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Abstract: Chitosan is a linear polysaccharide produced by deacetylation of natural biopolymer chitin.
Owing to its good biocompatibility and biodegradability, non-toxicity, and easy processing, it has
been widely used in many fields. After billions of years of survival of the fittest, many organisms
have already evolved a nearly perfect structure. This paper reviews the research status of biomimetic
functional materials that use chitosan as a matrix material to mimic the biological characteristics
of bivalves, biological cell matrices, desert beetles, and honeycomb structure of bees. In addition,
the application of biomimetic materials in wound healing, hemostasis, drug delivery, and smart
materials is briefly overviewed according to their characteristics of adhesion, hemostasis, release,
and adsorption. It also discusses prospects for their application and provides a reference for further
research and development.
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1. Introduction

Chitin (CT), the second most abundant natural polysaccharide on earth, after cellulose,
is a major structural component in the exoskeletons of a variety of organisms, including
protists, diatoms, sponges, arthropods, molluscs, insects, and arachnids, especially seafood,
such as shrimp and crab [1–5]. Traditionally, CT was isolated on a large scale from the
exoskeletons of fungal organisms and crustaceans. Its extraction includes the chemical
method, microbial fermentation, and bioenzymatic hydrolysis [1,6,7]. Chitosan (CS), a
deacetylated derivative of chitin, has net cationicity and a variety of functional groups,
which can form electrostatic complexes or multilayer structures with other negatively
charged substances or natural polymers. In recent years, it has been widely used in many
fields, such as tissue engineering, wound healing, drug transportation, adhesives, and
adsorption materials, due to its good biocompatibility and biodegradability, safety and
non-toxicity, broad-spectrum antibacterial properties, and hemostasis. Additionally, it is
easy to process it into gels, membranes, nanofibers, stents, and other forms [8–14].

Bionics is an emerging discipline that studies the structure, function, and optimization
of biomaterial systems through the intersection of biology, chemistry, and physics. It uses
active substances derived from nature to design various structural and functional materials
through the principle of bionics. In recent years, it has become a rapidly developing
research field [15–17]. In most cases, bionics does not mean directly copying the structure
of biological materials; instead, guiding principles are extracted from biological systems
for the artificial synthesis of functional materials with relevant characteristics [18–20].
This review focuses on the imitation of unique structures and functions of some natural
organisms, such as bivalves, biological cell substrates, desert beetles, and honeycomb
structures of bees, and the preparation of functional materials with related properties
and their derivatives, using CS as the matrix material (Figure 1). The applications of
biomimetic materials in wound healing, hemostasis, drug delivery, and smart materials
were reviewed according to their unique characteristics of adhesion, hemostasis, release,
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and adsorption. Meanwhile, to better understand the role of CS in biomedicine, tissue
engineering, adsorption materials, and other fields, the prepared CS-based biomimetic
materials were briefly summarized according to their forms, including scaffold, hydrogel,
film, and composite material (Table 1).
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Figure 1. The chitosan-based biomimetic materials and the forms of material prepared.

Table 1. Proposed applications of chitosan-based materials based on forms.

Forms Composites Applications Ref.

Scaffold

CS, porous poly(ε-caprolactone) (PCL), bioactive glass (BG)
polydopamine (PDA) bone tissue engineering [21]

CS, graphene oxide (GO) bone tissue engineering [22]

CS, poly (L-lactic acid) aligned microfibrous bundle bioengineering [23]

CS, poly (methyl methacrylate-co-methacrylic acid)
(P[MMA-co-MAA]), carbodiimide-crosslinker bone tissue engineering [24]

CS, honeycomb porous carbon (HPC), nano-sized hydroxyapatite
(nHA), bioengineering [25]

Hydrogel

CS, catechol biomedical fields [26]

CS, CS-methacrylate (CS-MA), dopamine (DA), N-methylol
acrylamide (NMA) wound healing [27]

CS, HBC, DOPA wound dressing [28]

CS, DA chloride wound healing [29]

CS, catechol biomedical fields [30]

CS, catechol biomedical fields [31]

tetra-succinimidyl carbonate polyethylene glycol (PEG-4S),
thiol-grafted mussel inspired catechol conjugated chitosan (CSDS) wound healing [32]

CS, methacrylate modified CS, gelatin wound healing [33]

CS-c, thiolated pluronic F-127 tissue engineering [34]

3, 4-dihydroxyhydrocinnamic acid glycol chitosan(g-CS), CS catechol
(CS-c) biomedical fields [35]

CS, catechol, diatom biomedical fields [36]
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Table 1. Cont.

Forms Composites Applications Ref.

Hydrogel

chitosan quaternary ammonium salt (HTCC), oxidized
dextran-dopamine (OD-DA) wound healing [37]

glycol chitosan (GC), ciprofloxacin (Cip), PDA nanoparticles (NPs) wound healing [38]

hydroxybutyl chitosan (HBC),L-dopamine (L-DOPA), ε-poly-L-lysine
(EPL) wound healing [39]

CS-C, β glycerol phosphate (β-GP), oyster peptides (OP) wound dressing [40]

hydrocaffeic acid (HCA)-CS, iron oxide (γ-Fe2O3) MNPs biomedical fields [41]

CS, oxidized hyaluronic acid (HAox) catechol terpolymer, Fe wound dressing [42]

CS, collagen biomedical fields [43]

CS, gelatin, compounded calcium phosphate (CCP) bone tissue engineering [44]

combiningcarboxymethyl chitosan (CMCh), amorphous calcium
phosphate (ACP) bone tissue engineering [45]

Film

CS, layered double hydroxides (LDHs), materials design [46]

CS, CaCO3, Al2O3 alumina platelets hybrid materials [47]

CS, PDA, silk fibroin nanofibers (SF) biomedical fields [48]

CS, delignificated nano-cellulose (DNLC), MoS2 materials [49]

CS, HCA, BGNP, catechol biomedical fields [50]

CS, alumina sheets bionanocomposite [51]

CS, montmorillonite (MTM) bionanocomposite [52]

O-carboxymethyl CS (CCS), MMT fireproof materials [53]

CS, MMT fireproof materials [54]

CS, poly (vinyl acetate) (PVAc), tetracycline (TC) biomedical fields [55]

CCS, 2-methylacrylloxyethyl phosphorycholine (MPC), PDA,
GRGDY peptide biomedical fields [56]

CS, MTM, metal ions bionanocomposite [57]

CS-gelatin (C:G), anodic alumina molds (AAM) bone tissue engineering [58]

CS, poly (vinylidene fluoride) (PVDF) wastewater treatment [59]

CS, poly (ethylene glycol) diglycidyl ether (PEGDGE, Mn = 500) glycoproteomics [60]

Others

CS-c, iron oxide nanoparticles (IONPs) biomedical fields [61]

carbon nanotubes (CNT), carboxymethyl CS, PDA efficient adsorbents [62]

CS, Fe3O4, PDA efficient adsorbents [63]

CMC, Fe3O4, PDA efficient adsorbents [64]

CS, CaCl2, Na2HPO4, bone tissue engineering [65]

CS, hydroxyapatite (HA), heavy metal removal [66]

CS, cis-butenediolic acid (maleic acid, MAc) biomedical applications [67]

CS, fragments of human collagen I biomedical fields [68]

CS, iron chloride hexahydrate (FeCl3·6H2O) microwave absorbing [69]

CS, HCL, KOH absorbing materials [70]

CS, aminomethyl phosphate, Ti4+ absorbing materials [71]

CS, hydroxyl-functionalized hexagonal boron nitide (OH-BN) environment-friendly
materials [72]
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2. Biomaterials Imitating Bivalves
2.1. Imitation Mussel Adhesive Material

Marine mussel organisms possess a solid structure to enable strong, persistent adhe-
sions to various materials in humid environments. It is mediated by a mussel-foot-protein
(MFPS) sequence structure containing a large amount of 3,4-dihydroxy phenyl-L-alanine
(DOPA) [73–75]. The catechol group is critical to its adhesion mechanism and is considered
an ideal candidate for constructing solid matrix adhesion materials [46]. The correspond-
ing CS-catechol conjugate (CS-C) has antifluid adhesion properties and hemostatic abil-
ity [76,77]. It can be used as bio-printing materials [78], drug delivery libraries [79], and for
nanoparticle surface functionalization [80].

2.1.1. Hemostatic and Tissue Adhesive Material

CS-C, inspired by the mussel-adhesive protein, is the closest mimic of mussel adhesion
proteins. It was obtained by grafting catechol derivatives to the amino groups of the CS
backbone. In addition, CS-C has been widely exploited as general hemostatic materi-
als, adhesives, and nano-particle composites due to its inherent property of immediate
complexation with serum proteins. Shin et al. developed self-sealing hemostatic needles
and adhesive coatings. The surface of the needle was coated with partially crosslinked
catechol-functionalized CS, which could immediately prevent partial bleeding of the injec-
tion and may therefore help to prevent complications associated with bleeding in more
clinical settings [26]. Combined with the characteristics of biofilms, Han et al. developed a
novel dual bionic adhesive hydrogel (DBAH) by free radical polymerization. Specifically,
methacrylate (CS-MA), dopamine (DA), and N-methylol acrylamide (NMA) were grafted
on CS molecules (Figure 2). Compared with the conventional commercial medical adju-
vants, these hydrogels presented excellent hemostatic capability under wet and dynamic
motion in vivo [27]. Zhang et al. [28] prepared a hydroxybutyl chitosan-CS-dopamine
composite hydrogel with the dopamine self-polymerization method, which was used to
dress in vitro hemostatic wounds. The results showed that the composite hydrogel had
temperature sensitivity, low hemolysis rate, and a short blood clotting time. Also inspired
by MFPS, Han et al. synthesized a series of CS-grafted polypeptide copolymers that showed
good biodegradability, low cytotoxicity, and good hemostatic properties, which could also
promote the healing of skin wounds and fractures [29]. Kim et al. [30] investigated the
enhancement of mucoadhesion properties of CS by catechol coupling. The retention ability
of CS-C in the gastrointestinal tract was improved by the formation of irreversible catechol-
mediated crosslinking with mucin. Inspired by the current obstacles in oral cavity drug
delivery, Ryu et al. developed porous spongy-like adhesive materials, a freeze-dried form
from the CS-C solution called “Chitoral”. Chitoral instantly dissolved upon contacting with
saliva in the oral cavity and then formed intermolecular complexes with oral mucins, which
were rapidly transformed into an adhesive hydrogel-like material through the synergistic
action of covalent cross-linking and physical entanglement [31]. Based on the previous
research [81,82], Zeng et al. [32] integrated various functions of other materials to design
an injectable double cross-linked hydrogel adhesive, based on tetra-succinimidyl carbonate
polyethylene glycol (PEG-4S), and thiol-grafted mussel inspired catechol conjugated CS
(CSDS). Related performance evaluation results showed that the mechanical and adhesion
properties of double-crosslinked hydrogel have been significantly improved. He et al.
fabricated an injectable two-component hydrogel prepared from catechol and methacrylate
modified CS/gelatin to solve the current challenges faced by medical adhesives [33]. In-
stantaneous gelation is required for the practical applications of CS-C as tissue adhesives.
Ryu et al. [34] prepared a temperature-sensitive injectable hydrogel with high adhesion
by mixing CS-C with thiolated Pluronic F-127. The addition of Pluronic F-127 effectively
shortened the gelation time and improved the adhesion property of CS-based hydrogel,
which was expected to be used in tissue engineering adhesives and antibleeding materials.



Mar. Drugs 2021, 19, 372 5 of 21
Mar. Drugs 2021, 19, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 2. Schematic illustration of design strategy of an engineered biofilm and mussel-inspired dual-bionic adhesive hydro-
gels (DBAH) and its application for sealing hemostasis and wound healing. (a) The structure of polysaccharide intercellular 
adhesin (PIA), derived from biofilm, and DOPA, derived from mussel protein, which play a key role in wet adhesion; (b) A 
biometic biopolymer chitosan, grafted with methacrylate (CS-MA) from PIA; and dopamine, a catecholamine containing a 
catechol group of DOPA, was conjugated with NMA for hydrogel formation; (c) Schematic illustration of strong underwater 
bioinspired adhesion base on the self-repelling water function of CS-MA. (d) The multifunctional properties and potential 
application in in vivo hemorrhage and diabetic wound healing with antibacterial performance. Reproduced with permission 
from [27], Copyrighter Elsevier 2020. 

Figure 2. Schematic illustration of design strategy of an engineered biofilm and mussel-inspired dual-bionic adhesive
hydrogels (DBAH) and its application for sealing hemostasis and wound healing. (a) The structure of polysaccharide
intercellular adhesin (PIA), derived from biofilm, and DOPA, derived from mussel protein, which play a key role in wet
adhesion; (b) A biometic biopolymer chitosan, grafted with methacrylate (CS-MA) from PIA; and dopamine, a catecholamine
containing a catechol group of DOPA, was conjugated with NMA for hydrogel formation; (c) Schematic illustration of strong
underwater bioinspired adhesion base on the self-repelling water function of CS-MA. (d) The multifunctional properties
and potential application in in vivo hemorrhage and diabetic wound healing with antibacterial performance. Reproduced
with permission from [27], Copyrighter Elsevier 2020.
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Despite its versatility, the practical application of CS-C in clinical practice is limited
because it is a highly positively charged polymer that can cause increased severe protein
adsorption and trigger an immune response in the body [26,83]. To ameliorate the ad-
verse immune response between polymer materials and proteins, Park et al. proposed a
catechol-conjugated glycol CS hemostatic hydrogel inspired from mussel adhesive proteins
and compared them with non-glycol CS-C hydrogels to evaluate their immune response,
cytotoxicity, adhesion properties, and hemostatic ability. The results showed that glycol
CS-C significantly attenuated the immune response. However, the tissue adhesion and
hemostatic ability of glycol CS-C were not dramatically improved, and it was speculated
that the finding was likely due to the antibiofouling effect of the ethylene glycol group
and the reduction of immune cell adhesion [35]. Although significant progress has been
made in bioelectronics research in recent years, it is still challenging for self-adhesive
bioelectronics to adhere to human tissues and achieve signal detection without external
aids. So far, there are only a few reports on self-adhesive bioelectronics, and they are
primarily limited to collecting signals on the skin. Applications such as tactile sensors and
implanted neural interface electrodes have not been reported. Introducing self-adhesion
into currently available bioelectronic materials remains difficult due to the complex appli-
cation environment and strict requirements, including biocompatibility, biological stability,
and wet adhesion ability in the body fluid environment. Xie et al. [84] proposed an ap-
proach to regulate the dynamic equilibrium mechanism of phenolquinone redox based
on a mussel-like strategy and developed a series of new biomedical hydrogels endowed
with bioelectronic self-adhesion and other functional properties, such as super mechanical,
self-repair, transparency, antibacterial, high-temperature resistance, frost resistance, and
underwater adhesion (Figure 3). Kim et al. [36] provided a new strategy to design marine
biomaterial hydrogels synthesized from catechol, CS, and diatom. It was highly stretchable
and self-healing and can be utilized for various applications, including stretchable power
sources, wearable electronics, and health monitoring systems with artificial intelligence.
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2.1.2. Drug Delivery and Active Compound Release Material

The application of hydrogels in clinical wound treatment-related fields has been re-
ported frequently, but the exploration of intelligent hydrogels that can respond quickly
and accurately to complex and multiple stimuli is still a promising strategy. Hu et al. [37]
reported a novel design strategy for a double-crosslinked smart hydrogel for local release
treatment of bacteria-infected diabetic wounds. First of all, they completed the first cross-
linking to prepare hydrogel by a Schiff base reaction between the amino groups (-NH2) in
the CS quaternary ammonium salt (HTCC) and the aldehyde groups (-CHO) in the oxi-



Mar. Drugs 2021, 19, 372 7 of 21

dized dextran-dopamine (OD-DA). The second step of cross-linking was completed by the
formation mechanism of catechol-catechol adducts in hydrogels [85]. Finally, based on their
design strategy, they used a simple hybrid approach to impart antimicrobial and angiogenic
efficacy to the hydrogels by loading AgNPs with the antiangiogenic drug deferriamine
(DFO). To combat bacterial infections and achieve safe and controllable wound healing,
Gao et al. mixed glycol CS (GC) with polydopamine (PDA) nanoparticles (NPs) loaded
with ciprofloxacin (Cip) to produce a PDANP-Cip/GC injectable hydrogel. Under near-
infrared light irradiation, this gel cooperated with Gel-Cip to accelerate Cip release and
activated photothermal PDA NPs to achieve an efficient sterilization effect and promoted
wound healing. Experimental analysis has confirmed its biological safety in vivo [38]. In
view of the shortcomings of previously prepared thermosensitive hydroxybutyl CS (HBC)
hydrogel carrying antibiotics and growth factors, Tian et al. [39] introducedL-DOPA to
improve the adhesion and mechanical properties of HBC on wet tissue surfaces. Addi-
tionally, ε-Poly-L-lysine (EPL), an antimicrobial peptide, was introduced to improve its
antimicrobial ability in a neutral environment and reduce the potential harm caused by
the introduction of antibiotics. By taking advantage of EPL, (L-DOPA)-(EPL)-HBC hydro-
gels (eLHBC) displayed highly efficient antimicrobial activity against Escherichia coli and
Staphylococcus aureus. The bone marrow mesenchymal stem cells (BMSCs) encapsulated
into eLHBC could secrete growth factors and promote the migration of fibroblasts. The
potential biomaterials of BMSCs ⊂ eLHBC could promote wound healing and skin tissue
regeneration (Figure 4). Zhang et al. [40] prepared a CS-based thermo-sensitive hydrogel
loading oyster peptide (CS-C/OP/β-GP) with a porous three-dimensional network and
rapid hemostasis effect by combining catechol-functionalized CS and oyster peptide (OP).
The safety evaluation confirmed that the CS-C/OP/β-GP hydrogel was non-cytotoxic to
L929 fibroblasts. In vitro experiments showed that CS-C/OP/β-GP hydrogel could absorb
a large amount of water from plasma to concentrate the blood due to its porous structure,
polycationic characteristics, and good water absorption capacity, thereby achieving rapid
hemostasis. It is speculated that CS-C/OP/β-GP hydrogel had good application prospects
in the field of medical hemostasis.

2.1.3. Functional Composite Material

The properties of mussels and CS molecules can be exploited to obtain composite
materials with tunable properties. To explore the potential of catechol-functionalized CS,
Ghadban et al. [41] used metal-catechol coordination to design pH-sensitive and magnetic-
responsive hydrogels and then incorporated iron oxide (γ-Fe2O3) MNPs into the formula-
tion to expand its functions. This strategy made the gel magnetically responsive, increased
the mechanical response, and enabled the control of drug release kinetics. Ni et al. prepared
a new type of catechol-CS (CCS)-iron oxide NP (IONP) composite material that had a firm
surface affinity and significantly improved immobilization under optimal conditions. The
loading capacity and remaining activity of the enzyme provided an improved platform
for bio-macromolecule immobilization [61]. Zeng et al. [62] combined mussel excitation
chemistry and the Michael addition reaction to modify the surface of carboxymethyl CS on
multiwalled carbon nanotubes (CNTs) to produce CNT-PDA-CS. Dopamine (DPA) contains
a large number of active groups, such as catechol, amino, and (im)amino groups. Under
mild alkaline conditions, polydopamine films can be formed on various inorganic and
organic materials through spontaneous oxidation polymerization [86,87]. Mussel-inspired
polydopamine (PDA)-related materials have attracted interest in the making of multifunc-
tional materials. Wang et al. [63] fabricated a novel magnetic hybrid nano-biosorbent
(Fe3O4@PDA@CS) via Schiff base reaction, which had a strong adsorption capacity and
efficient removal of dyes and metals. Lei et al. [64] prepared Fe3O4@PDA/CMC aerogel by
the Schiff base reaction between PDA and CMC using a simple method of introducing the
polydopamine Fe3O4NPS surface using a mussel-inspired chemistry coating strategy. The
experimental results showed that Fe3O4@PDA/CMC aerogel adsorbent had excellent mag-
netic properties and high adsorption capacity (Figure 5). Therefore, it was a high efficiency,
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economical price, and environmental protection material expected to remove dyes from
an aqueous solution. Hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has been successfully used
in many biomedical fields due to its unique biological activity. The bioactive properties
of HAP and the enhancement of the mechanical strength of CS provide a new approach
for the treatment of damaged hard tissue. Szatkowski et al. [65] selected calcium chloride
(CaCl2) and disodium hydrogen phosphate (Na2HPO4), which are rarely described as
precursors of mineral phases in CS composites in literature, as sources of calcium and
phosphorus, or CS as the organic phase to prepare HAP/CS composites. By comparing
the HAP/CS (mineral and organic) biomaterials prepared in different proportions, they
found that the HAP/CS ratio of 85/15 had the best morphological characteristics (high
specific surface area and porosity). In addition, energy dispersive spectrometer (EDS)
analysis showed that the precipitated HAP had a calcium/phosphorus ratio similar to that
of natural minerals, which confirmed the feasibility of its synthesis process. Li et al. [21]
proposed a feasible and effective covalent method for immobilization of CS onto the surface
of porous poly(ε-caprolactone) (PCL)/bioactive glass (BG) composite scaffolds using a
mussel-inspired PDA coating. The experimental results showed that the scaffolds had obvi-
ous advantages compared with the simple physical adsorption CS scaffold, with excellent
potential in orthopedic repair.
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Figure 4. (A) Synthesis scheme of eLHBC conjugate via the binding of carboxyl groups ofL-DOPA and EPL to the NH2

groups of HBC. (B) The formation of eLHBC at 37 ◦C. BMSCs encapsulated into eLHBC solution at 4 ◦C and eLHBC as 3D
BMSCs culture matrix at 37 ◦C (BMSCs ⊂ eLHBC). The BMSCs ⊂ eLHBC injected with a syringe on the dorsal wound site
of rats and used as wound dressing. Reproduced with permission from [39], Copyrighter Elsevier 2021.
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permission from [64], Copyrighter Elsevier 2021.

2.2. Imitation Pearl Layer Structure Material

Biomineralization refers to a biological process that forms highly ordered biological
materials, such as shells, pearls, enamel, or bones, through the interaction of specific
surface binding at the organic-inorganic interface. Because of their specific combination,
biominerals have a hierarchical layered structure, as well as mechanical and physical
properties, which are more suitable for diversified functional purposes. Nacre is a type of
mineralized tissue deposited by many mollusk species (Bivalves and cephalopods) to build
the inner layers of their shells. Mature nacre consists of thin layers (~30 nm) of matrix and
thicker layers (~500 nm) of the calcium carbonate mineral aragonite (lamellae). The matrix
layer accounts for about 5%, and calcium carbonate accounts for about 95%. Although
proteins account for a small part of the content of biominerals, they directly participate in
controlling the growth of biological crystals, thereby enhancing the mechanical properties
of biominerals [47,88–92]. In recent years, researchers have used a variety of innovative
techniques to simulate the nacreous layer microstructure and produce materials with good
mechanical properties.

2.2.1. Composite Film Material

Through the bottom-up continuous deposition of organic and inorganic layers under
ambient environmental conditions, Bonderer et al. [93] obtained layered hybrid films com-
bining high tensile strength and ductile behavior. Ma et al. successfully deposited CS and
PDA on silk fibroin nanofibers through layer-by-layer self-assembly (LbL) technology to
modify them to have antibacterial ability. Surface morphology and composition analyses
of the cell-compatible LbL structural film confirmed successful deposition. The wet tensile
modulus of the film increased from 2.16 MPa (pure silk fibroin film) to 4.89 Mpa [48]. Using
freeze induced assembly and hot-pressing methods, Chen et al. [49] toughened and modi-
fied delignificated nano-cellulose (DNLC) by the synergistic effect of CS and MoS2 and pre-
pared the high-performance ternary lignocellulose nacres. Additionally, Almeida et al. [50]
proposed multifunctional (MF) CS/hyaluronic acid (HA) LbL films developed by the dip-
coating technology. They alternately combined the inorganic nanoparticles and bioactive
glass nanoparticles (BGNP) with catechol-functionalized biopolymeric layers CS and HA
to obtain MF films, which could be used in bone tissue engineering because of their ability
to create an environment compatible with osteogenesis (Figure 6). Abba et al. [51] used
CS as the matrix material (mortar) and alumina sheets as the reinforcing particles (brick)
to prepare the nacreous microstructured mixed film material. The effects of inorganic to
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organic matter ratios and relative humidity on mechanical properties were studied. The
results showed that the relative humidity of the environment had a significant effect on
the measured mechanical properties. Yao et al. [46] prepared brick-and-mortar CS-layered
dihydroxide hybrid films by sequential dipping coating and LbL technology, which had
high mechanical properties and tensile strength of 160 MPa (higher than that of natural
brick-and-mortar films). Subsequently, they developed a novel approach for manufactur-
ing CS-montmorillonite (MTM) biomimetic composite membranes with a self-assembly
method caused by vacuum filtration or water evaporation. The hybridized CS-MTM
building blocks were arranged into a pearl layered structure composite material. The
film had high performance in terms of mechanical properties, light transmittance, and fire
resistance [52].
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solutions to produce LbL coatings with 11 bilayers, i.e., 22 layers; 5×: the number of repetitions required for the MF group
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2.2.2. Nanocoatings and Other Composite Material

Using carboxymethyl CS (CCS) and MMT, Xie et al. [53] fabricated super-efficiency
fire-safe nanocoating via one-step self-assembly, which showed well-arranged nacre-like
microstructure and high transparency. Fang et al. demonstrated a convenient approach to
fabricate a nacre-mimetic flame-retardant system by the LbL method using MMT as matrix
and CS as mortar to simulate the structure of the nacreous layer. The prepared paper had
excellent flame retardant properties [54]. It is noteworthy that visualization of the injured
tissue may allow prompt and appropriate wound care in burn-injured patients. Based on
the previous reports [94], Saito et al. [55] loaded antibiotics (tetracycline, TC) on nanosheets
and developed TC nanosheets with high transparency and fluorescence that could help
monitor burn care management (Figure 7). The prepared TC-nanosheet was composed of
three layers (LbL/TC/PVAc): LbL made of CS and sodium alginate (SA) as a bottom layer,
TC as an antibiotic layer, and poly(vinyl acetate) as a hydrophobic barrier layer.
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PVA and reversed onto the substrate. (iv) TC solution deposited on nanosheet. (v) After drying to make a TC layer, PVAc
was spin coated onto the new layer. Reproduced with permission from [55], Copyrighter Elsevier 2012.

The versatile technique used to construct the antibiotic-loaded nanosheets is applicable
to other drugs with appropriate solubility with that of membrane components. Based on the
principle of bio-adhesion/anti-adhesion, Yuan et al. [56] developed an organ-like biological
coating chip with self-repair and antioxidant functions through LbL self-assembly, which
was used for cell sorting, capture, and on-demand release. In this work, two coatings
with opposite functions on enhancing cell adhesion coatings were fabricated. Adherent-
enhancing coatings (CROD coatings) were prepared from oxidized alginate grafted with
carboxymethyl CS modified with RGD polypeptides, and an anti-adhesion coating (PANM
coatings) was prepared mainly from 2-methylacrylloxyethyl phosphorycholine (MPC).
Metal ions were introduced into the artificial nacre to form new chemical bonds and
reinforce the interface interaction. Chen et al. systematically studied the influence of
different metal ions on the binary system. It was found that different metal ions with
various sizes and charges would affect machine performances. Through the introduction of
Mg2+, the strength and toughness of MTM-CS ternary artificial nacre could reach 200 MPa
and 40 MJ m−3, respectively, and its toughness was 20 times that of natural nacre [57].
Combining the layered structure of brick-and-mortar and the biological mineralization
process, Zhang et al. [66] constructed a hydroxyapatite/CS (HA/CH)-layered composite
material to remove heavy metal Pb(II) from continuous flowing wastewater. The composite
material contained a microstructure similar to a plate tower; large pores between layers
facilitated the transfer of continuous flowing wastewater and the separation of adsorbent
and water. Ruan et al. designed an organic matrix composed of CS and cisbutenediolic
acid (maleic acid, MAc) to simulate the function of a nacreous matrix and then generated a
layered montmorillonite matrix of composite materials. Hydroxyapatite with a multiscale
hierarchical structure was synthesized using layered montmorillonite-CS composites as
precursors via a topotactic phase transformation process [67].
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3. Imitation Extracellular Matrix Material

The extracellular matrix (ECM) is important for guiding cellular development and
maintaining the desired phenotype. It is both the structural basis of cells and the source
of three-dimensional biochemical and biophysical signals that trigger and regulate cell
behavior [95–98].

3.1. Functional Cell Micro-Environment Material

Materials that can imitate the shape and function of natural ECM in vivo are being
developed for in vitro research in the field of cell micro-environment engineering [99–102].
Construction of functional tissues relies on the structural environment, cell–biomaterial
interactions, and incorporated biological signals [103]. In this sense, hydrogels can easily
adjust their physico-chemical (electrical charge and pore size) [104] and mechanical prop-
erties [105], which natively lead to cellular function. María et al. combined a hydrogel
backbone network composed of CS and hyaluronic acid with a terpolymer containing
catechol; this hybrid system had the advantage of the two polymers crosslinked with Fe to
form an interpermeable polymer network (IPN). When used as a wound dressing, this IPN
can constitute an ECM simulation platform with high cell affinity and bioactivity. Com-
bined with the controlled release of catechin, it promoted the tissue regeneration process
and contributed to wound healing [42]. Ewa et al. [68] modified the surface of CS fibers
with fragments of human collagen I (10–15 amino acids) by physical (water absorption
during electrospraying) and chemical (amide and peptide groups) activities to obtain a
complex of glycosaminoglycans (GAG) and peptides similar to those present in the cell
matrix (Figure 8). Subsequently, the effect of different modification methods on the fiber
was evaluated. Compared with physical modification, the results showed that the chem-
ical modification made the peptide evenly distributed on the fiber without changing its
shape. To promote the development of organ-on-a-chip and other physiologically-relevant
biomembrane fields, Rosella et al. [43] presented a microfluidic platform for the synthesis
of biomembranes during gelation and studied its role as an extracellular matrix support.
High-throughput studies on biomembranes were prepared with different biopolymer ma-
terials to characterize the relationship between the different conditions imposed on them,
thereby revealing their biological application potential.

3.2. Bone Tissue Engineering Material

Orthopedic biomaterials or coatings with ECM-like nano-features can induce ideal
interactions between bone tissue and the implant surface. CS-gelatin (G) composite ma-
terials have promising bone tissue engineering possibilities because they combine the
cellular adhesion of G with the antibacterial properties of CS [106–108]. Altuntas et al. [58]
prepared nanocrystalline CS:G films with ordered nanopore arrays that were developed
using anodic alumina molds via a drop-casting approach. Experiments demonstrated
that these nanopillared films had good bactericidal properties and the ability to induce
early osteogenic differentiation, making them a promising antibacterial coating material
for planting. Tangprasert et al. prepared a gelatin/CS/compounded calcium phosphate
(Gel:CS:CCP) hydrogel to simulate the extracellular matrix of calcified soft tissues and then
designed an ex-vivo model for evaluating tissue formation. The results showed that the
molecular structure and morphology of the self-organized hydrogel in Gel: CS: CCP (1:1:0.1)
was similar to the extracellular matrix formed by in-situ bone. Its physical and biological
properties enhanced cell viability and proliferation [44]. It was speculated that the remark-
able characteristics of CS and the ability of graphene oxide (GO) to refine and repair major
bone defects could induce and support bone tissue formation. To promote one novel scaf-
fold based on a natural compound of CS and GO, Dinescu et al. [22] explored the potential
of a new scaffold for tissue engineering applications and regenerative medicine. Drawing
lessons from the necessary support structure for tendon regeneration, Sundaram et al.
presented a CS hydrogel scaffold reinforced with a twisted poly(L-lactic acid) aligned
microfibrous bundle to mimic tendon extracellular matrix [23]. De Witte et al. [24] fabri-
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cated a biodegradable, osteoconductive, porous chitosan scaffold via the freeze-drying
method, synthesized poly(methyl methacrylate-co-methacrylic acid) nanoparticles, and
immobilized to the scaffold via carbodiimide-crosslinker chemistry. Fluorescence imaging
results showed that the nanoparticles were wholly retained in the scaffold for up to 4 weeks,
had good biocompatibility, and did not negatively affect human umbilical vein endothelial
cells (Figure 9). To find effective bone tissue regeneration materials based on mesenchymal
stem cells, Zhao et al. [45] developed an injectable or bio-printed carboxymethyl chitosan
(CMCh) and amorphous calcium phosphate (ACP) composite NP hydrogel (designated
CMCh-ACP hydrogel). It was the first to demonstrate that pH changes can be used to con-
trol the assembly of polymer-stabilized ACP NPs to form elastic hydrogels. Their findings
strongly suggested that CMCh-ACP hydrogels may be developed into novel scaffolds for
stem-cell-based bone tissue engineering.
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4. Imitation Desert Beetle Material

The Namib desert beetle can collect drinking water from fog-laden wind. This is
because the insect’s bumpy surface alternates between waxy hydrophobic concave areas
and non-waxy hydrophilic convex areas. The unique wettability of this pattern allows
it to capture and coalescence tiny water droplets in the fog in the hydrophilic bulge
area, then to the hydrophobic smooth area, and finally to the insect’s mouth [109–113].
Combining these characteristics with the advantages of polyvinylidene fluoride and CS,
Al-Gharabli et al. [59] achieved better separation performance of hybrid materials by adopt-
ing the method of “grafting”. The silicon alkyl modifier was used to fix CS on the surface
of the porous structure and internally. Hydrophilic CS can improve the permeability of
the membrane, imbue antifouling properties, and broaden the application range of the
new materials. This is the first example of a chemical combination of CS with active
polyvinylidene fluoride materials (Figure 10).
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5. Imitation Honeycomb Structure Material

Based on indepth research into biomimetic material preparation and application, the
honeycomb structure with the most tightly filled hexagonal holes in nature inspired to man-
ufacture controllable micro-structure materials. Yu et al. [114] developed massively manu-
factured bionic polymer wood with a controllable honeycomb microstructure by combining
traditional resin self-assembly and thermal curing. On this basis, Zhang et al. [60] prepared
a new ceramic/polymer composite with honeycomb structure using CS and Poly(ethylene
glycol) diglycidyl ether as precursors with a freezing casting method. The honeycomb struc-
ture effectively reduced steric hindrance between the material and glycopeptide (Figure 11).
Three-dimensional honeycomb porous carbon has excellent mechanical properties and a
particular surface area. Dai et al. exploited this property to prepare three-dimensional
CS/honeycomb porous carbon/hydroxyapatite composite material. The synthesized com-
posite scaffold had high porosity and specific mechanical strength similar to bone tissue
and could promote osteogenesis [25]. To further expand the application potential of CS,
Guo et al. [69] used it as the only combined source of carbon and nitrogen to controllably
prepare an inherent nitrogen-doped honeycomb-like carbon/Fe3O4 composite material
with favorable versatility. Notably, CS can spontaneously form a porous honeycomb-like
structure after gelation and carbonization, so the composite material exhibited good mi-
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crowave absorption properties. It also showed good ability to adsorb toxic metal ions
Cr(VI) and degrade water organic pollutants. Deng et al. reported nitrogen-containing
CS-based porous carbon microspheres (CPCM) with a honeycomb-like porous structure
and a unique spherical morphology. The feasible step-by-step strategy proposed by the
group under the conditions of HCl and KOH enabled the material’s structure to be precisely
adjusted. It was also a promising reusable adsorbent with a high regenerative capacity [70].
Zhu et al. [71] prepared aminomethylphosphonic acid (AMPA) chelated cross-linked CS
(CTSM@AMPA-Ti4+) composites with stable structure, low steric hindrance, and high Ti4+

loading. The material showed excellent selectivity and sensitivity to phosphopeptides
and dimensional hindrance, which could be used as a promising adsorbent for the enrich-
ment of phosphopeptides. To alleviate the increasingly severe environmental problems,
Zou et al. [72] reported a novel eco-friendly material with high thermal conductivity and
a honeycomb-like structure, which was composited by using the significant difference in
scales between the CS microspheres (CSM) and the hydroxyl-functionalized hexagonal
boron nitide (OH-BN) nanosheets. The novel heat-conduction materials were degradable,
quick to recycle, and had a broad market prospect.
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6. Conclusions

In this paper, the chitosan-based biomimetic materials based on the biological charac-
teristics of bivalves, cell matrices, desert beetles, and honeycomb structure of bees were
reviewed. Various forms of biomimetic functional materials (scaffolds, gels, films, and
others) based on chitosan have promising applications in the fields of biomedical and
adsorptive materials, but many challenges remain in this area. On the one hand, the
functional mechanism of some organisms has not yet been fully understood. For example,
the biomineralization mechanism of mollusks, such as shellfish, is not yet clear, and bionics
is still in its preliminary stages. On the other hand, the long-term biosafety of the prepared
materials is not yet clear, for example, whether the retention of the prepared materials
loaded with growth factors or drugs will pose a risk to normal tissue growth. Based on
the good biological properties and easy modification of chitosan, we believe that a better
understanding of the functional mechanisms and safety of the materials involved in the
above mentioned organisms, as well as the development of bionics, will greatly benefit the
design of intelligent and biosecurity chitosan-based biomimetic materials. We expect that
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this review will be truly beneficial to the work of aspiring researchers in the field of CS
bionics and its related applications.
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