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Resveratrol increases BRCA1 and BRCA2 mRNA expression in
breast tumour cell lines
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The phytochemical resveratrol, found in grapes, berries and peanuts, has been found to possess cancer chemopreventive effects by
inhibiting diverse cellular events associated with tumour initiation, promotion and progression. Resveratrol is also a phyto-oestrogen,
binds to and activates oestrogen receptors that regulate the transcription of oestrogen-responsive target genes such as the breast
cancer susceptibility genes BRCA1 and BRCA2. We investigated the effects of resveratrol on BRCA1 and BRCA2 expression in human
breast cancer cell lines (MCF7, HBL 100 and MDA-MB 231) using quantitative real-time RT–PCR, and by perfusion chromatography
of the proteins. All cell lines were treated with 30 mM resveratrol. The expressions of BRCA1 and BRCA2 mRNAs were increased
although no change in the expression of the proteins were found. These data indicate that resveratrol at 30 mM can increase
expression of genes involved in the aggressiveness of human breast tumour cell lines.
British Journal of Cancer (2003) 89, 168–172. doi:10.1038/sj.bjc.6600983 www.bjcancer.com
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Resveratrol is a natural phytoalexin compound found in grapes
and other food products. It has been found to possess
oncopreventive activity by inhibiting ribonucleotide reductase
(Fontecave et al, 1998) and cellular events associated with cell
proliferation and tumour initiation, promotion and progression
(Jang et al, 1997; Mgbonyebi et al, 1998). Resveratrol is a phyto-
oestrogen, binding to and activating the oestrogen receptors that
regulate the transcription of oestrogen-responsive target genes
(Gehm et al, 1997) by either binding directly to DNA, at oestrogen
response element (EREs), or by interacting with other transcrip-
tion factors, for example, Sp1 (Sun et al, 1998), bound to their
cognate sites on DNA (Bowers et al, 2000). Others have shown that
steady-state BRCA1 mRNA levels are elevated in response to
oestrogens in human breast cancer cells, and that BRCA2
expression is also regulated by oestrogens in human breast cancer
cell lines (Gudas et al, 1995; Spillman and Bowcock, 1996).

BRCA1 and BRCA2 are breast cancer susceptibility genes:
inheritance of one defective copy of either of the two genes
predisposes individuals to breast, ovarian and other cancers. The
contribution of these genes to the pathogenesis of breast cancer is
still unclear. No sporadic breast tumours have been shown to
harbour mutations in the coding sequence of BRCA1 or BRCA2
(Miki et al, 1994; Foster et al, 1996). In contrast to normal breast
epithelial cells, BRCA1 mRNA levels in tumours appeared to be
downregulated by methylation (Dobrovic and Simpfendorfer,
1997), while BRCA2 showed significant overexpression in sporadic
breast cancers (Bieche and Lidereau, 1999).

Here, we studied the effects of resveratrol on the expression of
BRCA1 and BRCA2 in human breast cancer cell lines at the
transcription level using quantitative real-time reverse transcrip-

tion (RT)– PCR, and at the translation level by perfusion
chromatography of the proteins.

MATERIALS AND METHODS

Cell cultures

MCF7 (Soule et al, 1973), MDA-MB 231 (Cailleau et al, 1974) and
HBL 100 (Ziche and Gullino, 1982) cell lines were purchased from
the ATCC (American Type Culture Collection, Manassas, VA,
USA). Cells were cultured, respectively, in RPMI 1640, Leibovitz’s
L15 and McCoy’s 5a medium (Life Technologies, Gaithersburg,
MD, USA) supplemented with 2 mM L-glutamine, 20 mg ml�1

gentamycin and 10% heat-inactivated FBS. Cells were grown in a
humidified incubator with 5% carbon dioxide (except for MDA-
MB 231 without CO2) at 371C. Insulin (0.04 U ml�1) was added for
MCF7 culture medium.

The ER status was checked in cell lines by immunocytochem-
istry with Centre Jean Perrin’s anatomopathologist. MCF7 were
found ER aþ /bþ , HBL 100 ER a�/bþ and MDA-MB-231 ER
a�/bþ .

Resveratrol treatment of cells and flow cytometry analysis

MCF7, MDA-MB 231 and HBL 100 cells were maintained in
medium supplemented with 10, 30 or 50 mm trans-resveratrol
(Sigma Chimie, St Quentin Fallavier, France) in DMSO for treated
cells. A cell control was performed with DMSO. Cells were
collected after 24, 48 or 72 h by trypsinisation and the DNA content
was assessed by flow cytometry according to Krishan’s (1975)
method. Each experiment was performed in triplicate.

Radiolabelling of cellular proteins

For cellular protein labelling, the cells were fed with 5 ml of medium
supplemented with 100 mCi [35S] methionine (1000 Ci mM

�1;
Amersham International, Bucks, UK) and incubated for 20 h at
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371C in a 5% CO2 atmosphere. Metabolic radiolabelling was
stopped by adding 10 ml cold PBS and cells were gently washed
twice with PBS at 41C. Labelled cells were solubilised in 750ml of
0.1 M Tris-HCl pH 7.1 containing 0.5% Nonidet P40 (NP 40;
Boehringer Mannheim, Germany), sonicated for 2 min in ice and
incubated at 41C for 30 min. The insoluble material was removed
by ultracentrifugation at 30 000 g for 30 min.

Purification of DNA-binding proteins by affinity
chromatography

The NP 40 cell lysates were loaded onto a POROS 20 HE (heparin)
media column (PerSeptive Biosystems, Framingham, MA, USA).
Proteins specifically bound to the gel were eluted with a gradient of
NaCl from 0.1 to 1 M in 20 mM MES pH 5.5. The flow rate was
5 ml min�1 with a BioCAD Sprint high-performance liquid
chromatography system (PerSeptive Biosystems, Framingham,
MA, USA) equipped with a fraction collector (Gilson, Middleton,
WI, USA). Fractions (0.5 ml) containing DNA-binding proteins
were collected and pooled. Radioactivity was measured by adding
10 ml of the collected fractions to 5 ml of scintillation cocktail
(Packard Ready Safe) and counting.

Isolation of BRCA1 and BRCA2 by affinity chromatography

BRCA1 or BRCA2 were immunoprecipitated from the previous
eluate by addition of 16 mg anti-BRCA1 polyclonal antibodies
(556445; GeneTex, San Antonio, TX, USA) or anti-BRCA2
polyclonal antibodies (C-19; Santa Cruz Biotechnology) with a
30-min incubation at 371C. The immunoprecipitate was isolated
after fixation on POROS A column (PerSeptive Biosystems,
Framingham, MA, USA) containing Protein A media and eluted
12 mM HCl/0.15 M NaCl, pH 2. Radioactivity of each 1 ml fraction
was measured as described previously.

Immune complex elution from the Protein A column gave the
amount of DNA-binding proteins that bound to anti-BRCA1 or
anti-BRCA2 polyclonal antibodies, and a ratio was calculated as
follows: 100� (d.p.m. of BRCA1 or BRCA2 eluted from Protein A/
d.p.m. of total DNA-binding proteins eluted from the heparin
column). All data were expressed as means7s.d. of three assays
(Hizel et al, 1999; Vissac et al, 2001).

RNA extraction and cDNA synthesis

Total RNA was isolated using TRIZOLs (Gibco BRL, Carlsbad, CA,
USA) according to the manufacturer’s protocol. Total RNA (1 mg)
was used for the synthesis of first strand cDNA using the First
Strand cDNA Synthesis kit (Amersham Pharmacia Biotech,
Uppsala, Sweden) following the manufacturer’s instructions.

Determination of BRCA1 and BRCA2 mRNA using
real-time quantitative RT– PCR

For BRCA1 and BRCA2 expression analysis, probes and primers
were designed so that they overlapped splice junction, thereby
avoiding the potential amplification of genomic DNA. The
sequence of forward primers, TaqMans probes and reverse
primers were, respectively, for BRCA1-exons (ex) 23/24 amplifica-
tion: 50-5566CAGAGGACAATGGCTTCCATG5586-30, 50-5588AATTG
GGCA GATGTGTGAGGCACCTG5613-30, 50-5646CTACACTGTCCAA
CACCCACTCTC5623-30; for BRCA1-ex 11/12 amplification: 50-4157A
AGAGGAACGGGCTTGGAA4175-30, 50-4177AAAATAATCAAGAAG
AGCAAAGCATGGATTCAAACTTA4214-30, 50-4236CACACCCAGAT
GCTGCTTCA4217-30; for BRCA2-ex 26/27 amplification: 50-9794CC
AAGTGGTCCACCCCAAC9812-30, 50-9818ACTGTACTTCAGGGCCG
TACACTGCTCAAA9847-30, 50-9895CACAATTAGGAGAAGACAT-
AAGACATCAGAAGC9870-30; for BRCA2-ex 12/13 amplification:
50-7120GAAAATCAAGAAAAATCCTTAAAGGCT7147-30, 50-7153AG-

AGCACTCCAGATGGCACAATAAAAGATCGAAG7184-30,50-7220GT
AATCGGCTCTAAAGAAACATGATG7195-30. All doubly labelled
probes, 18 S rRNA probe, primers plus TaqMan universal PCR
master Mix were obtained from Applied Biosystems.

Multiplex PCR was carried out in 96-well plates on cDNA. A
typical 25 ml reaction sample contained 12.5ml TaqMan universel
PCR Master Mix (dATP, dCTP, dGTP and dUTP, MgCl2,
AmpliTaqGold, Amperase uracil-N-glycolsylase (UNG)), 200 nM

of chosen BRCA1 or BRCA2 primers and TaqMans probes, 50 nM

of 18S rRNA primers and TaqMans probe. Thermal cycling
conditions were 2 min at 501C and 10 min at 951C followed with 40
cycles at 951C for 15 s and 601C for 1 min. Data were collected
using the ABI PRISM 7700 SDS analytical thermal cycler (Applied
Biosystems, Foster City, CA, USA).

Relative gene expression was determined using the comparative
CT (threshold cycle) method, which consists of the normalisation
of the number of target gene copies to an endogenous reference
gene (18S rRNA), designated as the calibrator (Fink et al, 1998).
The level of BRCA1-ex 23/24, BRCA1-ex 11/12, BRCA2-ex 12/13 or
BRCA2-ex 26/27 mRNA expression in each treated cell line was
then normalised to the result obtained in the untreated cells. The
amount of target, normalised to the 18S rRNA endogenous
reference is given by the formula: 2�DDCT. To guarantee the
reproducibility of mRNA determination, two independent total
RNA extractions were performed. Two independent RTs were
carried out for one RNA extraction, while only one was performed
for the second extraction. Each RT was analysed in triplicate and
expressed as a mean7s.d. (Favy et al, 2000).

RESULTS

Cell proliferation by DNA content analysis

Treatments with 10, 30 and 50 mM resveratrol were studied by flow
cytometry after different times of exposure (24, 48 and 72 h) in
MCF7, MDA-MB 231 and HBL 100 breast tumour cell lines. After
exposure, all three cell lines were blocked in S phase. At 48 h, the
percentage of cells in S phase was considerably increased after
treatment with 30 mM resveratrol, whereas the percentage of cells in
G1 phase was decreased. It is well known that resveratrol treatment
causes an accumulation of cells in S phase (Ragione et al, 1998).

Analysis of the impact of resveratrol on BRCA1 and BRCA2
mRNA level

We compared the levels of BRCA1 mRNA after treatment with
30 mM resveratrol using two different BRCA1 Taqman probes. The
probe, BRCA1-ex 23/24, was used to quantify all BRCA1 mRNA
species together because no alternative splicing of ex 23 has been
described (Wilson et al, 1997). The BRCA1-ex 11/12 probe was
used to estimate the level of mRNA containing ex 11, because
Thakur et al (1997) described the isolation and expression of two
BRCA1 cDNAs, one of them is a splicing variant generated by
exclusion of ex 11 and producing a 4.6 kb mRNA. They observed a
complex tissue-specific pattern of multiple spliced forms of
BRCA1, and suggested that splicing may play a role in the
regulation of BRCA1 function.

To evaluate BRCA2 expression, we designed a TaqMan probe
bridging exs 26 –27, BRCA2-ex 26/27, because no alternative
splicing has been observed so far, at this site. The BRCA2-ex 12/13
probe was used to estimate the level of mRNA containing ex 12,
because Bièche and Lidereau (1999) identified an alternatively
spliced BRCA2 transcript that was widely expressed in all normal
tissues examined. This D12-BRCA2 transcript was found to be
overexpressed in steroid receptor-negative breast tumour tissues,
suggesting that dysregulation of the D12-BRCA2 isoform may
contribute to progression in human breast cancer.
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Expression of BRCA1 and BRCA2 mRNA in resveratrol-treated
cells was normalised to their expression levels in untreated cells,
normalised to 1. As shown in Figure 1, the expression of each
BRCA1 mRNA species (BRCA1-ex 23/24 and BRCA1-ex 11/12) was
increased in all three cell lines after treatment.

We also observed an increase of BRCA2-ex 26/27 and BRCA2-ex
12/13 mRNA in all three cell lines (Figure 2). All mRNA
determinations with treated cells were expressed as mean7s.d.,
with a student’s t-test.

Analysis of the impact of resveratrol on BRCA1 and BRCA2
protein synthesis

The amount of BRCA1 or BRCA2 protein was expressed as the
following ratio: d.p.m. of labelled DNA-binding proteins bound
specifically by the antibodies to BRCA1 or BRCA2/d.p.m. of total
DNA-binding proteins purified by heparin chromatography
(Table 1). BRCA1 and BRCA2 protein expression was not modified
48 h after treatment with 30 mM resveratrol.

DISCUSSION

We studied the effect of resveratrol, a natural polyphenolic
compound found especially in black grapes, peanuts, berries and

Itadori tea (Burns et al, 2002), on the expression of the BRCA1 and
BRCA2 genes in the human breast cancer cell lines MCF7, MDA-
MB 231 and HBL 100. We chose 48 h exposure to 30 mM resveratrol
because this treatment was shown to increase significantly the
number of cells blocked in S phase (Park et al, 2001). It is well
known that BRCA1 and BRCA2 reach their maximal levels in late
G1 and S phases in normal and tumour-derived breast epithelial
cells (Vaughn et al, 1996; Bertwistle et al, 1997).

Moreover, the effects of 30 mM resveratrol correlated with results
from others also studying resveratrol in cell lines (Ragione et al,
1998; Hsieh et al, 1999; Igura et al, 2001). In addition, we used a
lower dose of 10 mM resveratrol in the three cell lines (data not
shown), but that did not show any accumulation of cells in S phase
and consequently no significant alteration was found for BRCA1,
BRCA2 mRNA and BRCA1, BRCA2 proteins.

Then, the quantification of BRCA1 and BRCA2 mRNA was
performed with real-time quantitative RT–PCR. This method
allowed us to compare the effect of resveratrol by comparison with
untreated cells, which were normalised to one. In MCF7, BRCA1
mRNA increased 2.5-fold and BRCA2 mRNA four-fold after 48 h in
the presence of 30 mM resveratrol. Similarly, in MDA-MB 231,
BRCA1 mRNA increased three-fold and BRCA2 mRNA two-fold
while in HBL 100, BRCA1 mRNA increased 2.6-fold and BRCA2
mRNA 1.9-fold.

The effect of resveratrol on BRCA1 and BRCA2 mRNA in human
breast cancer cell lines could be explained by its different
properties. First, it is structurally similar to the synthetic
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Figure 1 Effect of resveratrol on BRCA1-ex 23/24 (A) and BRCA1-ex
11/12 (B) mRNA levels in MCF7, MDA-MB 231 and HBL 100 after 48 h of
treatment. Expression in treated cells was normalised to untreated controls
(corresponding to arbitrary value: 1). Each measure was performed on two
extractions and three RT and is expressed as mean7s.d. Statistic analysis
was performed using the Student’s t-test (*: Po0.05).
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(corresponding to arbitrary value: 1). Each measure was performed on two
extractions and three RT and is expressed as mean7s.d. Statistic analysis
was performed using the Student’s t-test (*: Po0.05).
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oestrogen, diethylstilbestrol, which exhibits oestrogenic activity.
Gehm et al (1997) reported that resveratrol inhibited the binding
of labelled oestradiol to the oestrogen receptor and activated
transcription of oestrogen-responsive reporter genes transfected
into human breast cancer cells. This transcriptional activation was
oestrogen receptor-dependent, required an ERE in the reporter
gene, and was inhibited by specific oestrogen antagonists. More-
over, resveratrol showed oestrogen agonist activity in MCF7 cells
by activating the expression of two oestrogen-responsive genes,
such as progesterone receptor (PR) and pS2 genes (Jang and
Pezzuto, 1999). And, we also found elsewhere an increase in pS2
mRNA in MCF7, HBL100 and MDA-MB-231 human breast cancer
cell lines (unpublished data). Resveratrol binds ER b and ER a with
comparable affinity. However, resveratrol-liganded ER b has
higher transcriptional activity than 17b-oestradiol-liganded ER b.
This indicates that the cells that uniquely express ER b or that
express higher levels of ER b than ER a may be more sensitive to
resveratrol’s oestrogen agonist activity (Bowers et al, 2000).
Furthermore, the oestrogen agonist activity of resveratrol depends
on the ERE sequence and the type of ER. Thus, in some cell types
(e.g., MCF7 cells), resveratrol functioned as a superagonist (i.e.,
produced a greater maximal transcriptional response than
oestradiol), whereas in others it produced activation equal to or
less than that of oestradiol (Gehm et al, 1997). On the other hand,
an ERE has been described in the promoter of BRCA1 (Xu et al,
1997). This can explain the fold increases in BRCA1 and BRCA2
mRNA across the different cell types.

The steady-state levels of BRCA1 and BRCA2 mRNAs were
shown to be coordinately elevated by oestrogen in human breast
cancer cell lines MCF7 and BT 483 (Spillman and Bowcock, 1996).
Elsewhere, the expression of BRCA1 mRNA was induced from 2.5-
to 5.0-fold by oestrogen in human breast cancer cell lines MCF7,
and the BRCA1 protein was about three-fold (Romagnolo et al,
1998). In our work, we found a comparable increase, of two- to
four-fold for BRCA1 and BRCA2 mRNA, by resveratrol in human
breast cell lines MCF7, MDA-MB 231 and HBL 100. The ER status
for MCF7 were found ER aþ /bþ , HBL 100 (ER a–/bþ ) and
MDA-MB 231 (ER a–/ER bþ ).

BRCA1 and BRCA2 proteins were quantified using two
successive perfusion affinity chromatographies. Resveratrol had
no effect on the level of either BRCA1 or BRCA2. We displayed the
specificity of the anti-BRCA1 and anti-BRCA2 polyclonal anti-
bodies by competition with the synthetic peptides used to generate
the antibodies. A complete displacement of the equilibrium was
obtained in each case demonstrating the specificity of the
antibodies (data not shown) (Hizel et al, 1999; Vissac et al, 2001,
2002).

We found an increase in BRCA1 and BRCA2 mRNA after
treatment with resveratrol in breast cancer cell lines but no effect
at the protein level. These result suggest an uncoupling between
mRNA and protein levels under these conditions. A similar
uncoupling of BRCA1 mRNA and protein levels was detected in
synchronised populations of immortalised MCF10 and 184B5 cells
proliferation. In these two cell lines, BRCA1 mRNA level was
tightly regulated during the cell cycle while BRCA1 protein level
remained constant. Thus, it has been shown that BRCA1 mRNA is
highly expressed in late G1 phase of the cell cycle, whereas
conditions that lead to cell cycle exit downregulate the BRCA1
mRNA (Gudas et al, 1995, 1996; Jin et al, 1997). There are several
possible explanations for discrepancies between mRNA and
protein level under different physiological conditions. BRCA1
and BRCA2 might be post-transcriptionally regulated with effects
on the translational activity as well as the stability of BRCA1 and
BRCA2 mRNA (Wickens et al, 1997). Alternatively, the level of
BRCA1 mRNA in cells may be translationally regulated by other
cellular proteins or antisense RNA transcripts. Precedents for both
mechanisms of regulation exist for other genes. Interestingly,
many developmentally regulated genes exhibit regulation at the
level of mRNA translation (Hentze, 1995). More recently,
Blagosklonny et al (1999) demonstrated a substantial role for
proteolysis in regulating BRCA1 steady-state protein levels in
several cell lines. Degradation by a cathepsin-like protease in fine
balance with BRCA1 transcription is responsible for maintaining
the low steady-state level of BRCA1 protein seen in many cancer
cells. At the opposite of oestrogen, which increased the level of
mRNAs and proteins of the two oncosuppressors BRCA1 and
BRCA2, the resveratrol seems to play a role in one of the different
pathways of previous mechanisms.

To better understand the effects of resveratrol on BRCA1 and
BRCA2 oncosuppressor genes in mammary gland, we will use
cDNA microarrays to study gene-expression profiles of proteins
interacting with BRCA1 and BRCA2 after phytochemical treatment
and it would be helpful to study proteomics.

In conclusion, the present study demonstrates that 30mM

resveratrol can increase expression of the BRCA1 and BRCA2
oncosuppressors, involved in the aggressiveness of human breast
cancer cell lines.
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