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A method for AI assisted human 
interpretation of neonatal EEG
Sergi Gomez‑Quintana1*, Alison O’Shea2, Andreea Factor3, Emanuel Popovici1 & 
Andriy Temko1

The study proposes a novel method to empower healthcare professionals to interact and leverage AI 
decision support in an intuitive manner using auditory senses. The method’s suitability is assessed 
through acoustic detection of the presence of neonatal seizures in electroencephalography (EEG). 
Neurophysiologists use EEG recordings to identify seizures visually. However, neurophysiological 
expertise is expensive and not available 24/7, even in tertiary hospitals. Other neonatal and pediatric 
medical professionals (nurses, doctors, etc.) can make erroneous interpretations of highly complex 
EEG signals. While artificial intelligence (AI) has been widely used to provide objective decision 
support for EEG analysis, AI decisions are not always explainable. This work developed a solution to 
combine AI algorithms with a human-centric intuitive EEG interpretation method. Specifically, EEG is 
converted to sound using an AI-driven attention mechanism. The perceptual characteristics of seizure 
events can be heard using this method, and an hour of EEG can be analysed in five seconds. A survey 
that has been conducted among targeted end-users on a publicly available dataset has demonstrated 
that not only does it drastically reduce the burden of reviewing the EEG data, but also the obtained 
accuracy is on par with experienced neurophysiologists trained to interpret neonatal EEG. It is also 
shown that the proposed communion of a medical professional and AI outperforms AI alone by 
empowering the human with little or no experience to leverage AI attention mechanisms to enhance 
the perceptual characteristics of seizure events.

In 2019, 2.4 million neonatal deaths occurred globally1. Most neonatal deaths occur during the first week of 
life, and about 1 million newborns die within the first 24 h. The vast majority occurred in developing countries, 
with hypoxic-ischemic encephalopathy (HIE) due to birth asphyxia being one of the major causes of high child 
mortality2. While the incidence of encephalopathy ranges from 1 to 8 per 1000 live births in developed countries, 
it is as high as 26 per 1000 live births in underdeveloped countries3. Neonatal seizures are associated with various 
acute illnesses such as strokes, HIE or infections4. The reported incidence of such events varies from 1.5 to 3.5 out 
of 1000 newborns5–7. The mortality rate for those affected by seizures is approximately 10% (range 7–16%), and 
permanent neurological disability is estimated at around 50% of those that survive8–11. Most of those neonatal 
deaths could have been prevented with optimal care12.

Detection of seizures is a challenging clinical task. While seizures are often associated with clinical signs in 
children and adults, including involuntary jerking movements of the arms and legs, eye blinkings, or difficulty 
breathing, less than 10% are accompanied by documentable physical manifestations in the neonatal population. 
Monitoring electrical brain activity through electroencephalography (EEG) is the only way to detect seizures 
accurately13,14. While EEG has become a gold standard tool in neonatal neurophysiology and most neonatal 
units in the developed world have access to EEG acquisition, only some have immediate availability of neuro-
physiological expertise to interpret the signal15. In addition, EEG is a highly complex signal, even more so for 
neonates where the brain is still developing16. While multi-channel EEG monitoring can last several hours to 
several days, seizures are infrequent events. Therefore, a simpler representation of EEG is often used to facilitate 
the interpretation of long and complex EEG signals, such as amplitude-integrated EEG (aEEG). This method 
represents the signal as temporally smoothed and energy-compressed waveforms17. While aEEG allows observing 
several hours of EEG on a single screen page, seizures become difficult to detect visually due to limited spatial 
coverage, attenuation of short duration seizures due to smoothing, and false alarms are frequently caused by 
prolonging energy artefacts18,19.

Raw multi-channel EEG monitoring is required to detect all seizures. The raw EEG signal interpreta-
tion requires extensive clinical expertise and years of training. Multi-channel EEG, especially continuous 
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multi-channel EEG obtained from long real-life clinical monitoring, is often corrupted with all sorts of artefacts, 
some of which can resemble waveform patterns similar to seizures. When EEG recordings last for several days, 
detecting relatively rare seizure events becomes a challenging and highly time-consuming process. Even among 
experienced EEG experts, there is still a substantial disagreement when detecting seizure events20. Moreover, the 
level of expertise of a healthcare professional required to identify seizures scales with the complexity of the data 
to interpret—clinical manifestations can be interpreted by nurses, aEEG interpretation requires neonatologists, 
whereas full EEG requires neurophysiologists. The higher the level of experience of a healthcare professional is, 
the smaller the chances of its availability onsite 24/7.

Artificial intelligence (AI) has become a popular tool to assist medical professionals in interpreting EEG 
signals. AI aims to close the gap between the availability of interpretation expertise and detection timeliness 
and accuracy, particularly in detecting seizure events. For years, automated seizure detection was tackled as a 
machine-learning (ML) problem in a well-established two-step approach consisting of (a) the summarization 
EEG data into a set of hand-crafted informative characteristics called features and (b) the usage of classifiers 
that learn the mapping between features and the labels. The works undertaking this approach differ mainly on 
the selected features and the choice of the classifier21–26. Contrary to these approaches, deep learning (DL) can 
directly learn the representation of the relevant information from the raw EEG data avoiding time-consuming 
feature engineering efforts27–31.

AI models are not error-free. They are often subject to adversarial attacks32,33. In a clinical environment, 
errors can result in wrong decisions concerning a diagnosis or a treatment choice, threatening and putting the 
overall patient’s health and well-being at risk. Therefore, it is of utmost importance to understand the nature 
of the errors, and the availability of an explainable framework to trace back those errors to underlying clinical 
causes is of utmost importance32. Explainable AI and saliency detection are the research areas that aim to mitigate 
the risks. Medical professionals require the option to understand how and why a machine decision has been 
made. However, there is a clear trade-off between the performance of a machine learning model and its ability 
to produce explainable and interpretable predictions. For example, the feature-based neonatal seizure detection 
approaches could explain which feature contributed most to the wrong decision34. However, the performance 
of such systems is significantly lower than that of deep learning methods35. The black-box models, like neural 
networks, tend to extract most of the information from data to beat the state-of-the-art performance without 
explaining and interpreting their decisions.

Alternative methods such as EEG sonification have been developed to detect neonatal seizures36 to assure the 
interpretability of clinical decisions while still simplifying the analysis process of complex EEG signals. Sonifica-
tion is the process by which data are represented through sound in order to be displayed acoustically. Sonification 
has been proven useful in various contexts involving pattern recognition because such patterns are implicitly 
mapped into sound as distinguishable rhythms or tones37. For example, in medicine and healthcare, all sorts of 
biological signals are used to monitor the patient’s health, and either the presence or absence of such patterns in 
the data is highly informative. An example of that is the auscultation of the heart sounds using a stethoscope, a 
simple yet highly informative clinical examination routine used since 183838.

Interestingly, acoustic perception can sometimes be even more intuitive than sight when receiving sensory 
information. An example of that is language itself, which is naturally self-learned by hearing during the first year 
of life, whereas reading (which uses the sense of sight) needs to be explicitly taught, and partly because of that, it 
is considered to be a less natural way to acquire information39. The same idea can be explored when interpreting 
long time-series data such as EEG. However, the task is even more complex due to multiple concurrent channels 
of EEG, which need to be read/analysed simultaneously.

Neonatal seizures in EEG present a specific characteristic evolving rhythmic pattern with temporal and often 
spatial evolution40,41. Morphological changes in temporal signals are often more naturally perceived auditory 
rather than visually. Historically, in early paper-based EEG monitoring machines, seizures could be heard as 
rhythmic and evolving pen movements. Most of the frequential content of neonatal EEG falls in the frequency 
range from 0.5 to 13 Hz approximately42, and the audible spectrum in humans ranges from 20 Hz to 20 kHz43, 
meaning that EEG can not be directly heard in its original time-series representation.

Earlier works in EEG sonification simply increased the sampling frequency of the EEG signal to raise its 
frequency content to the audible range, assuming the collateral effect of time compression44,45. The increased 
factor of the sampling frequency can be inconvenient as too large factors can make seizure events too short and 
therefore missed. More sophisticated methods have been developed since these earlier studies. Sonification based 
on tone synthesis is described in46,47. A musical approach where EEG amplitude is mapped into musical notes 
was developed48. Another method used EEG to modulate a voicelike synthesiser49. However, those approaches 
do not convey the totality of the EEG information but are rather partially guided by EEG. The phase vocoder 
(PV) was firstly used for EEG seizure detection by raising the frequency content of the EEG into the audible 
range without affecting the time scale50. In the same context of seizure detection, a subsequent study compared 
the PV with a novel FM/AM sonification, showing interesting results on why the perception of seizures increases 
with quicker playbacks36.

However, all the previous works in EEG sonification considered a constant time-compression factor, meaning 
that EEG data are compressed in time always at the same rate. Because seizures can be rare events, the constant 
time-compression factor results in a trade-off between the higher level of perception of short seizure events at 
the expense of reviewing long recordings versus having less listening overhead at the cost of missing occasional 
short seizure events—a shared disadvantage with aEEG51.

In this study, a solution for a quick preview of large multi-channel EEG recordings is presented based on the 
PV as in36,50, with an addition of an AI guided time-compression factor which serves as an attention mechanism51. 
In this manner, the accuracy of the AI method is combined with interpretability and intuitiveness of sonifica-
tion to allow for quick and accurate decision making. In further subsections, we discuss the advantages and 
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drawbacks of the AI sonification method, comparing its speed and accuracy with that of full EEG annotators and 
with AI alone, alongside a deep analysis of the errors made. The developed technique utilizes AI as an attention 
mechanism. In particular, the AI probabilities are used to modulate the speed-up factor of the EEG sonification, 
maintaining the focus on the EEG regions of interest (possible seizures) while allowing for a quick pass over 
long segments of background EEG.

The main contributions of this study are:

•	 A novel method of AI-driven spatial neonatal EEG sonification is presented; the AI modulates the audio 
playback speed to enhance the perception of seizures, which are mapped into longer duration in the acoustic 
domain compared to the rest of EEG data.

•	 An extensive survey is designed and conducted online among the targeted end-users (healthcare profes-
sionals) to assess the level of accuracy of the developed method for the detection of the presence of neonatal 
seizures on a publicly available dataset.

•	 The survey results are compared to the performance obtained by the three neonatal neurophysiologists who 
annotated the dataset on raw multi-channel EEG.

AI‑driven sonification algorithm.  To make neonatal EEG analysis more accurate, pervasive and ubiqui-
tous, reducing the gap between the complexity of the signal and the level of expertise needed for its analysis must 
be reduced while ensuring transparency in the interpretation of each decision is paramount. The method out-
lined in this section aims to facilitate quick and accurate diagnosis by healthcare professionals without dedicated 
EEG interpretation expertise while keeping the doctor at the centre of the decision-making process.

The outline of the proposed algorithm is shown in Fig. 1. The algorithm takes multi-channel neonatal EEG 
as input and delivers stereo audio that captures the content of a few hours of EEG data into a few seconds of 
sound. The algorithm is constituted of two fundamental blocks: the digital signal processing (DSP) block and 
the AI block. The DSP block converts the EEG data into audio. The EEG signals are pre-processed and denoised 
before the phase vocoder lifts the frequency content into an audible frequency range. While all those steps are 
applied in parallel to each EEG channel, the stereo mixer combines all the incoming audio tracks from each 
EEG channel into left–right stereo audio channels by mapping each track into a virtual 2D space to capture the 
relative positions of the electrodes. The AI block is used to modulate several aspects of the DSP block: it analyses 
the segment of EEG data, and every second provides the probability of a seizure event happening for each time 
segment of EEG. These probabilities control the variable time-compression rate as a function of the seizure likeli-
hood, serving as an AI-driven attention mechanism that modulates the perceived audio accordingly.

A detailed description of each subroutine of the algorithm is available as Supplementary Methods. The fol-
lowing paragraphs will briefly overview the main functional load of each block.

The signal pre-processing stage applies a set of deterministic operations to adequate the EEG signals before 
it enters the subsequent stages of the sonification algorithm, reducing the noise level outside the band of interest 
and EEG artifacts52. A major component of this block is the attenuation of ECG artifact. The denoising block 
aims to emphasize any activity that deviates from the average activity in the recording by taking into account the 
level of seizure-ness of such activity. For this, a variant of spectral subtraction utilized in speech processing53 is 
used to reduce the amplitude of those EEG sections that do not contain seizure events.

The phase vocoder (PV) is a well-known technique to manipulate signals in the time domain by preserving 
their spectral properties. The PV was first developed to stretch speech signals in time to encode voice data (hence 
the term vocoder)54. Although this technique was first applied to speech, it also has been used to manipulate 
various types of audio55 and non-audio signals56,57. This work uses the phase vocoder to convert EEG into sound 

Figure 1.   AI-driven sonification algorithm block diagram.
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by shifting the EEG frequencies into the audible range. The new variant of the phase vocoder is derived. The new 
proposed algorithm allows using a time-variable stretching factor that dictates how much a particular segment 
of EEG gets compressed in audio. Depending on the signal properties, the stretching factor becomes dynamic 
and drives the EEG signal’s AI interpretation. Figure 2 illustrates an example of conversion of 1 h of EEG with 
two seizures to 3 s of audio.

The AI block describes the AI model utilized in our work to detect seizure events. This deep learning archi-
tecture has been previously developed in51. The model outputs the probability of seizure for a given EEG seg-
ment and is used subsequently to inform the stretching factor. Eventually, the stereo mixer combines multiple 
EEG channels into stereo audio. A simple model based exclusively on the precedence effect due to the interaural 
time delay is used to accomplish this goal by virtually situating each audio source in a 2D plane in relation to 
an imaginary listener.

Experimental design and metrics
Dataset.  The publicly available neonatal EEG dataset provided by the Helsinki University Hospital is used in 
this study58. This dataset was obtained from 79 neonates admitted to the NICU, and recordings were performed 
due to suspicion of seizures. It contains excerpts of 1–2 h multi-channel EEG recordings at a sampling frequency 
of 256 Hz stored in a referential montage with 19 electrodes positioned as per the international 10–20 stand-
ard, including a recording reference at the midline. The presence of seizures in these patients was annotated 
independently by three experts with over ten years of experience in visual interpretation of neonatal EEG. The 
annotations are represented by the timestamps for the onsets and the duration of the seizures, with no informa-
tion about the specific spatial location (EEG channel) of the seizure event. All annotated seizure events were at 
least 10 s long. According to the annotations, by consensus regarding the presence or absence of seizures in each 
recording, 39 neonates had seizures (at least one seizure event detected by all experts), 22 were seizure-free by 
consensus, and the diagnosis of the remaining 18 patients varied among experts. In this study, the majority vote 
among annotators was considered the ground truth of reference, with 47 patients with seizures and 32 with no 
seizures annotated by at least two out of three annotators.

According to the dataset annotations, considering the consensus (agreement from all three annotators) 39 
neonates had seizures, and 22 were seizure-free, while the remaining 18 patients had no consensus agreement 
regarding the presence/absence of seizures. Considering majority voting (minimum of two annotators agreeing), 
47 neonates had seizures, and 32 were seizure-free.

Design of the survey.  A total of 79 multi-channel 1–2 h EEG recordings were sonified and converted into 
79 audio samples, respectively. The level of accuracy of the developed AI-driven sonification algorithm was 
assessed in a survey. The survey participants were asked to distinguish the recordings with any sign of seizures 
from those with no sign of seizures by just listening to the audio samples. In other words, in each recording, the 
survey only asked about the presence/absence of seizures regardless of the actual number of seizure events or 
their duration.

Figure 2.   AI-driven sonification algorithm demo (EEG31 in Helsinki dataset). EEG is converted into audio and 
compressed non-uniformly in time as function of the seizure probability given by an AI algorithm (best seen in 
color).
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An online platform was developed to conduct the survey (http://​sergi​gomez​quint​ana.​github.​io/​EEGso​undSu​
rvey). As shown in Fig. 3, a simple graphical user interface was designed to display the sonified examples and 
allow a participant to provide an answer and move to the next sample.

A subset of five audio samples was chosen as training examples for the participants: one containing an obvious 
seizure, two with less obvious seizures (short and low amplitude), one with normal background EEG and one 
containing ECG artefact. The examples were carefully selected to show a good representation of the wide variety 
of sounds associated with seizure and no-seizure activity with the least amount of samples possible.

In an initial exploratory phase of the study, 5 internal non-clinical participants evaluated the developed AI-
driven sonification algorithm in several variations to tune various algorithmic hyperparameters. The following 
variations were considered in this study, with the settings chosen for the external survey outlined in bold:

(a)	 Sonification with and without an ECG removal algorithm to reduce the interference from ECG;
(b)	 Changing the shape of the probability density function from uniform to U-shape versus no reshaping;
(c)	 Minimum speed factor (for seizure-epochs) ranging between 60 and 20;
(d)	 Effect of reducing/increasing the number of EEG channels from 8 to 2/18, respectively.

After this initial analysis, the best performing variation of the algorithm was evaluated among the clinical 
interpreters (healthcare professionals, the targeted end-users of this method) using the developed online plat-
form. The results obtained from this initial exploratory phase are included as part of the Supplementary Results.

Evaluation metrics.  The kappa statistic measures the interrater reliability and agreement level between 
different annotators59. While Cohen’s kappa originally measured the interrater reliability between two raters, 
the Fleiss kappa is an adaptation of Cohen’s kappa for three or more raters60. In both cases, the kappa statistic is 
defined as:

where p is the relative observed agreement among raters, measured as the number of instances where raters agree 
divided by the total number of instances, and pe is the probability of agreement by chance.

The confidence interval of 95% of this measure is given by:

where Zs(n,α) indicates the z-score for n = 79 samples (patients) and an estimation error α = 0.05 . SDκ indicates 
the standard deviation for kappa, given by:

The kappa score can range from − 1 to + 1. The level of agreement can be interpreted depending on the kappa 
value range, from slight (0.01–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80) and almost 
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Figure 3.   Snapshot of web survey to assess the AI-driven sonification algorithm.

http://sergigomezquintana.github.io/EEGsoundSurvey
http://sergigomezquintana.github.io/EEGsoundSurvey
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perfect agreement (0.81–1.00). The kappa score has been previously used in the literature to measure the inter-
observer agreement among seizure-raters20,61.

While comparing the level of agreement between sets of different raters or annotators, it is important to pro-
vide statistical significance in order to show that a certain distribution (in this particular case, given by kappa 
mean and variance) is sufficiently similar. For this purpose, the Student t-test is used to obtain the t-statistic of 
the two sample distributions to compare. For the particular case where both distributions have the same number 
of samples ( n = 79 ), the t-statistic reduces to the following expression:

where κi and SDκi are the mean and standard deviations of the kappa statistic of each distribution. The p-value 
can then be derived from the t-statistic using the inverse of the cumulative density function (CDF) of a t-students 
distribution of n degrees of freedom.

The performance of the sonification algorithm is evaluated at the patient level, meaning that only the presence 
or absence of seizures is being evaluated. Thus, in order to establish a proper comparison with the AI algorithm 
alone, a single probabilistic output per patient was obtained by taking the maxima across time, i.e. taking the 
maximum across EEG channels and time over the smoothed probabilistic output (using the original 60 s mov-
ing average filter):

The area under the receiver-operating curve (AUC ROC)62,63 is used to measure the performance of a binary 
classification AI algorithm. In general, this metric is computed from the predictions given by a model with respect 
to the ground truth (true value). In this work, the AI-probabilistic output obtained from (5) is used as a predic-
tion, while the majority vote among the three annotators was used as a ground truth. In the best-case scenario, 
the ROC curve would converge into a squared shape of area equal to one, and worst-case scenario (predictions 
obtained randomly), the curve would approximate a right triangle of area equal to 0.5 (equivalent to flipping a 
coin). Thus, the expected AUC score for the AI algorithm would range from 0.5 to 1.

The AUC can also be used as a measure of overlap between two probability distributions—the larger the 
overlap, the smaller the AUC. In our analysis, it will be used as a measure to quantify how influential a particular 
EEG characteristic (amplitude, duration) or a system parameter is on the errors or correct answers. For example, 
in the case of type-II errors (missing seizures), large AUC values would indicate that a particular feature drives 
the “missed” decision.

Results
The survey was conducted through the web page with the link disseminated by e-mail invitations. Twenty-three 
experienced clinicians took part in the survey and answered all audio questions (without any access to the EEG 
signal). The answers of the survey participants were first contrasted with the experienced annotators who used 
a full continuous video EEG setup to annotate the signal.

Figure 4 shows the mean and the 95% confidence interval of the Fleiss’ kappa for inter-rater agreement using 
any three annotators at each time. The results similarly indicate no statistically significant difference between 
the accuracy obtained by an experienced EEGer and the healthcare professionals with access to sonified EEG 
only, with all p-values higher than 0.457.

(4)
t =

κ1 − κ2
√

SD2
κ1
+SD2

κ2

n

(5)AI = max
t

{AI[t]} = max
t

{

max
ch

{AI[ch, t]}
}

Figure 4.   Fleiss kappa while exchanging one annotator by the AI sonification survey results and its p-values.
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Figure 5 shows the performance obtained from the AI sonification survey compared to the accuracy of the 
AI algorithm alone in terms of the AUC. The red mark indicates the performance obtained by the 23 clinical 
interpreters. It can be seen that the performance of AI-driven sonification is superior to any point in the curve 
of the AI algorithm alone, implying that the additional benefits of sonification and a human interpreter in the 
loop are advantageous in terms of the accuracy of detecting patients suffering from seizures.

With an intent to have a deeper dive into the analysis of errors obtained with AI sonification, Table 1 shows 
the confusion matrix of the AI-driven sonification (clinical interpreters only), with a total of seven false alarms 
(false positives) and five missed seizure patients (false negatives).

In order to better understand the source of the errors of the algorithm, an analysis of the most influential 
factors was conducted based on the results survey to reveal what is the algorithm most sensitive to in terms of 
characterization of EEG itself and thus the resultant audio. Focusing on false negatives from Table 1, Table 2 
shows the statistics of different characteristics of the seizure-present recording in terms of seizure duration, 
EEG root mean square (RMS) amplitude of the seizures, the number of annotators agreeing, and the AI proba-
bilistic output, to compare detected (42 patients) and undetected patients (5 patients). The AUC scores which 
are reported for each characteristic can be interpreted as the quantitative measure of importance towards the 
separation between detected and undetected seizure patients. The missed patients can be mainly attributed to 
low AI probabilistic output (an AUC of 0.981) and the low amplitude of the EEG (an AUC of 0.861).

Figure 5.   The area under the curve (AUC) for the AI probabilistic output and sensitivity/specificity of the 
majority vote of the survey participants.

Table 1.   Confusion matrix for the AI sonification majority vote.

 Predicted

Actual

Positive Negative

Positive 42 7

Negative 5 25

Table 2.   Average ± CI95 for duration, amplitude RMS and average AI probability for correctly detected and 
missed seizures.

Seizure patients (N = 47) Duration (s) Amplitude RMS (μV) # Annotators agreeing Seizure probability (AI)

Detected (N = 42) 496 ± 157 67.8 ± 28.2 2.90 ± 0.0925 0.790 ± 0.0746

Missed (N = 5) 279 ± 207 18.6 ± 8.18 2.400 ± 0.629 0.228 ± 0.1058

AUC​ 0.595 0.861 0.752 0.981
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Focusing on false positives from Table 1, Table 3 shows the statistics of different characteristics of the non-
seizure patients in terms of the number of annotators disagreeing on the health status and the AI probabilistic 
output to compare the detected (25 non-seizure patients) and wrongly detected as seizure (5 patients).

The analysis of the results of all the 23 clinical interpreters revealed that the survey results were stable in 76 
out of 79 presented audio samples for the decision, requiring at least two more participants for the decision to 
be changed between seizure to non-seizure categories. Only 3 of the 79 audio samples were unstable, with 1 or 2 
extra votes required to swing the decision to the opposite. In addition, 1/3 of these unstable examples produced a 
wrong classification after the majority vote, while only 15% of the stable results turned into a wrong classification.

Additional supporting tables and figures are provided as Supplementary Results to compare the following:

•	 The survey results when conducted over non-clinical interpreters.
•	 The influence of parameter tunning during the development stage of the system.
•	 The performance variation as a function of the number of sonified EEG channels.

Discussion
EEG monitoring is considered the gold standard for detecting seizures in newborns64. However, continuous EEG 
monitoring in clinical settings is limited due to the lack of specialists onsite15. In addition, interpretation of EEG 
is a challenging task, and neurophysiologists are not available 24/7 to the clinical team. In the developing world, 
expertise availability is even scarcer65, especially in the first 24 h after birth.

Without timely neurophysiological support, healthcare professionals must rely on a simplified aEEG version 
of EEG or clinical manifestations to detect possible brain injuries. Unfortunately, both approaches are inaccurate 
in detecting seizures13,18,19,66. The misdiagnosis does not improve even when continuous electroencephalogra-
phy is available, but the timely interpretation is not. For example, in the secondary data analysis of 2 European 
multicenter cohort studies from 2 clinical trials67, with continuous EEG monitoring available, 20% of newborns 
with seizures were misdiagnosed, with some not given anti-seizure medication at all and others given medication 
before seizures started. Similarly, 258 newborns received anti-seizure medication in a clinical setting, whereas 
only 154 newborns were confirmed with seizures retrospectively using EEG. From those wrongly diagnosed, 47 
infants received multiple anti-seizure medication doses throughout the study.

Timely intervention in reducing the severity of brain damage due to encephalopathy is very important. In the 
same study67, of those who received medication correctly only, 17% received it within 1 h of seizure onset. It was 
shown that seizures treated within 1 h of seizure onset subsequently had the lowest seizure burden compared 
with infants who received anti-seizure medication after 1 h of seizure onset.

Scaling up the skills of healthcare professionals in managing asphyxia in newborns has been ranked as the 
second-highest of research priority for improving newborn health and birth outcomes by 202568.

With the increasing use of prolonged neonatal cEEG monitoring and insufficient neonatal neurophysiology 
expertise, additional support from automated seizure detection algorithms could be the solution. While several 
high-accuracy, automated, AI-driven solutions for seizure detection were reported24,34,51 to maximize the use 
and exploit the benefits of such an automated system, the AI models used have to be explainable and keep the 
medical professional in the loop. These are some of the key requirements for more pervasive use of such tools69. 
Explainable AI is a key enabler that augments the physician’s capabilities without taking away the decision mak-
ing. By developing human-in-the-loop AI, we may enable an ideal symbiosis of human experts and AI models, 
exploiting the strengths of both while at the same time overcoming their respective limitations70,71.

The discussion of the Supplementary Results can be found in Supplementary Discussion.

AI sonification versus human annotators.  The Fleiss kappa scores presented in Fig. 4 indicate that the 
accuracy obtained by a human interpreter analysing the sonified 1–2 h segment of EEG is not statistically differ-
ent from that of the experienced EEG interpreters analysing full multi-channel EEG. The kappa statistics were 
computed using the asymptotic definition as in20,59,60. Bootstrap methods72,73 have also been tried in this study to 
estimate the CI95 of the kappa statistics, with minor differences observed.

In20, three experienced EEG experts reviewed over 4000 h of multi-channel EEG in 120 h, which corresponds 
to the rate of ~ 2 min per hour of EEG. The number of identified neonates with seizures was different for each 
reviewer, while the agreement on seizure events was only 78%. The AI-driven sonification compressed 1 h of 
EEG to just 5 s of audio (approximate average across the whole dataset) by focusing on the important segments 
of EEG (those with seizures), while remarkably achieving the same level of performance with virtually no train-
ing required.

One of the main bottlenecks of the more pervasive usage of EEG monitoring systems is the lack of availability 
of interpretation expertise 24/7. Partly because of that, methods like aEEG aimed to simplify visual interpreta-
tion. However, some focal, low-amplitude, and brief seizures may be missed66. The general cost of the equipment 

Table 3.   Average ± CI95 for AI probability for correctly detected seizures and missed seizures.

Non-seizure patients (N = 32) # Annotators disagreeing Seizure probability (AI)

Detected (N = 25) 0.280 ± 0.188 0.287 ± 0.075

False alarms (N = 7) 0.428 ± 0.477 0.526 ± 0.125

AUC​ 0.574 0.851
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can be an additional limitation, especially in the developing world. These limitations have triggered the research 
towards the brain stethoscope project, a low-cost and intuitive solution for quick EEG review74–76.

A technological framework to assist the early detection of seizure events is proposed here; acquired EEG 
data would be analyzed through an always-on AI system that would raise the alarm to notify the clinical staff 
in the NICU immediately. The presented EEG acoustic interpretation would then be available on-demand for 
the clinical personnel to review the seizure event (reported by AI) intuitively, with an accuracy proven to be on 
par with trained EEG experts at detecting seizure patients. That would enable higher confidence for the clinical 
personnel to call for a full EEG review while reducing the burden of the EEG review process amongst paediatric 
neurologists.

AI‑driven sonification versus standalone AI.  As shown in the previous section, the ground truth for 
this dataset is subject to interobserver disagreement. However, to further analyse the algorithm performance, a 
single representation of the ground truth needs to be chosen, and this dataset was represented with consensus 
annotations across the three neurophysiologists who annotated the EEG.

When considering a human interpreter in an AI-driven decision support system, it is important to quantify 
the gain obtained by the designed system with respect to the task performed by AI alone. From Fig. 5, it can be 
seen that there is a clear benefit to having the human in the loop of decision making. The AUC illustrates the 
performance of the AI in a curve that shows the sensitivity/specificity trade-off for all possible AI probabilistic 
thresholds. Although the performance is improved with respect to the AI system alone, even a perfectly accurate 
AI system would require some human verification ultimately, especially in clinical settings. The designed method 
provides intuitive interpretability to the EEG signal and keeps the human factor in the loop.

DL methods do not always learn intuitively understandable discrimination mechanisms, so they are often 
referred to as black-box AI systems77. Although the general trend for ML and AI is to develop autonomous sys-
tems capable of detaching from having a human supervisor in the loop78, medicine is exceptional in this regard: 
understanding how and why a machine decision has been made is essential among medical professionals79. In 
addition to that comes the new European General Data Protection Regulation (GDPR), in which black-box 
methods will not be allowed to be used in business if they cannot explain why a decision has been made80. Here, 
the paradigm is different; AI is not meant to decide on the data directly but to be used as an attention mecha-
nism to assist doctors’ data interpretation. From this perspective, the proposed system is GDPR-compliant, 
and it also contributes to making AI more approachable and trusted among medical professionals, improving 
human–computer interactions.

Analysis of errors.  The accuracy with respect to the consensus ground truth is shown in Table 1 in the form 
of a confusion matrix, from where a sensitivity (0.89) and specificity (0.78) can be inferred. The reported sensi-
tivity values for detection of seizure presence in a patient for an aEEG, which also aims to simplify standard EEG 
visual analysis for non-EEG experts in the NICU, ranges from 0.22 to 0.57, with no false positives among the 
control group81. However, the ictal cohort of patients was significantly larger than the control group. Other stud-
ies with a more balanced but smaller cohort have shown that aEEG might result in overdiagnosis with respect to 
standard EEG, with high sensitivities (0.80) but specificities as low as 0.5082. Our sound-based solution has been 
evaluated in a relatively balanced dataset (47 records with seizures vs 32 without any), showing strength in both 
sensitivity and specificity.

Only five training examples were preselected as training for the users, trying to be sufficiently representative of 
the diversity of each class (seizure versus background). Still, these may not be sufficient to depict all the possible 
variations in complex EEG signals. EEG requires a lot of understanding of its underlying characteristics to be 
accurately interpreted. Previous studies showed that the sensitivity at visually detecting seizure events could be 
between 2 to 6 times higher in those with previous experience at EEG analysis83. In this regard, it is still remark-
able that the achieved accuracy with such few training examples could improve further with a wider training set.

Misses.  The detection of the presence of seizure events can be seen as a function of (a) the duration of the audio 
that covers seizure events; and (b) the discriminatory perceptual patterns in each seizure event, such as pitch 
changes and the volume.

The duration of audio, in turn, is a function of the own duration of the seizure events and the AI compression 
factor, which relies on the ability of AI to detect those events. From Table 2, it can be seen that the duration of 
the correctly detected seizures is, on average, twice longer than the duration of the missed seizures. The detec-
tion of short seizures has been historically challenging for both visual interpretation and automatic detection; 
the inter-rater agreement is typically lower on short seizures20, and the length of the seizure often impacts the 
performance of the seizure detection algorithms, showing detection rates of 70% for seizures shorter than 1 min 
versus more than 95% for seizures longer than 4 min24.

The role of the amplitude in the misdetection of seizure patients is estimated to be larger than the role of 
duration in this study, with an AUC of 0.861 compared to 0.595 for the duration. The amplitude of the EEG 
signals is significantly larger for the detected patients. In this sense, the aEEG has proven to be less effective at 
detecting low-amplitude seizure events66.

The AI probability plays the most significant role in this algorithm as it affects both the duration and the vol-
ume, with an AUC of 0.981. It can be seen that it is much lower on the missed patients than that on the detected. 
While the algorithm relies on AI to start with, it is shown to perform better than AI alone. The perception of the 
human ear can combine the benefits of being exposed to perceptual seizure characteristics in audio, such as pitch 
changes and duration, and compensate each other when one fails to convey discrimination.
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Finally, more annotators agree on correctly detected seizure patients than missed seizure patients, with an 
AUC of 0.752. This indicates that some of the errors of the algorithm are subjective, and some annotators might 
find them to be correct instead of errors.

False alarms.  It can be seen from Table 3 that in the wrongly detected seizure patients, more annotators disa-
gree than the correctly identified non-seizure patients. However, an AUC of that characteristic is much lower 
than that of the missed seizure patients from Table 2 (0.574 vs 0.752), indicating that this cannot be considered 
the main factor in false alarms. The AI probability is lower in the correctly identified non-seizure patients (an 
AUC of 0.851). Again, the AUC is smaller than that of missed seizures reported in Table 2. False alarms are a 
product of detecting something abnormal in the audio stream and making a judgment call on whether this 
abnormality is sufficiently different from the background, often forgetting that the pitch evolution must be pre-
sent for it to be labelled as a seizure. False alarms can be further decreased with more training examples, which 
will increase the coverage of heard situations and thus increase the listener’s confidence and competence. In this 
study, the results are obtained with virtually no training, and only five indicative examples were used for training.

Limitations of the study.  A public dataset of neonatal EEG was utilized in this study. The dataset com-
prises 79 multi-channel 1–2 h EEG recordings annotated by three experts. The usage of the dataset allows for 
complete replication of the results obtained in this study, the reproduction of the resultant sounds by other 
researchers and assessing the level of agreement with other annotators. Certain limitations are inherited with 
this dataset. The data are preselected. Further study needs to be conducted to assess the performance in a real 
clinical environment by retrospectively analysing long unedited continuous EEG and mimicking the scenario 
outlined in this study.

The definition of seizure presence considered in this study was that the EEG contains at least one 10 s-long 
seizure. However, a more clinically relevant threshold could be used as the definition of seizure presence84,85. 
Thus, the presented results might inflate the number of false positives with respect to the clinical relevant seizures.

The clinical interpreters were comprised of experienced healthcare professionals, primarily neonatologists 
with 10+ years of experience. Participation in the survey was conducted through personal invitation. Because a 
particular audience was targeted, the resultant clinical cohort is of moderate size. However, the survey requires 
a certain time commitment, and healthcare professionals are busier than ever, facing the difficulties brought 
by the pandemic of COVID-19. During the survey design, many initiatives were researched to limit the listen-
ing burden by randomly subsampling the sounds for the survey from the dataset or increasing the speed of 
sonification to reduce the number of audio questions. These initiatives were found to not significantly shorten 
the survey duration while posing extra challenges in the analysis of results and test power. In the end, it was 
agreed to survey all 79 examples. The 23 clinicians who participated in the survey answered all 79 questions. To 
compensate for the moderate number of participants, the majority vote was utilized to represent the accuracy 
of the AI-driven sonification. The analysis of the results revealed that 76 out of 79 examples for the decision to 
be changed between seizure to non-seizure categories indicated that the majority vote label is stable in the vast 
majority of examples. Also, more unstable examples produced a wrong classification after the majority vote than 
the stable examples (33% vs 15%), showing that the majority of the errors are concentrated on the non-consensual 
and possibly less obvious examples.

In the comparison of the AI-driven sonification performance with the EEG annotators, it can be argued that 
the latter had access to the video and EEG, which allowed for the influence of many observable physiological 
artifacts whereas those had to be taken care of in an algorithmic manner with the AI-driven sonification.

The study only evaluates the ability of the AI-driven sonification algorithm with the human interpreter to 
detect the presence or absence of seizures in a given EEG segment of typically 1–2 h duration. The algorithm 
is not designed to detect individual seizure events or report their duration. The latter is much more critical for 
prognostication purposes which can be done offline and for which pure AI-based seizure detection algorithms 
can be used.

Availability of the sounds, code and AI models.  The resultant sounds of the AI-driven sonification 
algorithm generated from the open-source dataset can be downloaded via github https://​github.​com/​Sergi​
Gomez​Quint​ana/​EEGso​undSu​rvey/​tree/​main/​html/​audio.

Conclusions
A new method that allows for acoustic interpretation of complex neonatal EEG brain signals is proposed. A 
survey has been conducted to assess the level of accuracy of this method among clinical personnel with no EEG 
interpretation experience. The overall accuracy of detecting the seizure presence in an EEG recording was meas-
ured as Sensitivity of 0.89 and Specificity of 0.78, evaluated on twenty-three healthcare professionals (clinical 
interpreters). This compares favourably with the reported aEEG accuracy for the same task. In fact, the obtained 
accuracy is comparable with trained EEG interpreters with years of specialized experience. The method facilitates 
the review of 1 h of EEG in just 5 s, while the time typically spent on EEG visual assessment is 2 min per hour of 
EEG. The AI-driven solution outperforms the AI algorithm alone by allowing the human interpreter to leverage 
both the seizure characteristics and AI-driven attention mechanisms. The intuitiveness behind acoustic interpre-
tation allows this method to be used almost off-the-shelf—just five examples were presented to the participants 
prior to the survey, implying less than 1 min of training for obtaining these results.

The AI-driven sonification shows a great potential to simplify the task of detecting patients suffering from 
seizures. While the method is mainly oriented toward non-EEG expert medical professionals on the frontline 

https://github.com/SergiGomezQuintana/EEGsoundSurvey/tree/main/html/audio
https://github.com/SergiGomezQuintana/EEGsoundSurvey/tree/main/html/audio
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in the NICU, neurologists and neurophysiologists can similarly benefit from acoustic interpretation to speed 
up visual EEG assessment.

The proposed method serves as a human–computer interface by providing an extra layer of explainability to 
potentially any AI algorithm. Future research is needed to quantify the added value of acoustical interpretation 
of EEG as a function of AI algorithm performance.

Data availability
The datasets analysed during the current study were made publicly available by the Helsinki University Hospital 
through Zenodo repository under creative commons license, https://​doi.​org/​10.​5281/​zenodo.​25471​47.
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