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demonstrate that a disorder, or a specific symptom of a disorder, 
runs in families. However, they can not distinguish whether the 
familial aggregation is due to environmental or genetic factors since 
family members share some of their genes as well as many elements 
of their environment. In order to separate environmental from 
genetic factors, twin and adoption studies are conducted. Twin 
studies compare the rate of concordance between monozygotic 
(MZ) twins and dizygotic (DZ) twins. On average, DZ twins share 
50% of their genes, as is the case with other non-twin siblings. 
Both kind of twins normally share a large fraction of their envi-
ronment, and typically more so than other siblings or relatives. If 
there is a genetic contribution, the concordance rate for a geneti-
cally affected disorder should be higher for MZ than for DZ twins. 
Almost all of the twin studies of schizophrenia conducted to date 
have shown a higher concordance rate in MZ twins (40–65%) than 
in DZ twins (0–28%) which indicates a clear genetic component 
to its etiology (Cardno et al., 1999; Cardno and Gottesman, 2000; 
Kringlen, 2000). Further evidence that schizophrenia is geneti-
cally transmitted has been obtained from adoption studies which 
have shown that the biological relatives of schizophrenia patients 
have a higher risk of developing the disorder (Lowing et al., 1983; 
Kendler and Gruenberg, 1984; Kety, 1987; Kendler et al., 1994; 
Kety et al., 1994; Tienari et al., 2000, 2003). However, adoption 
studies have also demonstrated that the adopted-away children of 
mothers with schizophrenia only have a higher risk of developing 
the disorder when other psychological abnormalities are present 
in the adoptive family (Tienari et al., 2000, 2003; Wynne et al., 
2006). Children of healthy biological parents who are adopted by 
a family with parents affected by schizophrenia do not themselves 

IntroductIon
Schizophrenia is a severe psychiatric disorder with a lifetime preva-
lence that ranges between 0.5% and 1%. Many aspects of its etiology 
and pathophysiology remain poorly understood despite extensive 
research. The considerable contribution made by genetic factors 
to the vulnerability to schizophrenia is, however, well recognized. 
The heritability of schizophrenia is around 80%, and a first degree 
relative has a 5- to 10-fold increase in the risk of developing the 
disorder compared to the risk for the general population (Cardno 
and Gottesman, 2000; Sullivan et al., 2003). Beside genetic factors, 
environmental factors are also involved in the etiology of the dis-
ease. We will briefly review the formal genetic evidence available for 
schizophrenia and then provide an overview of the most significant 
molecular genetic findings, with an emphasis on how the latest 
findings obtained using array-based technologies have challenged 
our understanding of the genetic architecture underlying schizo-
phrenia. We will also discuss how these new approaches may assist 
in comprehensively re-examining pathophysiological hypotheses 
such as the dopamine hypothesis of schizophrenia.

Formal genetIc studIes
A large number of studies have demonstrated that schizophrenia 
runs in families and that the average life time risk for first degree rel-
atives is 10% (compared to a life time prevalence of approximately 
1% in the general population). Certain features show particularly 
high familiality, such as age and mode of onset, the course of the 
disorder, the degree of impairment during the disorder, premorbid 
functioning, psychomotor deficiency, disorganization, and manic 
features (Wickham et al., 2001, 2002). Family studies are able to 
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have an increased risk of developing the disorder. These studies 
demonstrate the influence of genetic factors on the vulnerability 
to schizophrenia, but they also clearly demonstrate that environ-
mental factors contribute substantially to the manifestation of the 
disorder. Individuals with schizophrenia often suffer from other 
co-morbid psychiatric conditions. Epidemiological studies have 
revealed an increased prevalence of depression, anxiety disorders, 
and substance abuse disorders in schizophrenia patients compared 
to the general population (for review see Buckley et al., 2009). There 
is also substantial evidence for an overlap between schizophrenia 
and bipolar disorder. For example, relatives of patients with bipolar 
disorder have an increased risk of developing schizophrenia and 
vice versa (Valles et al., 2000; Cardno et al., 2002; Maier et al., 2002; 
Laursen et al., 2009; Lichtenstein et al., 2009; Van Snellenberg and 
de Candia, 2009).

molecular genetIc studIes
Linkage and association studies have been conducted to attempt 
to identify the genetic factors on a molecular level (Figure 1). In 
association studies there are two complementary approaches. The 
first approach is based on candidate genes that are either selected 
because the chromosomal region harboring the gene has been pre-
viously identified, e.g. in systematic linkage analyses (positional 
candidates), or because the selected gene fits into a specific a pri-
ori hypothesis regarding the underlying pathophysiology (func-
tional candidates). The second approach does not depend on any 
pre-existing hypothesis or knowledge of a specific gene or gene 
region. Instead, the whole genome is investigated systematically 
for risk variants (genome-wide association study; GWA study). 
Until recently, a systematic, genome-wide screen was only possible 
in linkage studies, which search for a correlation between genetic 
markers and affection status in families with multiple affected 
members and which require the genotyping of only a few hundred 
genetic markers. In the past, association studies focused exclusively 
on candidate genes, but advances in genotyping technology and 
progress in understanding the genetic variability of the human 
genome now permit use of the systematic, genome-wide screen.

The various approaches used to investigate schizophrenia and 
their results will now be presented and discussed.

lInkage studIes
Linkage studies aim to discover genomic regions that are co-trans-
mitted with the disorder in families with several affected members. 
Systematic, family based genome-wide linkage studies are extremely 
successful in detecting rare variants with strong effects on the etiol-
ogy of the disorder. This approach has been applied effectively to 
discover genetic factors underlying monogenic Mendelian diseases 
such as Huntington’s disease (Gusella et al., 1983). However, this 
method is less effective in discovering genes that contribute only 
moderately to the etiology of a complex, heterogeneous disorder. 
In complex disorders, the presence of a specific vulnerability gene 
may not even be necessary. In their landmark paper, Risch and 
Merikangas (1996) calculated the number of families (affected sib 
pairs) required to demonstrate linkage. If gene effects are small, a 
dramatic reduction in the excess allele sharing between affected 
sibs will result, and very large samples will be necessary to demon-
strate linkage. Meta-analyses of linkage scans attempt to overcome 

limitations in statistical power by combining data from various 
independent studies. These analyses have provided evidence for 
loci on 2q, 5q, 8p, 13q, and 22q (Badner and Gershon, 2002; Lewis 
et al., 2003; Ng et al., 2009).

Interestingly, various genomic loci that are shared between 
schizophrenia and bipolar affective disorder have been reported. 
The best supported regions are 13q and 22q (Badner and 
Gershon, 2002).

assocIatIon studIes – candIdate genes
Association studies are usually conducted using a case–control 
design, and they are performed in order to detect alleles that have 
an altered frequency in unrelated patients as compared to unrelated 
control subjects. Association studies have a greater power than link-
age studies to detect common risk alleles with small effects (Risch 
and Merikangas, 1996). In order to conduct a systematic associa-
tion screen covering the whole genome, it is necessary to genotype 
hundreds of thousands of polymorphisms. Until recently, system-
atic association approaches were not possible due to limitations in 
genotyping technology and limited knowledge of the variability 
of the human genome, and previous association studies therefore 
focused exclusively on candidate genes.

The functional candidate gene approach is restricted by our lim-
ited knowledge of the biological pathways underlying the etiology 
of schizophrenia. However, one of the most common and widely 
accepted hypotheses is the “dopamine hypothesis.” This proposes 
that a dysfunction in the dopaminergic neurotransmitter system, 
which leads to a reduced dopamine concentration in cortical 
regions and to an excess of dopamine in striatal areas of the brain, is 
involved in the pathogenesis of schizophrenia (for review see Howes 
and Kapur, 2009). Genes involved in dopaminergic neurotransmis-
sion such as the dopamine transporter 1 (DAT1), dopamine recep-
tor 1–5 (DRD1–5), and catechol-O-methyltransferase (COMT) are 
therefore major candidates for genetic association studies. Variants 
in these genes have been found to be associated with schizophre-
nia in independent studies (e.g. Sivagnanasundaram et al., 2000; 
Shifman et al., 2002; Jönsson et al., 2003; Staddon et al., 2005; Shi 
et al., 2008; Talkowski et al., 2008), although none of these findings 
have been unequivocally accepted since there has been insufficient 
evidence across studies (e.g. Jönsson et al., 2001, 2004; Georgieva 
et al., 2002; Serretti et al., 2004; Okochi et al., 2009).

To facilitate the interpretation of the many association find-
ings in schizophrenia, a regularly updated online database of all 
published genetic association studies for schizophrenia (“SzGene”) 
has been created (http://www.schizophreniaforum.org/res/sczgene/
default.asp). The group of researchers that set up the database has 
also performed meta-analyses in at least four independent case–
control samples for all polymorphisms with available genotype 
data (Allen et al., 2008). Across 118 meta-analyses, a total of 24 
genetic variants in 16 different genes (APOE, COMT, DAO, DRD1, 
DRD2, DRD4, DTNBP1, GABRB2, GRIN2B, HP, IL1B, MTHFR, 
PLXNA2, SLC6A4, TP53, and TPH1) showed nominally significant 
effects with average summary odds ratios of approximately 1.23. 
Using recently proposed criteria for the assessment of cumulative 
evidence in genetic association studies, the authors characterized 
four of the significant results, including DRD1, as showing “strong” 
epidemiological credibility.

http://www.schizophreniaforum.org/res/sczgene/default.asp


Frontiers in Behavioral Neuroscience www.frontiersin.org May 2010 | Volume 4 | Article 23 | �

Nieratschker et al. Genetic variants in schizophrenia

Candidate gene based association studies have also identified 
susceptibility genes that may increase the risk for both schizophre-
nia and bipolar disorder. These genes include DISC1, DTNBP1, 
COMT, NRG1, and DAOA (G72/G30) (for review see Craddock 
et al., 2005, 2006; Owen et al., 2007). The strongest support for 
a transcategorical overlap has been reported for G72/G30, a gene 
in the 13q candidate region (Chumakov et al., 2002; Schumacher 
et al., 2004; Jamra et al., 2006). For some of the loci and genes 
described above, detailed analysis has shown that the association 
is due to subgroups of patients who suffer from symptoms that 
are common to both disorders. An association of G72/G30 with 
schizophrenia and bipolar disorder, for example, was found to be 
mediated mainly by bipolar patients with psychotic symptoms 
(Schulze et al., 2005).

genome-wIde assocIatIon studIes
It is now possible to perform association studies on a genome-
wide scale [up to 1,000,000 single nucleotide polymorphisms 
(SNPs)] as a result of improved understanding of the variability 

of the human genome (e.g. HapMap Project, International 
HapMap Consortium, 2003) and advances in array technology 
for multiplex genotyping. GWA studies identify frequent SNPs 
that are associated with common complex disorders. Association 
between diseases and SNPs with low minor allele frequencies usu-
ally remain undetected since these SNPs are not well represented 
on currently available arrays. A major difficulty in evaluating the 
results of GWA studies is the issue of multiple testing. The testing 
of up to 1,000,000 SNPs for their association with a disease leads 
to many false positive findings, and it is necessary to correct for 
multiple testing to achieve the level of genome-wide significance. 
The level of genome-wide significance depends on the number 
of SNPs analyzed, and the threshold is approximately 5 × 10−8 
for the GWA-chips that are used currently (660,000–1,000,000 
SNPs) (Dudbridge and Gusnanto, 2008; Hoggart et al., 2008; 
Pe’er et al., 2008). This correction method is very conservative 
since the association findings of each SNP are considered to be 
independent, and the haplotype structure of the genome is not 
taken into account. Although conservative correction for multiple 

Figure � | Linkage analyses have proven to be successful in identifying 
genetic variants underlying monogenic disorders caused by rare 
variants with large effects. Association studies aim to detect common 
variants that make only a small contribution to the disorder. The detection 
of rare variants with only small phenotypic effects is difficult since 

sequencing of large numbers of patients and controls is necessary and 
(prohibitively) large samples sizes are required for association testing 
(adapted from McCarthy et al., 2008). *SNPs with a minor allele frequency 
<1% are typically not included in arrays used for genome-wide 
association studies.
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Three recent multicenter studies may have heralded a 
 breakthrough in GWA studies of schizophrenia. None of the initial 
findings from these three studies surpassed the level of genome-
wide significance. However, a meta-analysis of the best hits on 
European-ancestry data from these three studies and the inbuild 
replication study by Stefansson et al. identified a cluster of genome-
wide significant SNPs in substantial LD in the MHC region on chro-
mosome 6p22.1 (International Schizophrenia Consortium, 2009; 
Shi et al., 2009; Stefansson et al., 2009). These results may implicate 
the immunological system in the pathogenesis of schizophrenia. 
Stefansson et al. (2009) also found that a variant upstream of neu-
rogranin (NRGN; p = 2.4 × 10−9) and a SNP in transcription factor 
4 (TCF4; p = 4.1 × 10−9) achieved genome-wide significance. These 
findings demonstrate that the use of large samples can overcome 
the limitations in the power of GWA studies to detect common 
risk variants for complex psychiatric disorders.

The International Schizophrenia Consortium study showed 
that the SNPs which failed to reach genome-wide significance 
included some true genetic risk factors. Firstly, variations across 
nominally associated loci were summarized into quantitative 
scores in a discovery case–control study. Aggregate risk scores 
for individuals in independent case–control samples were then 
calculated. Score alleles designated in the discovery sample were 
significantly enriched among replication cases. The International 
Schizophrenia Consortium also showed that the same “set of score 
alleles” distinguished bipolar cases from controls, thus providing 
support for the hypothesis that there is a genetic overlap between 
schizophrenia and bipolar disorder. Although these SNPs explained 
only approximately 3% of the variance in schizophrenia risk, this 
can be regarded as the first molecular genetic evidence in sup-
port of the theory of the polygenic inheritance of schizophrenia 
(International Schizophrenia Consortium, 2009).

Can the GWA data be used to re-evaluate major pathophysi-
ological hypotheses of schizophrenia such as the dopamine hypoth-
esis? Data obtained from GWA studies offer great opportunities for 
addressing such key questions. Firstly, to test a certain pathophysi-
ological hypothesis, the relevant data can be extracted (e.g. SNP 
data from genes involved in dopaminergic neurotransmission) and 
specifically tested for association with the diagnosis of schizophre-
nia. The number of statistical tests can be greatly reduced in com-
parison to genome-wide analyses, reducing the necessary correction 
factor applied for multiple testing, and this approach thus enables 
the identification of smaller genetic effects. Secondly, it is possi-
ble that dopaminergic dysfunction may emerge as a downstream 
consequence of genetic variation in the (non-canonical) candidate 
genes identified in GWA studies, thereby reconciling the seemingly 
inconsistent findings that genetic associations with dopaminergic 
pathway genes are rather weak, whereas “higher level” (e.g. neu-
roimaging) findings linking dopamine to psychosis are robust.

small chromosomal aberratIons
Small chromosomal aberrations (copy number variations, 
genomic imbalances) may confer a risk for schizophrenia, as 
with the 22q11.2 Deletion Syndrome (22q11.2 DS). This common 
microdeletion syndrome presents with congenital and late-onset 
features including a high risk for neuropsychiatric diseases (up to 

testing reduces the risk of false positive findings, it hampers the 
detection of true association signals with small effects on the risk 
for schizophrenia.

Successful GWA studies have been conducted for several common, 
complex diseases including diabetes type 2, myocardial infarction, 
breast cancer, and Crohn’s disease (for all published studies see http://
www.genome.gov/gwastudies/). The first GWA studies for schizo-
phrenia have now been reported (Mah et al., 2006; Lencz et al., 2007; 
O’Donovan et al., 2008; Shifman et al., 2008; Sullivan et al., 2008; 
Kirov et al., 2009b; Need et al., 2009; International Schizophrenia 
Consortium, 2009; Shi et al., 2009; Stefansson et al., 2009). The results 
of these studies are shown in Table 1 and are summarized below.

Three of these studies used pooled DNA samples (Mah et al., 
2006; Shifman et al., 2008; Kirov et al., 2009b). This cost-effective 
method is effective in identifying disease genes (e.g. Liu et al., 2005; 
Johnson et al., 2006), although it is less sensitive than individual 
genotyping due to measurement errors in DNA quantification and 
results in reduced power. A further limitation of this method is that 
the evaluation of data is limited to the study of (estimated) allele 
frequencies at the level of individual SNPs. It cannot detect effects 
of haplotypes, interaction between SNPs, and effects of genotypes 
that do not show up in allele frequency differences. The best sup-
ported variants in these studies did not achieve genome-wide sig-
nificance (Mah et al., 2006; Shifman et al., 2008; Kirov et al., 2009b) 
(see Table 1).

The first GWA study of schizophrenia based on individual 
genotyping used a sample of only 178 cases and 144 controls 
(Lencz et al., 2007). The best hit was a variant in the vicinity of 
the colony-stimulating factor-2 receptor alpha (CSF2RA) gene, but 
this did not reach genome-wide significance (Lencz et al., 2007). 
The second GWA study based on individual genotyping included 
a larger sample of 738 patients and 733 controls. This study also 
failed to find any genome-wide significant association, although a 
few signals coincided with genomic regions implicated previously 
in schizophrenia (Sullivan et al., 2008). O’Donovan et al. (2008) 
performed their initial GWA study using a moderately sized sam-
ple of 479 patients. However, they enhanced the statistical power 
by conducting a follow-up study of 12 markers associated with a 
p-value ≤10−5 in a much larger sample. Three of these 12 markers 
showed strong evidence for replication (p ≤ 5 × 10−4). However, 
their best supported variant failed to achieve the level of genome-
wide significance (Table 1). The highest ranking SNP from this 
study is located in an intron of the zinc finger protein 804A gene 
(ZNF804A), a putative transcription factor. This had been neither 
investigated nor implicated in the risk for schizophrenia. The case 
sample was then extended to include bipolar patients and the p-
value for the total sample of major psychosis patients surpassed the 
level of genome-wide significance (p = 9 × 10−9). The International 
Schizophrenia Consortium (2009) has subsequently replicated the 
association between ZNF804A and schizophrenia, and ZNF804A 
is therefore a promising true susceptibility gene for schizophre-
nia. Need et al. (2009) performed an initial GWA study of 871 
schizophrenia patients and 863 controls and then followed up their 
best hits in a replication sample of 1460 cases and 12,995 controls. 
However, they failed to detect any association signal that could 
withstand correction for multiple testing.

http://www.genome.gov/gwastudies/
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Table � | Published genome-wide association studies for schizophrenia: all schizophrenia gWA studies published to date are shown. The number of 

variants investigated, the best associated SNP(s) found and the gene(s) containing that SNP(s), the corresponding p-value(s) and the number of cases and 

controls in the discovery and the replication/meta-analysis sample are all given.

Study # SNPs 

analyzed

Supported 

variant

Supported gene p-value 

discovery

# Samples 

discovery

p-value 

combined

# Samples 

replication/

meta analysis

Mah et al. (2006) ∼25,000 rs752016 plexin	A2	(PLXNA2) 0.006 320 cases, 325 

controls

0.035 200 cases, 230 

controls (EA)

Lencz et al. (2007) ∼500,000 rs4129148 colony	stimulating	

factor,	receptor	2	

alpha	(CSF2RA)

3.7 × 10−7 178 cases, 144 

controls

Sullivan et al. 

(2008)

∼500,000 rs4846033 4.4 × 10−6 738 cases, 733 

controls

O’Donovan et al. 

(2008)

∼500,000 rs1344706 zink	finger	protein	

804A	(ZNF804A)

1.8 × 10−6 479 cases, 2937 

controls

1.6 × 10−7 7308 cases, 

12834 controls

Shifman et al. 

(2008)

∼500,000 rs7341475 reelin	(RELN) 2.9 × 10−5 

(in females)

745 cases, 2644 

controls 

8.8 × 10−7 

(in females)

2274 cases, 

4401 controls

Kirov et al. (2009b) ∼550,000 rs11064768 coiled	coiled	domain	

containing	60 

(CCDC60)

1.2 × 10−6 574 trios

Need et al. (2009) ∼550,000 rs2135551 ADAMTS	like	3	

(ADAMTSL3)

1.3 × 10−6 871 cases, 863 

controls

1460 cases, 

12995 controls

Shi et al. (2009) ∼600,000 rs13025591 ArfGAP	with	GTPase	

domain,	ankyrin	

repeat	and	PH	

domain	1	(AGAP1)

4.6 × 10−7 

(in EA) 

2681 cases, 2653 

controls (EA); 

1286 cases, 973 

controls (AA)

rs1851196 v-erb-a	erythroblastic	

leukemia	viral	

oncogene	homolog	4	

(avian)	(ERBB4)

2.1 × 10−6 

(in AA)

rs9�7���9 

rs9�7���� 

rs���9�0��

major	

histocompatibility	

complex	(MHC) 

cluster of histone 

protein genes

6.9 × �0−8 

8.9 × �0−8 

9.� × �0−9

8008 cases 

19077 controls 

(EA)

International 

Schizophrenia 

Consortium (2009)

∼1,000,000 rs5761163 myosin	XVIIIB	

(MYO18B)

3.4 × 10−7 3322 cases, 

3587 controls

8008 cases, 

19077 controls

rs���9�0�� major	

histocompatibility	

complex	(MHC)

9.� × �0−9

Stefansson et al. 

(2009)

∼300,000 � variants major	

histocompatibility	

complex	(MHC)

2663 cases, 

13498 controls

�.� × �0−9 

�.� × �0−��

12945 cases, 

34591 controls

rs��807809 neurogranin	(NRGN) �.� × �0−9

rs9960767 transcription	factor	4	

(TCF4)

�.� × �0−9

Genome-wide	significant	findings	are	highlighted	in	bold.
EA,	European	Ancestry	Individuals;	AA,	African	American	Individuals.
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to show that risk allele carriers have reduced connectivity in the 
dorsolateral prefrontal cortex (DLPFC), and an increased con-
nectivity between the DLPFC and the hippocampus formation, as 
well as between the amygdala and other brain regions. Disturbed 
interactions between different brain regions have previously been 
described as endophenotypes underlying schizophrenia (e.g. 
Meyer-Lindenberg et al., 2005; Stephan et al., 2006). This dem-
onstrates that studies that combine genetic data and intermediate 
phenotype findings have enormous potential for increasing our 
understanding of the impact of specific functions of the human 
brain on the development of disease. Besides functional neuroim-
aging studies, other promising intermediate phenotypes include 
structural neuroimaging, gene expression in the post-mortem 
brain, cognitive function and behavioral and physiological meas-
ures (for review see Bray, 2008; Gallinat et al., 2008; Prasad and 
Keshavan, 2008; Dean et al., 2009).

Another approach that can be applied following the initial iden-
tification of a susceptibility gene is reverse phenotyping (Schulze 
et al., 2005; Rietschel et al., 2008). Reverse phenotyping system-
atically identifies the phenotypic features that show the strongest 
association with the genetic risk factor identified in genetic studies. 
It is of great interest to understand the spectrum (or cluster) of 
phenotypes that are associated with a specific genetic risk factor 
since this means that they are causally linked and that shared bio-
logical pathways contribute to their development. In the future, 
the genetic data may also be used to improve the definition of the 
phenotype in the clinical setting.

The GWA data will be an extremely valuable resource for a 
variety of future studies. These will include analytical approaches 
such as gene-based approaches, pathway analysis, and convergent 
functional genomics which aim to detect additional susceptibil-
ity genes with greater power (Le-Niculescu et al., 2009; Treutlein 
et al., 2009). In particular, pathway-based approaches will allow the 
systematic re-evaluation of major pathophysiological hypotheses 
of schizophrenia such as the dopamine hypothesis.

The GWA studies have taught us that common susceptibil-
ity variants confer only a small individual risk and are likely to 
account for only a limited proportion (International Schizophrenia 
Consortium, 2009) of the overall genetic risk factors underlying 
schizophrenia. Some of the rare CNVs described recently contribute 
more strongly to individual risk than the common SNPs that have 
been found to be associated with schizophrenia. At present, it is 
only possible to detect novel CNVs spanning at least several thou-
sand base pairs using DNA-microarray-chips. It will be necessary 
to apply other approaches such as the re-sequencing of candidate 
regions or whole genome sequencing to detect CNVs involving 
fewer base pairs (or even all rare single nucleotide substitutions). If 
the genetic effect of such variants is not very strong, however, very 
large sample sizes will be required to ensure sufficient statistical 
power to detect association with disease.

In the light of recent findings, the genetic approach can finally 
be considered to have started to deliver what it has promised for 
a number of years. The identification of genes associated with 
schizophrenia is already beginning to substantially increase our 
knowledge of its underlying pathophysiology. Is there still room 
for the dopamine hypothesis of schizophrenia when recent genetic 
findings are taken into consideration? The performance of GWA 

a 25% risk for schizophrenia) (Karayiorgou et al., 1995; Bassett 
et al., 2005). Attempts to correlate the occurrence of schizophre-
nia with the extent of the deletion in these patients have been 
unsuccessful. An increase in the susceptibility to schizophrenia 
may involve the altered expression of several genes within the 
22q11.2 region (Meechan et al., 2007; Sivagnanasundaram et al., 
2007), and this may explain the lack of replicable results from 
studies aiming to implicate individual genes from the deletion 
region as general susceptibility genes for schizophrenia (Glaser 
et al., 2006).

The availability of new technologies such as comparative 
genomic hybridization and SNP-arrays in GWA studies has ena-
bled the identification of small chromosomal aberrations on a 
genome-wide scale. The first such studies of schizophrenia found 
increased overall rates of aberrations (Walsh et al., 2008; Xu et al., 
2008). More recent studies have implicated specific chromosomal 
regions. These include microdeletions in chromosomal regions 
1q21.1, 2p16.3, 15q11.2, and 15q13.3, as well as microduplica-
tion in chromosomal region 15q13.1 (International Schizophrenia 
Consortium, 2008; Kirov et al., 2009a; Need et al., 2009; Rujescu 
et al., 2009). All of these variants are found more frequently 
among patients than among controls, although the frequency of 
each individual variant in schizophrenia patients is low (<1%). 
Further studies are necessary to determine the penetrance, the 
mutation rate, and the full phenotypic spectrum associated with 
these aberrations. Some variants appear to be more frequent 
in patients with other central nervous system phenotypes such 
as mental disability, epilepsy, and autism (Mefford et al., 2008; 
Ben-Shachar et al., 2009; Helbig et al., 2009; Miller et al., 2009). 
This suggests that these disorders may have common etiological 
factors.

As illustrated by the difficulties encountered in identifying 
the causative gene/s in the 22q11.2 region, identification of the 
causative genes in the newly implicated chromosomal regions 
may not be straightforward. Perhaps the most promising gene 
implicated to date is the neurexin 1 gene (NRXNA1), which is 
located in the deleted region on chromosome 2p16. Smaller 
chromosomal aberrations that specifically affect this gene have 
already been identified (Kirov et al., 2008; Vrijenhoek et al., 2008; 
Rujescu et al., 2009).

outlook
It is well established that schizophrenia is a highly heritable, com-
plex disease. Our understanding of its underlying pathophysi-
ology, however, remains limited. Until recently, the systematic 
genome-wide search for genetic risk factors was only possible 
through linkage approaches, with the limitation of insufficient 
power to detect genes with small effects. GWA studies overcome 
this limitation, and the first GWA studies of schizophrenia have 
now been published with many more being expected to fol-
low. In addition, large meta-analyses to increase the statistical 
power are currently under way. The identification of risk genes 
will provide a vast array of possibilities to be pursued in further 
research into the underlying causes of schizophrenia. One of the 
variants highlighted in a GWA study, the SNP in the ZNF804A 
gene, for example, was subsequently investigated using a func-
tional neuroimaging approach. Esslinger et al. (2009) were able 
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studies has led to the identification of previously unknown and 
largely unexpected genes. It is possible that genetic variants in risk 
genes identified in GWA studies lead to downstream impairments 
in dopaminergic function. It is also important to remember that 
only a very small fraction of all truly associated variants have 
been detected and that many more associated variants will be 
identified in the future. These will include already known variants 

which do not currently surpass the level of genome-wide sig-
nificance in GWA studies; the identification of other variants 
will require additional experimental approaches (see above). It is 
possible that these as yet undetected genes encode proteins that 
participate directly in dopaminergic neurotransmission such as 
dopamine transporters, dopamine receptors, and synthetic and 
catabolic enzymes.
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