire motion data that

can be further analyzed and interpreted. Insole-based devices are wearable systems

that were also developed for fall risk assessment and fall detection. Insole-based

systems are placed beneath the sole of the foot and typically obtain plantar pressure

distribution data. Fall-related parameters have been investigated using inertial sensor-

based and insole-based devices include, but are not limited to, center of pressure

trajectory, postural stability, plantar pressure distribution and gait characteristics such

as cadence, step length, single/double support ratio and stance/swing phase duration.

The acquired data from inertial and insole-based systems can undergo various analysis

techniques to provide meaningful information regarding an individual’s fall risk or fall

status. By assessing the merits and limitations of existing systems, future wearable

sensors can be improved to allow for more accurate and convenient fall risk assessment.

This article reviews inertial sensor-based and insole-based wearable devices that were

developed for applications related to falls. This review identifies key points including

spatiotemporal parameters, biomechanical gait parameters, physical activities and data

analysis methods pertaining to recently developed systems, current challenges, and

future perspectives.

Keywords: fall risk assessment, fall detection, wearables, smart insole, inertial sensors, plantar pressure, gait

analysis, machine learning

INTRODUCTION

Falling can lead to adverse health outcomes, especially in older adults. Detecting falls as they occur,
and more importantly, preventing falls through the assessment of fall risk can prevent detrimental
health effects, which may otherwise occur with falling. Fall risk assessment and fall detection have
been accomplished through diverse methods, with a growing area being in wearable technologies
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(1). Other methods to assess fall risk and detect falls include
through smart home technologies (2–4), camera-based systems
(5), smartphone sensors (6) as well as other non-contact and
wireless methods (7, 8), such as Monopulse Doppler radar used
for the detection of falls of multiple individuals (9).

Wearable devices are ideal for monitoring health due to
the small size of low-cost, user-friendly devices that can
allow for continuous activity monitoring and physiological
data acquisition during daily activities. The limitations of
traditional laboratory-based activity monitoring systems, such as
monitoring in unfamiliar settings, large-scale set-up or impacts
on natural gait when being aware of monitoring, are also
overcome with wearable systems (10). Commonly used wearable
systems for this purpose are inertial measurement units (IMUs)
which acquire data from accelerometers and gyroscopes. IMUs
can be placed at various locations on the body to acquire
motion data that can be further analyzed, combined and
interpreted. Insole-based devices are wearable systems that were
also developed for fall risk assessment and fall detection. The
insole-based systems are placed beneath the sole of the foot and
typically obtain plantar pressure distribution data.

Various portable monitoring systems exist for healthcare,
which include wireless non-wearable systems, phone-based non-
wearable systems, non-integrated wearable systems and fully
integrated wearable systems (11, 12). Non-integrated systems
typically allow for comprehensive and continuous monitoring,
but are usually not comfortable for the user, are expensive
and not ideal for long-term use. On the other hand, fully
integrated wearable systems are smaller, more affordable and are
a better choice for long-term use (12). Inertial sensor systems
and insole-based sensor systems are typically fully integrated,
making them ideal portable monitoring systems to be used
for fall risk assessment over long periods of time. Wearable
technologies typically analyze gait characteristics using various
sensors including pressure sensors and inertial sensors. These
devices analyze gait characteristics and their variability for fall
risk assessment, fall detection and slip detection. Some examples
of gait characteristics analyzed include stride length, stance/swing
phase ratio, plantar pressure distribution and center of pressure
trajectory. Once data is acquired from these sensor systems,
data processing, data fusion, and various analysis techniques
such as machine learning models or manual data analysis, are
employed to obtain meaningful information from the parameters
investigated (10, 13).

Insole-based devices typically incorporate pressure sensors to
measure plantar pressure or plantar pressure distribution (PPD)
from the plantar aspect of the foot. Inertial sensors used for
gait analysis are typically accelerometers and gyroscopes placed
on the leg (such as on the foot, shank or thigh), lower back or
hip. Insole-based pressure data has also been analyzed alongside
inertial sensors placed at the lower leg or plantar aspect of the
foot to obtain additional information regarding an individual’s
gait characteristics.

Other wearable sensors have been used to assess fall risk
and detect falls beyond pressure sensors and inertial sensors,
including but not limited to photoplethysmography (PPG)
sensors, electromyography (EMG) sensors and galvanic skin

response (GSR) sensors. In this article, we discuss various
wearable systems used to investigate parameters relevant to
fall risk assessment and fall detection, with a focus on
inertial and insole-based systems. The overall flow diagram
of fall risk assessment using wearable systems is presented
in Figure 1.

In recent years, there have been advancements in diverse
wearable technologies. Among these, several inertial-based
systems, insole-based sensor systems, and other wearable
technologies have been developed for the purpose of gait analysis,
plantar pressure distribution determination and for fall risk
mitigation (14–16).

Wearable technologies that have been recently developed
for the assessment of fall risk and fall detection using insole-
based or inertial sensor-based systems are summarized in this
article. Here, an overview is provided introduction (section
Introduction), and the article search method is described in
section Search Method. Background information regarding
falling is provided in section Overview of Falling. In section
Inertial-Based Sensor Systems and section Insole-Based Sensor
Systems, information regarding relevant inertial-based sensor
systems and insole-based systems, respectively, are provided.
These sections include background information regarding the
sensor systems used and a review of existing research systems
used for fall risk assessment and fall detection. Wearable sensor
systems other than inertial-based and insole-based technologies
are concisely discussed in sectionOtherWearable Systems, which
is followed by information regarding Fall Risk Assessment and
Modeling Techniques provided in section Fall Risk Assessment
and Modeling Techniques. In section Challenges, the challenges
associated with existing wearable technologies for fall risk
assessment are outlined, with suggestions for future research
presented in section Future Research Perspectives. Conclusions
are lastly presented in section Conclusions.

SEARCH METHOD

This article is a narrative review which employed a systematic
search process. Electronic database searches were performed
in PubMed and Web of Science databases, with final searches
completed in March 2022. The databases were searched using
Boolean operators and focused keywords relevant to fall risk and
wearable devices, resulting in 305 articles. The search strategy
used a combination of terms related to falls and fall risk,
wearables, and the sensor location {[(“Fall risk”) OR (Fall) OR
(Faller∗) or (Falls)] AND [(“Wearable sensors”) OR (“Wearable
devices”) OR (Wearable∗)] AND [(Foot) OR (Feet) OR (“Lower-
leg”) OR (“Lower leg”) OR (Leg) OR (Body) OR (”Whole
body”) OR (“Full body”)]}. This search was following by a title
and abstract screening process using the Covidence software,
which led to 150 articles being selected for review. Upon full-
text examination of relevant articles, 21 selected articles are
presented in this work, with an emphasis on insole-based and
inertial-based wearable devices for fall risk assessment and fall
detection. Only studies reporting on fall risk assessment and fall
detection using insole-based or inertial sensors were included.
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FIGURE 1 | Overall flow diagram of fall risk assessment using wearable sensors.

Studies published before the year 2000 were excluded. Searches
and screening of articles were conducted by authors of this
review article.

OVERVIEW OF FALLING

The Relationship Between Fall Risk, Fear
of Falling and Falls
Falling is very common among members of the aging population
(17), so identifying an individual’s risk of falling in advance
can lead to the prevention of falls and better health outcomes.
Beyond the detrimental effects of falling, the fear of falling can
also lead to adverse health outcomes. In the case of older adults,
having experienced a fall once can lead to an increased fear of
falling that impacts daily life activities (18). This is of particular
concern as fear of falling can cause individuals to not engage
in healthy and beneficial activities, such as physical exercise
activities that can otherwise provide great benefits to health. This
decrease in physical activity due to an assumed risk of falling can
further increase an individual’s fall risk as certain factors such
as cognitive ability or muscle strength may decline without an
active lifestyle (19, 20). This decrease in activity contributes to
an increased fall risk, leading to a further decrease in activity
in a positive feedback cycle (Figure 2). According to Statistics
Canada, 20% of older adults overestimated their fall risk in 2009
(19). Correctly identifying contributing factors and the extent to
which such factors can affect fall risk can allow for the prevention
of unnecessary fears of falling and lead to healthier lifestyles.

Factors Contributing to Fall Risk
Several factors can contribute to one’s risk of falling.
These include physiological, psychological, behavioral and

environmental factors. Factors contributing to fall risk may be
intrinsic or extrinsic (21). Intrinsic factors refer to those that
concern the individual, whereas extrinsic factors refer to the
environment. These factors may independently contribute to
increasing one’s risk of falling or act synergistically.

There exist various methods to assess fall risk that aim
to quantify certain contributors. For example, the Fall Risk
Assessment Checklist for Home Health Care by John Hopkins
Medicine scores patients based on factors including age,
fall history, medication use, tethered patient care devices,
mobility/gait considerations and cognitive considerations (22).
Based on the total number of points, the patient may be
classified as having “moderate fall risk” or “high fall risk.” Various
assessment methods and tools use different factors to assess
fall risk, which may be specific to the target population of the
assessment, environment, age, or specific medical conditions.
Similarly, wearable sensor systems monitor and analyze gait
characteristics to determine an individual’s risk of falling.
Preventing or addressing the factors that can contribute to
falling can help reduce fall risk and allow individuals to lead a
healthier lifestyle.

Importance of Fall Prevention
Preventing falls is crucial as falling may otherwise lead to adverse
health outcomes. In fact, among older adults in Canada, falls are
the leading cause of injury (23). Older adults have a higher risk
for more severe adverse outcomes after a fall. These include an
increased fatality risk, decreased quality of life, acute and chronic
pain, hospitalizations, and long-term changes to an individual’s
lifestyle (19). Thirty three percentage of Canadian older adults
that have been hospitalized after a fall end up living in long-term
care homes, which is an example of a single fall leading to severe
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adverse outcomes, which highlights the need to appropriately
assess fall risk.

Assessing Fall Risk
Fall risk assessment tools can be extremely useful in preventing
falls. An individual’s fall risk can be assessed by several methods,
including assessment checklists, in laboratory settings, through
smart-home systems or using wearable sensors (21, 24).Wearable
technologies are a major and very useful area of research
regarding fall risk assessment and fall detection.Wearable devices
are particularly of use as measurements can be taken in a
user’s natural setting, during daily activities and in a convenient
manner. In the following sections, we describe recent wearable
technologies that have been developed and used toward fall
risk assessment.

INERTIAL-BASED SENSOR SYSTEMS

Overview
Inertial sensors are the most widely used wearable sensors for fall
risk assessment and fall detection. An inertial sensor, also known
as an inertial measurement unit–IMU, comprises of multiple 3-
axis sensors (mainly accelerometers and gyroscopes) to measure
linear acceleration and angular velocity in their own three-
dimensional local coordinate system. Moreover, compared to
other sensor technologies, inertial sensors are a very promising
sensor unit for developing a wearablemonitoring system, because
of their low cost, compact size and capability to measure motion-
related parameters with high precision and accuracy (25–30).
Therefore, they are suitable to monitor body movement and
motion. Normally, inertial sensors are attached to different
body parts to measure body motion-related parameters such as
acceleration and speed of movement, joint angle, and rotation
during movement (Figure 3).

Recently, researchers are intensely investigating the potential
of instrumented fall-risk assessment and prediction tools and
inertial sensors seem to be the first choice of many researchers
(31–40). To collect the data, the aforementioned studies used
between one to five inertial sensors attached to the human body.
Most of the studies used data from the body-attached sensors
to distinguish different fall status groups or to classify falls
during different fall-risk assessment tasks such as walking, quiet
standing, single-task, dual-task, one leg standing, sit-to-stand
transitions, and from timed up and go (TUG) test (41). There are
three important factors to consider when designing an effective
inertial sensors-based fall-risk assessment system: placement of
the sensor, task to be performed, and key features to be extracted
and analyzed.

Placement of the Inertial Sensors
Based on this survey, it was observed that most of the studies
placed the sensors close to the center of the body (e.g., lower back,
waist) to estimate body orientation (tilt), posture, and postural
transition duration between different activities as these features
are highly associated with fall risk (42). When an individual has
an abnormal body orientation during any activity, it can lead
to a fall. An inertial motion sensor attached near to the body

FIGURE 2 | The cycle of falling.

center can detect the body orientation and assess the risk of a
fall. The sensor in this location can also estimate the duration of
a posture as well as transition time between two postures. Balance
and stability of the body during postural transitions are very
important and recognized as the key factors for assessing falls.
Higher transition duration indicates lower balance and stability
and consequently higher fall risk. The duration can be estimated
using the acceleration (from the movement of the body) and
angular rotation (inclination of the trunk) signals from the
inertial sensors. Other proposed sensor locations were foot, leg,
wrist, chest, and head to measure additional key parameters such
as acceleration and velocity during locomotion, foot state as well
as gait stability and symmetry (43, 44). Using multiple locations
allow the system to estimate total body posture, coordination
between different limbs as well as to perform complete functional
assessment to predict the fall risk.

Fall Risk Assessment Tests
There are several well-established fall risk assessment tests to
estimate future fall probabilities. These tests usually involve a
set of questionnaires and functional assessments gait, posture,
cognition, and other fall risk factors. Although these tests
are subjective and qualitative, incorporating inertial sensors
during these tasks can provide a quantitative assessment of
fall risk as well as classify people as fallers and non-fallers.
This combination will also allow us to evaluate balance during
locomotion and lower limb strength. The most common fall risk
assessment tests are timed up and go (TUG) (45), Berg Balance
Scale (BBS) (46), sit to stand (STS) (47), and one leg stand
(OLS) (48).

Extracted Features
Features from the inertial sensors can be divided into
several categories such as spatial, temporal, frequency, linear
acceleration, angular, and non-linear features. Linear acceleration
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FIGURE 3 | Activity and gait monitoring for fall risk assessment and fall detection using inertial sensors.

features are related to postural stability during activities. Spatial
features include step length, stride length, step width and
number of steps. that can be estimated from inertial signals
measured during the walking. On the other hand, temporal
features included time related features such as cadence, step
time, stride time, gait speed, stance and swing time, single and
double support time, time during only one foot and both feet
are in contact with the ground, gait cycle, and coefficient of
variation (CV) for step. These spatial and temporal features
are widely used in gait analysis (49). The most common
frequency features extracted from the inertial sensors are the
harmonic ratios (HRs) of acceleration in different directions
(mediolateral, anteroposterior, and longitudinal axis) (33, 34).
The frequency features are often used to estimate the stability
and smoothness of body movement during gait (50). The
angular features include joint range of motion, and rotation
during gait and movements. In addition to those features,
some non-linear features related to gait dynamic stability
(e.g., the maximum Lyaponuv exponent, multiscale entropy,
and recurrence quantification analysis) are reported in (51,
52) that have the association with fall history. As different
features represent different gait and movement characteristics,
an appropriate feature combination is required to employ a
machine learning technique to distinguish fallers and non-fallers
as well as to compare features between groups of fallers and non-
fallers. Therefore, considering the heterogeneity of the features
is important to consider when developing an effective fall risk
assessment model. However, there is still a lack of consensus
about the features that are optimal for fall studies, especially for
different subject groups (49). Moreover, there can be significant
differences when the analysis is performed in a retrospective or a
prospective way (33).

In order to develop an efficient fall risk assessment tool,
appropriate features should be selected with a combination of
proper sensor placement and fall risk assessment test. Different
optimal combinations of these factors are proposed in different

studies that are summarized below in next section as well as in
Table 1.

Existing Inertial-Based Sensor Systems for
Fall Risk Assessment and Fall Detection
In (31), a piezoresistive accelerometer was used to determine the
fall risk. The sensor was placed at the sacrum. The study included
TUG (timed-get-up-and-go) and Tinetti tests and measured
different gait and functional parameters to assess the fall risk
among different subject groups (young control, old control,
and older adults with increased fall risk). Analysis of variance
(ANOVA) and logistic regression were used to analyze the data
and only gait speed and variability showed discriminative result
for increased fall risk. Another similar accelerometer-based fall
risk assessment study (trunk-at the level of L5) was presented in
(33). They also used logistic regression to analyze gait parameters
and daily activities and presented good association with falls.

Some researchers suggested other body locations to position
the accelerometer sensor such as chest (38) and upper thigh
(39) to perform the fall risk assessment and prediction. In
(38), the Tinetti score was evaluated from 9 balance and 8
gait features and different machine learning models (linear
regression, linear model, and artificial neural network–ANN)
were applied to perform fall risk classification. Based on their
data, ANN performed the best with a lowest misclassification
error of 0.11. Researchers in another article (39) used non-
linear support vector machine (NLSVM) for fall prediction and
detection operation and achieved high performance sensitivity
and specificity for both cases (Table 1).

Two accelerometer-based fall risk assessment study is
presented in (36). In this study, the sensors were placed at the
center of the lower back and right ankle, and the researchers
measured different gait and physiological parameters during
normal gait, stair ascent and descent. They used partial Spearman
correlation and found a high correlation between gait parameters
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TABLE 1 | Studies using inertial sensor-based fall-risk assessment and fall detection systems.

Reference Participants Sensor system (Device

location)

Parameters investigated Analysis techniques Key points

Bautmans et

al. (31)

121

• 40 older

adults with

increased

fall-risk (80.6

± 5.4 years)

• 41 old

controls (79.1

± 4.9 years)

• 40 young

controls (21.6

± 1.4 years)

• 1 3-D piezoresistive

accelerometer (sacrum -

between the spinae ilaca

posterior superior)

• Gait parameters: gait speed, step-time

asymmetry, mediolateral and craniocaudal

step and stride regularity

• Functional parameters: cognition (MMSE),

dependency, grip strength, muscle

endurance, and fall-risk (fall-history,

timed-get-up-and-go and Tinetti-test)

• Analysis of variance (ANOVA)

• Logistic regression

• Only gait speed presented discriminative result for

increased fall-risk

• Gait variability features showed good relationships (p

< 0.05) with functional characteristics for older

adults

Kumar et al.

(32)

– • 1 pressure sensor (arm)

• 1 Infra-red sensor (fingertip)

• 1 3D accelerometer (waist)

• Blood pressure

• Heart rate

• Blood glucose

• Center of gravity

• 3D acceleration

• Fixed threshold analysis • Identification of the reason for fall by analyzing blood

pressure, heart rate and blood glucose level

• Classification of falls by analyzing walking, jumping

and fall data from accelerometer

van

Schooten et

al. (33)

169 older adults

(65–99 years)

• 109

non-fallers

• 60 fallers

• 1 3D accelerometer (trunk-at

the level of L5)

• Gait parameters: gait speed, cadence,

stride length, and harmonic ratio

• Daily activities: number of strides,

locomotion duration

• Logistic regression • 1 week of accelerometry data for each subject was

obtained

• Locomotion duration and gait variability were

significantly correlated with fall history

• Predictive ability based on questionnaires, grip

strength, trail making test, and gait amount and

quality were highly associated with falls

Howcroft et

al. (34)

100 older adults

(75.5 ± 6.7

years)

• 76 non-fallers

• 24 fallers

• 2 multipoint pressure sensing

insoles (plantar aspect of foot)

• 4 3D accelerometer (head,

pelvis, and left and right shanks)

• Center of pressure

• Impulse variables from ground reaction

force

• Temporal gait features

• Frequency domain features

• Ratio of even to odd harmonics (REOH)

• Limits of stability (LOS)

• Maximum Lyapunov exponent (MLE)

• Multi-layer perceptron neural network (NN)

• Naïve Bayes (NB)

• Support vector machine (SVM)

• SVM and NN, both provided high accuracy for fall risk

classification

• NN presented the best performance accuracy (84%)

• Single-task gait assessment models performed

better than models based on dual-task gait or

clinical assessment data

Wang et al.

(36)

81 older adults

(83.8 ± 3.83

years)

• 70

non-multiple

fallers

• 11 multiple

fallers

• 2 3D accelerometer–Opal

(center of the lower back and

right ankle)

• Gait parameters: cadence, gait variability,

and movement vigor

• Physiological parameters:

– Visual contrast sensitivity

– Proprioception

– Quadriceps muscle extension strength

– Reaction time

– Postural sway path

• Partial Spearman correlation • Normal gait, stair ascent and descent were studied

• Gait parameters from stair descent showed higher

correlation with physiological profile assessment

(PPA) factors than gait parameters from flat surfaces

and stair ascent

(Continued)
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TABLE 1 | Continued

Reference Participants Sensor system (Device

location)

Parameters investigated Analysis techniques Key points

Brodie et al.

(35)

96 older adults

(75.5 ± 7.8

years)

• 63 non-fallers

• 33 fallers

• 1 3D accelerometer and 1

barometer (worn as a pendant)

• Gait parameters: steps per day, cadence,

gait variability, gait endurance, and walking

adaptability

• Physiological parameters:

– Visual contrast sensitivity

– Proprioception

– Quadriceps strength

– Reaction time

– Postural sway

• Analysis of variance (ANOVA)

• Analysis of covariance (ANCOVA)

• Daily-life walking was analyzed

• Presented correlation between gait and other factors

such as aging, BMI, medications, disability, concern

about falling, poor executive function, and higher

physiological fall risk

Qiu et al. (37) 100 community-

dwelling Korean

older women

(≥65 years)

• 114

non-fallers

• 82 fallers

• 5 Xsens inertial sensors−3D

Accelerometer + 3D

Gyroscope (pelvis, thighs, and

shanks)

• Time and frequency domain features from

sensory integration test (SIT)

• Limits of Stability (LOS)

• Sit-to-Stand Five Times (STS5)

• Gait parameter from timed up and go

(TUG) test: gait velocity, step time and

length, tuning time

• Range of motion (ROM): knee flexion; knee

extension

• Choice reaction test (CRT)

• Computerized falls efficacy scale (FES)

• Logistic regression

• Naïve Bayes (NB)

• Decision tree (DT)

• Random forest (RF)

• Boosted tree (BT)

• Support vector machine (SVM)

• Support vector machine for faller classification

achieved the highest overall accuracy of 89.4% with

92.7% sensitivity and 84.9% specificity

• fallers exhibited worse performances of visual and

vestibular systems, a smaller knee ROM, a slower

information processing speed, a higher fear of falling,

and experienced more difficulties during the complex

tasks such as TUG, LOS, and STS5

Rivolta et al.

(38)

90 older adults

(69.3 ± 16.8

years)

• 33 with high

risk of falling

• 1 3D accelerometer–GENEActiv

(chest)

• Temporal and spatial gait parameters

• Balance variables

• Tinetti score evaluated from Tinetti test

(from 9 balance and 8 gait features)

• Linear regression

• Linear model (LM)

• Artificial neural network (ANN)

• A large number of features (21) were used to classify

the subjects with fall risk

• A Tinetti score was used as gold standard

• Low misclassification error for ANN (0.11)

Saadeh et al.

(39)

20 older adults

(65–70 years)

• 1 3D accelerometer–MPU-6050

(upper thigh)

• Fall prediction parameters:

– Acceleration–mean and standard

deviation (x- and z-axes)

– Coefficient of variance–COV (z-axis)

– Correlation coefficient between x- and

z-axes

– Mean amplitude deviation–MAD (x-axis)

– Total sum vector–SV

• Fall detection parameters:

– Total sum vector square–SVS

• Non-linear support vector machine

(NLSVM)

• The proposed system included two operation modes:

1) fast mode for fall predication–FMFP (300–700ms)

and 2) slow mode for fall detection-SMFD (within 1 s)

• The proposed algorithm accuracy is validated using

MobiFall dataset (77 subjects)

• Exhibited high sensitivity and specificity for both

FMFP (97.8 and 99.1%) and SMFD (98.6 and

99.3%)

Buisseret et

al. (40)

73 older adults

(83.1 ± 8.3

years)

• 50 non-fallers

• 23 fallers

• 1 LSM9DS1 inertial

sensors−3D Accelerometer +

3D Gyroscope (L4 vertebra)

• Linear acceleration and angular velocity (x-,

y- and z-axes)

• Parameter from timed up and go (TUG)

test: TUG time and gait variability

• Decision tree (DT) • TUG test results coupled to gait variability

parameters presented improved (from 68 to 76%)

accuracy of fall risk prediction
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from stair descent and physiological profile assessment (PPA)
factors for fall risk assessment.

Gyroscope measurements along with the accelerometer data
were used in two other studies (37, 40). In (40), one inertial
sensor unit was positioned at the lower back, at the lumbar 4
vertebra, to measure 3D linear acceleration, angular velocity, and
other gait parameters in the TUG test. They used the decision
tree algorithm for fall risk prediction. Measurements from five
inertial sensors (pelvis, thighs, and shanks) were exploited in
(37) to differentiate fallers from non-fallers among a community-
dwelling older population. They explored different machine
learning algorithms: logistic regression, Naïve Bayes, decision
tree, random forest (RF), boosted tree, and support vector
machine (SVM) to make a comparison analysis and obtained the
highest faller classification accuracy (89.4%) using SVM.

There are other studies (32–35) that incorporated other
wearable sensors along with the inertial sensors to explore more
relevant features for fall risk assessment. In (35), the researchers
used a 3D accelerometer and a barometer worn as a pendant to
measure gait and physiological parameters such as steps per day,
cadence, gait variability, gait endurance, walking adaptability,
visual contrast sensitivity, proprioception, quadriceps strength,
reaction time, and postural sway. They used analysis of variance
(ANOVA) and analysis of covariance (ANCOVA) to analyze daily
life walking and presented a correlation between gait and other
factors such as aging, BMI, medications, disability, concern about
falling, poor executive function, and higher physiological fall risk.
Another study (32) presented a novel fall detection algorithm
based on three different sensors: pressure sensor (arm), infra-
red sensor (fingertip) and accelerometer (waist). They analyzed
blood pressure, heart rate, blood glucose, center of gravity, and
3D acceleration to identify and classify the reasons for fall.
Another multi-sensor system that combined two multipoint
pressure sensing insoles and four 3D accelerometer (head, pelvis,
and left and right shanks) was presented in (34). They applied
threemachine learning algorithms:multi-layer perceptron neural
network (NN), Naïve Bayes (NB), and support vector machine
(SVM) to analyze different extracted gait and plantar pressure-
related parameters (Table 1). Although both SVM and NN
provided high accuracy for fall risk classification, NN presented
the best performance accuracy of 84%. The study also observed
that single-task gait assessment models performed better than
models based on dual-task gait or clinical assessment data.

INSOLE-BASED SENSOR SYSTEMS

Overview
Fall risk assessment and fall detection have been investigated
using insole-based sensor systems. Insole-based sensor systems
used for gait analysis typically provide measurements regarding
plantar pressure distribution and other gait characteristics from
the sole of the foot. These systems often use piezoresistive force
sensitive resistors (FSRs) embedded in an insole to measure
PPD at various foot regions. These pressure sensors have a
reduction in resistance as a greater force is applied. The pressure
values among all FSRs in an insole can be used to determine
the pressure distribution across the foot, which is useful for

gaining insight into stance phase gait characteristics (such as
stance phase gait events) as well as relative pressures across
the plantar aspect of the foot. Some insole-based systems
incorporate inertial measurement units (such as accelerometers
and gyroscopes) at the plantar aspect of the foot or lower leg to
obtain additional gait characteristics. The main components of
an insole-based sensor system include the insole base, pressure
sensing elements, data acquisition and transmission system, and
power source. The data acquired from the wearable insole is
usually transmitted to a device for analysis. Upon signal post-
processing and data analysis, gait characteristics can be presented
in a useful format for patients or clinicians, fall risk can be
determined, and meaningful information can be extracted from
the investigated parameters.

In addition to using sensors embedded in an insole system
to monitor gait characteristics and assess fall risk, physical
characteristics of the insole can contribute to reducing fall risk
and preventing falls. For example, (53) outline that insoles can
allow for balance preservation through controlling the center of
pressure of the foot, shock absorption using less rigid materials
beneath the hindfoot, providing support at the ankles and
stimulating skin receptors to increase reaction speed. Insoles can
also vary in elevation to allow for a greater area of the plantar
aspect of the foot to be in contact with the sole (54) which can
further decrease fall risk.

Although insole-based systems traditionally mainly focus
on foot pressure through plantar pressure distribution
measurements, the plantar pressure data can provide meaningful
insight into an individual’s gait and fall risk. This information
when paired with inertial measurements can provide further
insight into an individual’s fall risk and gait. In fact, fallers and
stumblers have shown to exert different pressure values and PPD
than non-fallers (55, 56). By recognizing characteristic PPD and
gait patterns while walking and standing, further insight into an
individual’s fall risk can be obtained. The parameters typically
analyzed for fall risk assessment or fall detection in existing
insole systems (57–67) are shown in Figure 4.

Existing Insole-Based Systems for Fall
Risk Assessment and Fall Detection
In (60), an insole-based system including 13 capacitive pressure
sensors and an IMU was developed to assess fall risk in
construction workers. This system investigated parameters
relevant to biomechanical gait stability through a wireless
system. Loss of balance events were studied as they are
reported to provide biomechanical parameters regarding gait
stability, specifically in the context of external fall risk factors
in occupational environments. Changes in those biomechanical
parameters were also reported to provide gait metrics regarding
safety in workplace environments. The developed insole system
was used to simulate loss of balance events in a laboratory
setting in addition to assessing normal gait, using data from
insoles from both feet. Plantar pressure patterns were used to
calculate five parameters relevant to biomechanical gait stability.
The equations used by Antwi-Afari and Li (60) to calculate
the mean pressure, peak pressure, the pressure-time integral,
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FIGURE 4 | Parameters of interest for fall risk assessment and fall detection using insole-based systems.

anterior/posterior center of pressure and medial/lateral center of
pressure are presented in Table 2.

A combined system incorporating an insole with pressure

sensors, and acceleration sensor as well as a UWB (ultra-wide

band) radar was developed for fall risk assessment by Ayena et al.
(63). This system combined information acquired from the insole
system and radar system to provide a Risk of Falling score largely

based on stride data. A benefit of this system is the non-contact

radar system which can be used to assess gait characteristics and
fall risk when a wearable device is not necessarily used. When the
insole is paired with the radar system, meaningful information

such as temporal and spatial gait features can be obtained. The

low number force sensitive resistors also reduces the power
required for the insole to operate. Various techniques were also
used for data analysis which included gait velocity estimation

involving the use of a Kalman filter as well as developing an

algorithm to segment parameters investigated.
In (64), an insole system was developed for fall risk

assessment. The researchers created their own pressure sensor
which was made of a 20 x 20mm sheet of Velostat sandwiched
by two 100µm thick aluminum foil sheets, which is in turn

sandwiched by 150µm thick PVC adhesive film. The sensors in

this insole were attached to the lining of the sole, which increases
comfort to the user as there is no direct contact of the foot
with the piezoelectric sensors. Through wireless transmission,
the data acquired from the insole system is transmitted to a
microcontroller that is connected to a personal computer. The
computer then is used to extract signal amplitude and frequency,
which are then used to detect changes in gait and ultimately
generate reports and warmings regarding fall diagnosis and

gait characteristics. In this work, one participant engaged in
six different gait activities (“Turnaround,” “Scrolling,” “Upstairs,”
“Downstairs,” “Upstairs one by one,” “Walk with left straight leg”)
with three trials per gait activity. The eighteen graphs of data
were analyzed to determine parameters such as load distribution,
variation in step abruptness and timing of gait phases. This
work aimed to develop a system that can be used to detect
uncoordinated or unstable gait which would otherwise lead to an
increased fall risk.

An insole-based sensor system by Cates et al. (61) was
developed to classify falls. This system includes both force
sensitive resistors for pressure and an accelerometer from
an inertial measurement unit. In all fall detection algorithms
used which are IMU-based, the “Sum Vector Magnitude” was
calculated, which considers acceleration in x y and z planes. The
equation used in this work is:

Sum Vector Magnitude =

√

Ax2 + Ay2 + Az2

where Ax2 is the acceleration in the x direction, Ay2 is the
acceleration in the y direction and Az2is the acceleration in the
z direction. This method does not depend on the orientation of
the sensor, which is beneficial with regards to overcoming any
errors caused by the misalignment of the IMU. The Support
Vector Machine (SVM) Machine Learning model was used for
the fall classification. This model allows for the various low-
acceleration activities, high acceleration activities and falls to
be distinguished. It is reported that by using both the FSR
and inertial data, errors are reduced, specifically with respect
to improving the rate of false negatives. Among the 45 features
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from both the IMU and pressure sensors, 18 were determined
to be associated with the highest performance of fall detection.
Fourteen of these features are accelerometer-derived and four
are derived from pressure sensors. The names of the four FSR-
selected features are “FSR4 switch on duration,” “FSR3 total on-off
switches,” “Mean_FSR3,” and “Mean_FSR1 over window’s final
2 s.” The names of the remaining accelerometer-selected features
are “mean_Z,” “variance_X,” “variance_Z,” “variance_Total,”
“skewness_X,” “skewness_Z,” “skewness_Total,” “correlation_Z,”
“Minimum filtered Sum Vector Magnitude,” “Maximum filtered
Sum Vector Magnitude,” “filtered Sum Vector Magnitude <0.9
duration” and “Variance filtered Sum Vector Magnitude over
window’s final 2 s” (61).

The work by Chen et al. (65) aimed to address hazard that
could lead to falls, with an emphasis on falls in occupational
settings. The developed insole consists of four layers: a top
fabric layer for comfort, a pressure sensor array (consisting of
96 pressure sensors per foot), an insole-shaped package layer,
and the bottom layer consisting of the circuit board and battery.
The focus of this work was to identify fall hazards that would
result in slips and trips using an insole-based sensor system. This
system can be used not only for gait analysis of the user but also
to determine whether the floors are safe or are hazardous. To
determine if floors were safe or hazardous, activities of daily living
including walking, running, stair ascent and stair descent were
investigated. The changes in pressure and gait characteristics
were also investigated on a slippery surface as individuals adapt
their gait to the floor surface. Detecting these characteristic
patterns upon negotiation with respect to slippery surfaces and
trip negotiation can lead to the identification of hazardous floors
which would otherwise lead to falls. A Support Vector Machine
model was used in this work and the mean accuracy of a five-fold
cross validation test was 95.78%.

Das and Kumar (58) developed an insole-based system
to investigate postural stability and gait parameters. This
system consists of seven piezoresistive pressure sensors and
measurements were in accordance with Zebris mat validation.
Parameters pertaining to postural stability and spatiotemporal
gait characteristics were determined using a timer associated with
specific gait events such as “Heel strike,” “Heel off,” “Toe off,”
and “Toe strike.” The millisecond timer is triggered by specific
gait events to determine the duration of particular gait events.
Like several other insole-based systems, the data acquired from
this system is focused on stance phase gait characteristics, with
information regarding the swing phase being restricted to the
duration of the swing phase.

The “WIISEL” (Wireless Insole for Independent and Safe
Elderly Living) system developed by di Rosa et al. (59)
consists of sensors embedded in two layers. The top layer
consists of an array of pressure sensors and the bottom
matrix layer includes other components such as inertial sensors
(accelerometer and gyroscope), antenna, Bluetooth protocol and
an inductive charging area. This insole was worn by older
adults for 2 weeks daily with data acquired from daily activities.
This system was designed to obtain information regarding
steady-state gait parameters and is thus not able to be used
for comprehensive daily activity monitoring. Nonetheless, this

system uses the steady state gait characteristics toward a fall risk
score. The parameter of greatest contribution to the fall risk
score is “Double Support Right” (52% weighting), followed by
“Single support left” (31%), “Mediolateral average acceleration
amplitude” (12%) and “Heel strike force slope left” (5%).
The color-coded fall risk score is displayed on a graphical
user interface, where a score of 0–30 is indicative of a low
fall risk, 31–70 is indicative of medium fall risk and 71–100
indicates a high fall risk. Due to the complexity of fall risk
assessment, a cluster analysis was also completed to ensure
the fall risk index can efficiently indicate an individual’s risk
of falling.

The system developed by Hu et al. (62) was designed
to estimate the trajectory of foot center of pressure (COP).
COP trajectory and more specifically the COP sway can
provide information regarding an individual’s fall risk. This
work employed a non-linear data analysis model specific to
the user to estimate the COP trajectory. It is reported that
existing COP trajectory analyses are based on weighted mean
approaches, which may not be accurate for all individuals due
to intra-individual variability as well as the low number and
small sizes of sensors used in this insole. The non-linear user-
specific model developed for COP trajectory aims to overcome
those limitations.

The system developed by Ji et al. (66) uses four pressure
sensors in an insole system designed to detect falls and trigger
an alert. This system has two sensors placed at the forefoot,
and one at the centers of the midfoot and hindfoot each.
By assessing plantar pressure distribution, the variation in the
pressure exerted, the walking state or speed of the individual
as well as if there is a rapid response form the user, the
occurrence of a fall can be determined. Upon detecting a
fall, an alert is generated. The user, if conscious, also has the
option to press a button upon a fall to generate an alert using
this system.

Kraus et al. (67) used theMoticon Science3 insole to investigate
physical frailty. Along with pressure sensors, this insole system
consists of a 6-axis inertial measurement unit at the midfoot. This
worked aimed to assess the comparability of the data obtained
from the insole system with the standard questionnaire for
sarcopenia and the TUG (Timed Up and Go test) on predicting
physical frailty.

Bipedal slip as investigated by Lincoln and Bamberg (57). An
insole-based system consisting of pressure sensors and an IMU
attached to the lower leg was used alongside a marker-based
motion capture system and floor force plates to investigate the
detection of bipedal slips in real time. This system determined
the trajectory of plantar forces, acceleration and corresponding
readings from the motion capture system to identify the slip
motion. The duration difference of a normal step vs. a slip
was also determined to be 0.20 and 1.25 s, respectively. While
slipping, there is prolonged motion in the progressive direction
with a heelstrike occurring thereafter. Slip motions were induced
using a low-friction surface of two layers of plastic sheets.
In this work where slips were induced through a set-up,
only the slip motion was investigated, without investigations
regarding falling.
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TABLE 2 | Key points pertaining to insole-based systems used for fall risk assessment and fall detection.

Reference Sensor system

and focus of

work

Sensor type(s) and

number

Sensor placement Population Parameters investigated Data acquisition and analysis

information

Other characteristics

Kraus et al. (67) • Insole-based

• Physical frailty

prediction

Pressure sensors and

6-axis IMU

• Orthogeriatric

patients

• n = 57

• 93% women

• Mean age:

77 years (SD

= 6)

• Number of steps

• Stride length

• Gait speed

• Acceleration over gait cycle

• Gait cycle time

• Cadence

• COP variability

• Double support time

• Physical frailty classified using:

– SPPB (Short Physical

Performance battery)

– kNN (k-Nearest Neighbor)

– RF (Random Forest)

• Moticon Science3 insole

used

Ayena et al. (63) • Insole-based

with UWB

(Ultra-

wideband)

Radar

• Fall risk

assessment

Piezoresistive

pressure sensors

(FSRs) + 3D

Accelerometer +

Radar system

5 sensors:

• 4 FSRs (2 at

hindfoot (medial

heel and lateral

heel), 1 at first

metatarsal, and 1

at fifth metatarsal)

• 1 3D

Accelerometer

(outside of sole)

• One healthy

young adult

participant

• Instrumented insole provides:

– Acceleration-related

information

– Other gait information

(Temporal features)

– Cadence

– Stride time

– Stride length

– Stride speed

• Radar UWB provides

information regarding:

– Position-based activities

(Spatial features)

– Stride length

– Stride speed

• Risk of Falling Score informed by

stride data

• Fall risk based on analyzed

variability

• Fall detection (based on static

and dynamic acceleration)

• Kalman Filter for Gait Velocity

estimation

• Algorithm to segment TUG

(Timed Up and Go) radar signal:

used for stride length, stride time,

cadence, stride speed

• FSR diameter: 13mm

• High resolution acceleration

measurement: 13-bit and up

to ± 16g

• Radar range: 10m

• Radar accuracy: ±10 cm

• Low-power radar system

Bucinskas et al.

(64)

• Insole-based

• Fall Risk

Assessment

3 piezoelectric

pressure sensors

• Pressure sensors

developed by

researchers using

PVC, Velostat and

aluminum foil

• One

participant

(three trials)

• Pressure distribution

• Duration of stance phases for

both feet

• Variation of stepping

abruptness

• Stepping unevenness

parameters

• Stepping rhythm

• Size of step

• Gait phase timing

• Analysis of sensor signals in time

domain

• Correlation-regression analysis

for absolute measurement error

• Single amplitude values extracted

from raw data for load

distributions

• Wireless (2.4 GHz WiFi)

• Battery-powered 1,300

mAh lithium polymer battery

• Activities investigated:

“Turnaround,”

“Scrolling,”

“Upstairs,”

“Downstairs,”

“Upstairs one by one,”

“Walk with left

straight leg”

Chen et al. (65) • Insole-based

• Fall Hazard

Identification

Pressure sensor array

layer (96 pressure

sensors)

• Healthy

individuals

• n = 10

• Ground reaction force

differences

• Swing phase acceleration

magnitude signal threshold

crossing points

• Pitch angle at initial

foot contact

• Pitch angle during midstance

• Double support %

• Five features used to train SVM

model for fall hazard identification

and safe floor activities

• One-feature accuracy: 39.54%

• Five-feature accuracy: 95.78%

• Device for fall hazard

identification

• Activities investigated:

Walking, Running, Stair

ascent, Stair descent

(Continued)
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TABLE 2 | Continued

Reference Sensor system

and focus of

work

Sensor type(s) and

number

Sensor placement Population Parameters investigated Data acquisition and analysis

information

Other characteristics

Ji et al. (66) • Insole-based

• Fall Detection

4 FSR pressure

sensors

(2 at forefoot, 1 at

midfoot, 1 at

hindfoot)

– • Plantar pressure

• Plantar pressure variation

• Walking state

– • Bluetooth data transmission

Antwi-Afari et al.

(60)

• Insole-based

• Fall Risk

Assessment

• 13 Capacitive

Pressure sensors:

2 at Toes; 3 at

Metatarsal Head; 4

at Arch; 4 at Heel

• 1 3D Acceleration

sensor at middle of

Arch

• Construction

workers

• n = 10

• Mean age:

26.50 (SD =

3.35) years

Biomechanical gait stability

parameters:

• Mean pressure

• Peak pressure

• Pressure-time integral

• Anterior/Posterior center of

pressure

• Medial/Lateral center of

pressure (Investigated through

simulation of loss-of-balance

events and normal gait)

• 50Hz pressure sampling rate

• Equations used for biomechanical

gait stability parameters:

• Mean Pressure =
1
N

∑N
i=1 Pi

• Peak Pressure = Maximum (Pi,

…, PN)

• Pressure-Time Integral =
∑N

t=1 Pi × t

• Anterior/Posterior Center of

Pressure =

∑N
i=1 XiPi

∑N
i=1 Pi

• Medial/Lateral Center of Pressure

=

∑N
i=1 YiPi

∑N
i=1 Pi

N = number of pressure sensors

i = pressure sensor value (ith

sensor)

Xi and Yi = pressure sensor value

coordinates

• Wireless Data Transmission

• Insole thickness: 2.5mm

• 16MB flash memory

integrated in sole

• Pressure range: 0 to 40

N/cm2

• Simulated loss-of-balance

events = Slip, Trip,

Unexpected step-down,

Twisted ankle

Cates et al. (61) • Insole-based

• Fall

Classification

• 4 Pressure sensors

(FSRs): 2 at

forefoot and 2 at

hindfoot

• 1 IMU Sensor at

midfoot

• Healthy

males

• n = 20

• Age: 28 ± 5

years

Low-acceleration Activities of

Daily Life (ADL):

• Standing

• Lying

• Sitting

• Walking

• Running High-acceleration

ADLs:

• Stair ascent

• Stair descent

• Jump falls

• Threshold and machine learning

methods

• Signal of sum vector magnitude

filtered using 1st order low-pass

butterworth filter (1Hz cut-off)

• Support vector machine (SVM)

fall detection algorithm

• 45 features used for fall

classification model

• Feature selection using genetic

algorithm process

• 18 features associated with

highest performance of fall

detection

• Device for fall classification

• 20Hz sampling rate

(Continued)
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TABLE 2 | Continued

Reference Sensor system

and focus of

work

Sensor type(s) and

number

Sensor placement Population Parameters investigated Data acquisition and analysis

information

Other characteristics

Hu et al. (62) • Insole-based

• COP

Trajectory

12 FSRs (at toes,

metatarsophalangeal

joints, foot arch, heel)

• n = 20

• Younger

participants:

– n = 10

– Age: 22.6

± 1.5

years

• Older

participants:

– n = 10

• Age: 65.7 ±

3.4 years

Center of Pressure (COP)

Trajectories (indicative of postural

control)

• Anterior-posterior direction

trajectory

• Medial-lateral direction

trajectory

Non-linear model used to estimate

COP more accurately than typical

weighted models

• 50Hz sampling frequency

• FSR diameter: 12.7mm

• Bluetooth data transmission

di Rosa et al.

(59)

• Insole-based

• Fall Risk Score

Pressure sensors +

6D Accelerometer

and Gyroscope

(Sensors embedded

in two layers:

Pressure array layer

on upper

pressure-sensing

layer; Other

components

(including inertial

sensors) in

second/matrix layer)

• Older adults

(over 65

years)

• n = 29

• Diverse

sample used

(sex, health

status,

mobility,

etc.)

• Double support right (fall risk

index weighting: 52%)

• Single support left (weighting:

31%)

• Mediolateral average

acceleration amplitude

(weighting: 12%)

• Heel strike force slope left

(weighting: 5%)

• Cluster analysis

– Selected indicators:

– POMA (Performance Oriented

Mobility Assessment Tool)

– DGI (Dynamic Gait index)

– TUG (Timed Up and Go test)

• Short range communication

(Bluetooth) to mobile device

• Long range communication

from mobile device to

computer

• Worn during daily activities

for 2 weeks

• Comprehensive daily

activity monitoring not

possible (device designed

for steady-state gait

parameters only)

Das and Kumar

(58)

• Insole-based

• Postural

Stability and

Gait

Parameters

7 Piezoresistive

pressure sensors

• Hallux

• Metatarsal 1

• Metatarsal 2

• Metatarsal 4

• Metatarsal 5

• Medial Heel

• Lateral Heel

• Healthy

males

• n = 3

• Age range:

22–28 years

Postural stability and

spatiotemporal gait parameters:

• Plantar Pressure

• Force variation during standing

and from accidental falls

• Gait cycle duration

• Stance duration

• Swing phase time

• Single support

Data filtered using 3rd order

Butterworth low-pass filter (cut-ff

frequency = 50Hz)

• Parameters calculated using

Heel strike, Heel off, Toe off,

Toe strike, Timer

• Timer is triggered upon

detection of specific gait

events

• Force range: 0–100N

• Accuracy: ± 2 N

Lincoln and

Bamberg (57)

• Insole-based

system +

camera-based

system

• Slip Detection

• 6 pressure sensors

(FSRs): 4 at

forefoot and 2 at

heel

• 1 3-axis

accelerometer (not

in sole)

• n = 2

• 1 male (age

= 23 years)

• 1 female

(age = 35

years)

Plantar force during slip gait

• Normal force

• Lateral shear force

• Progressional shear force

• Body weight acceleration

during slip gait

Pressure and acceleration data

filtered through low-pass

butterworth filter (cut-off frequency

= 60Hz)

• Real-time slip detection

• Slips following heel strike

were investigated without

falls recorded

• 114Hz sampling rate

• 90% accuracy
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A summary of key points regarding the reviewed insole-
based systems used for fall risk assessment and fall detection
are presented in Table 2. The placement of pressure sensors in
existing systems are depicted as blue circles, with inertial sensors
integrated in the insole depicted as green squares. The diagrams
to depict the approximate sensor placement locations in the
insole are based on figures, images or descriptions included in
existing literature, where provided.

OTHER WEARABLE SYSTEMS

There are several other wearable sensors that are also investigated
for fall risk assessment, fall prevention, and fall detection.
It was observed that when a fall event occurred or before
the fall event, different physiological parameters such as
heart rate, body temperature, sweat rate, lung volume, blood
oxygen level, and eye movement of an individual varies from
normal (68, 69). Therefore, researchers are also investigating
different wearable physiological sensors. For example, wearable
photoplethysmography (PPG) and electrocardiography (ECG)
sensors are used for blood volume variations and heart rate
monitoring (70–73), temperature sensors for body temperature,
and electrodermal activity-EDA sensor (also known as galvanic
skin response-GSR) to measure skin perspiration and humidity
(74). Spirometer is another diagnostic tool that can measure lung
capacity and airflow (75). Hence, it can be used for shortness
of breath detection due to critical medical conditions and
prevent unwanted falls. Moreover, SpO2 (saturation of peripheral
oxygen) sensors can monitor blood’s oxygen saturation level and
electrooculography (EOG) sensors can quantify eye movements
by measuring voltage difference between the cornea and retina
(75, 76). Some researchers also incorporated global positioning
system (GPS) to show the location of the event after detection a
fall (77, 78).

FALL RISK ASSESSMENT AND MODELING
TECHNIQUES

In wearable sensor-based fall risk analysis, relevant features are
extracted from the sensors data. As the data acquired from
the sensors may contain noise and unnecessary information,
different filtering techniques are applied to minimize noise
and eliminate undesired segment of the data (79). After
filtering the data, optimal feature set should be selected for
effective analysis. The commonly used features extracted from
the wearable sensors are spatiotemporal gait parameters, gait
variability, trajectory, center of mass, activity duration and
transitions, postural stability, and planter pressure distribution
(41, 80). In addition to these extracted features, clinical histories,
demographic characteristics, and previous fall records are also
important for developing an efficient fall risk assessment model.
The approaches used for fall risk assessment can be divided
into three categories: Conventional machine learning techniques,
Deep learning algorithms, and Knowledge-Driven Model.

Machine learning is a technique that enables the machine
(computers/smart devices) to utilize a dataset and to obtain

meaningful information that can create a learning model. It uses
training data to predict/differentiate a problem based on the data
features and generates optimal assessments (76). Deep learning
is also a type of machine learning and artificial intelligence (AI).
A neural network with multiple hidden layers is recognized as
a deep learning method. Deep learning, unlike conventional
machine learning algorithms, does not need feature engineering.
It is capable to train a large amount of data with high prediction
accuracy. However, the hidden layers of a deep learning method
are similar to a black box and not easy to understand (81, 82).
On the other hand, a knowledge driven model is developed based
on evidence, guidelines, and experts’ opinions, instead of using
observational data (80).

Conventional Machine Learning
Techniques
Machine learning techniques are the most used analyzing
approaches for wearable sensor-based fall risk assessment.
Conventional machine learning techniques for fall risk
modeling and assessment can be divided into two approaches:
discriminative and generative. Discriminative techniques are
used to generate a decision boundary to classify the subjects into
corresponding classes (e.g., fallers and non-fallers). Different
discriminative approaches were applied for fall risk assessment
such as linear regression (83), logistic regression (84), and
Support Vector Machine–SVM (85). On the other hand,
generative techniques are used to generate the boundary line
of each class instead of having a single decision boundary.
Generative models that were reported for fall risk assessment are
Naïve Bayes model (86, 87), k-Nearest Neighbor–KNN (86, 88),
and Dynamic Bayesian Network–DBN (89).

Deep Learning
Deep learning is the common name of multi-layer artificial
neural networks–ANN. A multi-layer neural network includes
three layers: input layer (data features), hidden layer (processing
units), and output layer (classes). There are different deep
learning techniques that are used for fall risk assessment such as
convolutional neural networks–CNN (81, 82, 90), and recurrent
neural networks–RNN (82).

Knowledge-Driven Model
Both machine learning and deep learning models are data-
driven approaches. There is another approach that is known as
knowledge-driven model and it is based on probabilistic rule and
assumptions. The Farseeing fall risk assessment tool (FRAT-up)
is such kind of a model which determines the fall risk based on
the risk factors related to falls (91). It stores the characteristics
of a user in terms of risk factors and based on that knowledge it
generates an estimation of the fall risk of the user. However, this
model is not fully applicable for wearable sensor-based fall risk
assessment as it does not learn from the data.

The overall flow diagram of fall risk assessment based on
the wearable sensor data, medical history, fall records and
demographic characteristics are presented below in Figure 5.
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FIGURE 5 | Overall flow diagram of fall risk assessment.

CHALLENGES

Although major advances were made in the field of wearable
sensors in recent years, there are some challenges and limitations
of current work that must be overcome.

Fully Integrated System
Although wearable systems are able to acquire, transmit and
present data, further improvements in fully integrated wearable
systems can have great benefits to health monitoring. For
example, integrating all sensors in a single device, such as
pressure and inertial measurement units placed at the plantar
aspect of the foot in a single sole, can simplify the wearable system
hardware. Improvements to the types of sensors used for more
comprehensive monitoring, improving data acquisition, data
transmission and power consumption can allow for continuous
and long-term monitoring, which can be used to seamlessly
monitor an individual’s fall risk during daily activities.

Data Acquisition and Data Transmission
Most studies reviewed obtained pressure readings at a sampling
rate of 50Hz which is sufficient for walking (10); however a
higher sampling rate is required for other activities. For example,
a che sampling rate is required for activities such as running
or cycling, stair ascent and stair descent (92). Although falls
commonly occur during activities such as turning or walking on
uneven surfaces, activities which require a higher sampling rate,
such as running, fast walking, or stair use, are also associated with
higher fall risk (36, 93). However, this may increase the power
consumption of the device and reduce its operation time. As
such, mitigating the trade-off between power consumption and
accuracy remains a challenge. Another challenge using wearable
devices for daily activity gait analysis is the data transmission
range. Most existing devices employ Bluetooth technology, which
means that the device receiving data must be in close proximity.
Creating a lightweight and small-size data acquisition and storage
system that does not impact gait and allows for the device to be
used beyond a short range from a mobile device or a computer

is a challenge that if overcome, can be very beneficial for gait
analysis using wearable devices. Real-time data transmission
can also allow for real-time monitoring of the acquired data.
Improvements in data analysis and feedback techniques can
improve real-time health monitoring using wearable devices.

Standardization and Consistency
Regarding fall risk assessment, the parameters used vary greatly.
A lack of standardization of parameters may make clinical
determinations and comparisons from the data acquired from
wearable systems more difficult. Regarding insole-based systems,
there is great variability in terms of sensor size, number, and
placement, which may also lead to difficulties in monitoring
and comparing clinically relevant parameters, as variations
among devices result in diverse foot regions being investigated
in PPD analyses. Therefore, research should be done with a
standard protocol and a proper datamanagement tomaintain the
consistency among fall-related studies.

Insufficient Sample Size
In order to develop an efficient classification or prediction model
for falls, a database with a large number of participants is
required. However, due to the requirement of continuous data
collection and a long follow-up period, collecting data from
a large number of participants becomes time-consuming and
costly. As a result, most of the studies had small sample sizes
(mostly < 100 participants). This small sample size may result in
overfitting of the final classificationmodel. Moreover, insufficient
positive samples in comparison to the total sample size may lead
to distorted models.

Generalizability
Since most devices reviewed have tested the accuracy of risk
assessment of fall detection in a small sample, it is unclear if
the results are generalizable. There is a need to test developed
devices on larger sample sizes to ensure the device can be used
by the general population. Moreover, using a large sample size
that is diverse with regards to age, sex and fall history, can
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allow for devices to be used by a greater number of individuals.
Designing devices that can be used by individuals of varying
health conditions as well as individuals with different shoe sizes
or limb proportions, can be beneficial and is currently an area in
need of improvement.

Quality of Data
The majority of data presented in the fall studies are generated
through experiments where falls are usually simulated in
controlled environments. As a result, these data may not
accurately reflect real-life conditions. Moreover, real datasets
related to fall patterns of older adults with a standardized
protocol are not readily available, which is a limitation in
proceeding further with fall risk assessment research. Therefore,
developing a daily-life continuous wearable monitoring system
with a user-friendly design is important to ensure the quality of
data for fall-related research.

User Considerations
Although user considerations regarding comfort, size and
flexibility of wearable systems have taken high priority in existing
works, there is room for further improvement. Several existing
smart insoles are not customizable to the shoe size of the user,
and as such are validated using individuals of the same shoe size.
Ensuring that insoles are customizable, such as by using materials
that are trimmable, can ensure the sole fits appropriately for the
user. This is important as an incorrect sole size may result in

the sensors not being placed under the anticipated foot regions.
Ensuring all wiring is covered and sufficient padding exists for
a comfortable device is a challenge, as padding can affect the
force distribution in the case of insoles. One benefit of using
small and low-cost sensors is the affordability that is translated
to the user. Through advances in wearable technologies, smart
insoles and inertial sensors for fall risk can be produced at larger
quantities to further reduce the end cost to the user. Regarding
both IMUs and insole-based systems, it is important for the
system to be easy to use, such as by having systems in a plug and
play format. Developing graphical user interfaces that are simple
enough for the user, while improving biofeedback for the user to
make behavioral changes to reduce fall risk are also areas in need
of further research.

Research challenges associated with fall risk assessment with
wearable insole-based and inertial-based devices are presented
below in Figure 6.

FUTURE RESEARCH PERSPECTIVES

Additional research in the field of wearable sensors for fall risk
assessment and fall detection can allow for more meaningful
advances in the field to be made. One area of future work can
include the strategic combination of the reviewed technologies.
For instance, incorporating several diverse sensor types, such
as PPG, EMG, temperature, pressure and inertial sensors in
a single device can lead to a more comprehensive activity

FIGURE 6 | Research challenges associated with fall risk assessment using wearable insole-based and inertial-based devices.
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monitoring device (10). Employing sensor fusion techniques may
also lead to meaningful associations among diverse parameters.
Standardizing the placement of sensors and the parameters
investigated in future works can allow for more meaningful and
clinically relevant comparisons and analyses to be made.

As an individual’s fall risk can be affected by several factors
such as age, sex, ethnicity, medical conditions, determining which
parameters are most relevant for specific populations can lead
to more efficient analyses of fall risk in diverse populations.
Therefore, constructing a public database with a standardized
protocol could help in comparing the results from a new system
and reuse the data for further in-depth analysis.

The hardware and computational resources for a fall risk
assessment system can be a crucial factor for continuous and
long-term communication and monitoring. Therefore, high-
performance hardware support is required with an efficient
algorithm to handle large and complicated data efficiently. On
the other hand, high-performance hardware typically requires
more power which is also one of the most critical factors to be
considered while developing a wearable system. Therefore, to
build a balanced system, the power requirement of the system
should be minimized by utilizing advanced power-efficient
electronics and power sources. Energy harvesting can be an
alternative to solve this issue.

Finally, incorporating personalized biofeedback in a user-
friendly manner can be useful in future systems, as users
would be able to make corrective behavioral changes to reduce
their risk of falling based on feedback from their analyzed
activities. With the integration of internet of things (IoT)
with wearable sensor technology, it would be possible to
implement this personalized biofeedback fall application. It
would enable the execution of advanced learning algorithms
to effectively analyze complicated fall-related data in real time.
The edge, fog, and cloud layers of an IoT architecture would
be able to provide processing, storage, data management, and
decision (prediction, prevention, and decision) for fall cases.
In addition, incorporation of deep reinforcement learning
will expand assessment alternatives with respect to different
environments, while preserving robustness, accuracy and
data privacy.

CONCLUSIONS

In recent years, fall risk assessment is gaining prominence
with the realization that falls require significant medical

attention and can pose huge financial and social burdens.
Development of an effective low-cost, user-friendly, wearable
sensor-based fall risk assessment tool combined with advanced
wireless communications and machine learning algorithms can
significantly advance fall-related studies (clinical and non-
clinical). In this article, the recent and the most popular
wearable technologies developed for fall risk assessment and
fall detection were reviewed. Therefore, we mainly emphasized
different proposed inertial sensor-based and insole-based systems
and did a comprehensive survey as these two are the most
common and reliable wearable systems for fall-related studies.
While performing this survey, we also took into account
the publications that mainly focused on real-time monitoring.
Although the focus of this article is on inertial sensor-based
and insole-based systems which examine gait characteristics to
assess fall risk, other wearable technologies were also reviewed.
In addition, we included a brief review on different fall risk
assessment and modeling techniques in order to provide an
overview of a complete wearable fall risk assessment system. By
addressing the key points of existing technologies, challenges to
overcome as well as future research perspectives, it is expected
that the information in this article can be used to gain a
thorough understanding of existing wearable sensor technologies
and to improve future wearable devices developed for fall
risk assessment.
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