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Abstract

Rationale

Vital signs follow circadian patterns in both healthy volunteers and critically ill patients,

which seem to be influenced by disease severity in the latter. In this study we explored the

existence of circadian patterns in heart rate, respiratory rate and skin temperature of hospi-

talized COVID-19 patients, and aimed to explore differences in circadian rhythm amplitude

during patient deterioration.

Methods

We performed a retrospective study of COVID-19 patients admitted to the general ward of a

tertiary hospital between April 2020 and March 2021. Patients were continuously monitored

using a wireless sensor and fingertip pulse oximeter. Data was divided into three cohorts:

patients who recovered, patients who developed respiratory insufficiency and patients who

died. For each cohort, a population mean cosinor model was fitted to detect rhythmicity. To

assess changes in amplitude, a mixed-effect cosinor model was fitted.

Results

A total of 429 patients were monitored. Rhythmicity was observed in heartrate for the recov-

ery cohort (p<0.001), respiratory insufficiency cohort (p<0.001 and mortality cohort (p =

0.002). Respiratory rate showed rhythmicity in the recovery cohort (p<0.001), but not in the

other cohorts (p = 0.18 and p = 0.51). Skin temperature also showed rhythmicity in the

recovery cohort (p<0.001), but not in the other cohorts (p = 0.22 and p = 0.12). For respira-

tory insufficiency, only the amplitude of heart rate circadian pattern increased slightly the

day before (1.2 (99%CI 0.16–2.2, p = 0.002)). In the mortality cohort, the amplitude of heart

rate decreased (-1.5 (99%CI -2.6- -0.42, p<0.001)) and respiratory rate amplitude increased

(0.72 (99%CI 0.27–1.3, p = 0.002) the days before death.
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Conclusion

A circadian rhythm is present in heart rate of COVID-19 patients admitted to the general

ward. For respiratory rate and skin temperature, rhythmicity was only found in patients who

recover, but not in patients developing respiratory insufficiency or death. We found no con-

sistent changes in circadian rhythm amplitude accompanying patient deterioration.

Introduction

Many elements of human physiology follow a circadian rhythm to anticipate and react to envi-

ronmental changes throughout the day [1]. Acute disruption of this cycle is associated with

immune dysregulation [2], delirium [3] and even mortality at the intensive care unit (ICU) [4,

5]. Hospitalization can contribute to disruption of circadian patterns due to artificial light,

noise, (sedative) medication, and the fact that the individual sleep-wake cycle of a patient has

to make way for the hospital routine [1]. In addition, the illness itself can cause circadian dis-

ruption, for example in the case of systemic inflammation [1, 6–9]. Neuroinflammation and

neurodegeneration specifically might alter the regulation genes, or clock genes, responsible for

a normal 24-hour cycle. Coronavirus disease 2019 (COVID-19) has several characteristics that

may lead to disruption of circadian rhythms. COVID-19 is accompanied by sleep disturbance

[10], neuroinflammation [11], and in severe cases systemic inflammation and encephalopathy

[12–14]. Since July 2020, patients with COVID-19 are treated with dexamethasone [15], which

can affect the circadian pattern of the human metabolism depending on time of administration

[16]. Moreover, circadian patterns of heart rate and respiratory rate can be disturbed by acute

hypoxia [17], a common symptom of severe COVID-19.

Several vital signs have shown to follow a circadian rhythm [18–20]. Even in critically ill

patients admitted to the ICU, where vital signs are highly influenced by medication and venti-

lation, circadian patterns were found in respiratory rate, heart rate, blood pressure and tem-

perature [21]. Previous research in ICU settings has shown that circadian rhythm becomes

increasingly more pronounced in recovering patients (who will eventually be discharged

home), as opposed to patients who will not survive or were discharged with palliative care

[21]. However, circadian patterns in vital signs thus far have mainly been studied in either

healthy volunteers, or in critically ill patients at the ICU (where continuously recorded data is

readily available). Since the development of wireless sensors, continuous monitoring of vital

signs at the general hospital ward has become more common [22]. Data can be used for visual

monitoring by clinicians, and for the development of clinical decision support models, to

detect deterioration of patients at an earlier stage. However, the alarm strategies of many sys-

tems are mainly based on single threshold breaches. Aspects of vital sign trends, like a circa-

dian pattern, are not considered, even though incorporating vital signs trends has the potential

to improve prediction models and alarm strategies considerably [23, 24]. Moreover, changes

in circadian patterns themselves could be valuable predictors of deterioration. A recent study

used changes in circadian rhythm characteristics to identify SARS-CoV-2 infection and pre-

dict COVID-19 diagnosis [25].

In this exploratory study, we aimed to answer three related research questions. First, we

assessed whether circadian rhythms can be observed for heart rate, respiratory rate and skin

temperature in COVID-19 patients admitted to a general hospital ward. Subsequently, we

assessed to what extent these circadian rhythms exist in patients who develop respiratory insuf-

ficiency, patients who died, and patients who recovered without developing respiratory
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insufficiency. Lastly, we explored whether changes in the amplitude of circadian rhythms of

vital signs can be observed in deteriorating patients, and could therefore be possible predictors

of deterioration.

Methods

We performed a retrospective cohort study of patients who were diagnosed with COVID-19.

Patients were offered the chance to opt-out of retrospective data analyses during hospital regis-

tration and again at hospital discharge, according to the institutional protocol. A waiver for

ethical review was obtained from the medical ethical research committee Utrecht (MERC-20-

365). The study was conducted according to the principles of the Declaration of Helsinki and

the General Data Protection Regulation [26, 27].

Setting

During the pandemic, a continuous wireless monitoring system for vital signs was deployed at

the COVID-19 cohort ward of a tertiary medical center in Utrecht, the Netherlands, starting

April 1, 2020. This system recorded heart rate, respiratory rate and skin temperature twice per

minute, using a wearable wireless patch sensor (Biosensor Voyage, Philips Electronics Nether-

lands BV) and peripheral oxygen saturation (SpO2) via a finger pulse-oximeter (EarlyVue

VS30, Philips Electronics Netherlands BV). The patch sensor was attached on the left hemi-

thorax, approximately 2 cm sub clavicular, and was replaced every three days following manu-

facturer instructions. Patients with a pacemaker did not receive a sensor since ECG-derived

respiratory rate measurements are unreliable in paced rhythms. Heart rate, respiratory rate

and oxygen saturation was real-time available for all caregivers to support care. The values for

skin temperature were not directly available, since the clinical relevance of skin temperature is

unsure and not yet integrated in general hospital care.

Data collection

Patients were included starting April 1, 2020 until March 1, 2021. Inclusion was stopped

because the manufacturer stopped delivering these sensors to focus on the production of other

sensors, but the replacement did not meet the accuracy requirements. All patients with con-

firmed COVID-19 and available continuous sensor data were included. To be able to describe

the cohort, baseline characteristics were recorded from the electronic patient record, including

the Charlson Comorbidity Index for predicting 1-year mortality [28].

Data selection

Patients were divided into three groups: patients who recovered without experiencing respira-

tory insufficiency, and patients with severe clinical deterioration, divided into patients who

developed respiratory insufficiency and patients who died. We chose these three groups since

respiratory insufficiency and mortality are both outcomes of severe patient deterioration, but

follow a different course. Patients seldom died unexpectedly, and often received palliative care

in the last days before death. Therefore we decided to analyze this group separately. If a patient

developed respiratory insufficiency at any point during admission, he or she was included in

the respiratory insufficiency cohort, and not in the recovered cohort. If a patient developed

respiratory insufficiency and died while being monitored, he or she was included in the mor-

tality cohort instead of the respiratory insufficiency. Respiratory insufficiency was defined as

the need for 15 l/min oxygen therapy, high flow oxygen therapy or mechanical ventilation,

whichever came first. We did not deem ICU admission a suitable endpoint since a substantial

PLOS ONE Circadian patterns of vital signs in COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0268065 July 7, 2022 3 / 14

https://doi.org/10.1371/journal.pone.0268065


part of the population had treatment restrictions preventing them from ICU admission, and

the hospital regularly struggled with capacity problems at the ICU. Instead, we chose the end-

point hypoxic respiratory insufficiency, which better reflects the starting point of severe illness

in COVID-19. The time and date of onset of respiratory insufficiency was manually collected

from the electronic patient record.

Since the length of stay and length of continuous monitoring varied among patients, we

chose to only include 3 days (72 hours) of data for each patient. This way we aimed to avoid

overrepresentation of patients with more data. For patients in the respiratory insufficiency

cohort, we selected the 72 hours before onset of respiratory insufficiency. For patients who

died, we selected the 72 hours of data preceding death. Since respiratory insufficiency usually

occurred within the first 72 hours (median 33 hours) of admission, we selected the first 72

hours of data for patients in the recovery group as a comparable control. Since at least 4 hours

of data was needed for statistical analysis, patients with less than 4 hours of continuous data in

the selected 72-hour timeframe were excluded.

All continuous vital sign data was validated before use: physiologically improbable data was

removed using a predefined computer algorithm. Since our cohort included dying patients, we

used wide limits for improbable data (for respiratory rate <1/min &>80/min; for heart rate

<30/min &>280/min; for skin temperature < 25˚C). Artifacts in respiratory rate and heart

rate were filtered by removing large abrupt changes that lasted for less than 2 minutes (for

respiratory rate a change of>20/min, for heart rate a change of>25/min). To ensure we only

used skin temperature data of periods that the wearable was attached to the patient, and not

the data of the preparation period, we only used skin temperature data between the first and

last valid heart rate measurements. The first 10 measurements (5 minutes) of skin temperature

data of each patient were removed, since the sensor needed several minutes to warm up.

Statistical analysis

To limit the impact of short-lasting outliers and minutes with missing data further, the median

of each vital sign per fifteen-minute segment was calculated for each patient. Subsequently we

calculated the overall mean of these medians, including a 95% confidence interval (CI) and the

95% upper and lower limit of all measurements. Data was plotted for visual evaluation. For

quantitative evaluation we made use of a cosinor model. A cosinor model is a type of non-lin-

ear model used to asses repetitive patterns, such as circadian rhythms [29]. A cosinor consists

of several components. The MESOR (midline estimating statistic of rhythm) is the rhythm

adjusted mean of the modelled variable, e.g. the rhythm adjusted mean heart rate. The ampli-

tude is the measure of the extent of predictable change within the cycle, e.g. 2 heart beats/min.

Two times the amplitude is the difference between the highest and lowest point of the cosinor

regression line. The acrophase represents the timing of overall high values in a cycle, expressed

in (negative) degrees, where the reference time is set to 0˚, and a full period is 360˚. The period

is the (expected) duration of one cycle, which is 24 hours for circadian cycles. For this study,

we fitted two separate cosinor models. First, we used a cosinor model of the population mean

to estimate the mean coefficients of the three cohorts and to detect rhythmicity, using R pack-

age ‘cosinor2’ [29]. This model illustrates mean differences between the cohorts. Rhythmicity

was determined by the fit of the cosinor model using the F-ratio. However, this model does

not account for correlation within individual patients and cannot assess longitudinal changes

in data. Therefore, we fitted a cosinor mixed effects model as second model, using R package

‘cosinoRmixedeffects’ [25, 30]. This allows for random MESOR, amplitude and acrophase per

patient. We included an interaction term with the day on which measurements were taken, to

see if coefficients changed over the three-day observation period. To estimate means and mean
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differences, we used a bootstrapping method with 500 simulations [30]. For more elaborate

explanation of this method we refer to the article by Hirten et al. [25]. A p-value of 0.01 was

deemed to be statistically significant for quantitative analysis. R software version 4.0.3 (R foun-

dation for Statistical Computing, Vienna, Austria 2021) was used for all analyses.

Results

Between April 1st 2020 and March 1st 2021, a total of 429 COVID-19 patients were continu-

ously monitored at the ward. Of these, 368 could be included for analysis: 296 patients who

recovered without developing respiratory insufficiency, 27 patients who died, and 45 patients

who developed respiratory insufficiency and either recovered, or died without being moni-

tored (Fig 1). Table 1 shows a description of the cohort. Note that patients who died were

older, had more comorbidities, received dexamethasone less often and had a higher rate of ‘Do

not ventilate’ orders.

Assessment of rhythmicity

Fig 2 shows the raw overall mean of the vital signs in the three cohorts. Both the respiratory

insufficiency and mortality cohort had a small sample size and wide confidence intervals.

Rhythmicity in mean heart rate was found in all cohorts (recovery p<0.001, respiratory insuf-

ficiency p<0.001, mortality p0.002) (Table 2). Rhythmicity in mean respiratory rate and mean

skin temperature was only found in the recovery cohort (resp. p<0.001 and p<0.001).

Fig 1. Flowchart of patient inclusion and data selection.

https://doi.org/10.1371/journal.pone.0268065.g001
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Changes in circadian pattern amplitude

The cosinor characteristics for each cohort per day are presented in Fig 3 and S1 Fig. The

MESOR values for heart rate and respiratory rate were lower in the recovery cohort than the

Table 1. Patient characteristics and median duration of recorded vital signs during three-day observation period.

All Recovery Resp. insuf. Mortality
Number of patients 368 296 45 27

Age (median, IQR) 65 (55–74) 63.5 (55–72) 64 (56–73) 76 (71–82)

Male sex (n, %) 221 (60.0%) 181 (61.1%) 25 (55.6%) 15 (55.6%)

CCI (median, IQR) 3 (1–4) 2 (1–4) 3 (2–4) 4 (4–6)

Dexamethasone administration (n, %) 279 (75.8%) 223 (75.3%) 38 (84.4%) 18 (66.7%)

‘Do not ventilate’ order (n, %) 91 (24.7%) 57 (19.3%) 10 (22.2%) 24 (88.9%)

Length of stay (median days, IQR) 7 (4–11) 6 (4–10) 15 (10–31) 8 (5–13)

Median (IQR) hours of data per patient during 72-hour timeframe • Heart rate 72 (46.8–72) 72 (60–72) 34 (25.8–70.3) 68.8 (26.4–72)

• Respiratory rate 62.1 (38.3–72) 63.5 (48.9–72) 31.5 (18.7–51.9) 60.5 (17.3–72)

• Skin temperature 63.6 (37.8-63-6) 72 (52.5–72) 30.8 (12.4–51.9) 60 (15–72)

Resp. insuf.: hypoxic respiratory insufficiency, CCI: Charlson Comorbidity Index based on 1 year mortality, IQR: interquartile range

https://doi.org/10.1371/journal.pone.0268065.t001

Fig 2. Mean of vital signs during three day observation period in each cohort.

https://doi.org/10.1371/journal.pone.0268065.g002
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respiratory insufficiency cohort, but higher in the mortality cohort. In the recovery cohort, an

increase of amplitude was seen for all parameters over the course of the three days. The ampli-

tude for heart rate significantly increased on day 2 (difference of 0.90 (99%CI 0.64–1.2,

p<0.001)) and from day 2 to 3 (difference of 0.53 (99%CI 0.21–0.85, p<0.001)) (Table 3).

Respiratory rate amplitude increased from day 2 to 3 (difference of 0.25 (99%CI 0.14–0.35,

p<0.001)) and skin temperature amplitude increased from day 1 to 2 (difference of 0.10 (99%

CI 0.06–0.13, p<0.001). For the respiratory insufficiency cohort, only heart rate showed a clear

increase in amplitude (difference day 2 to day 3 of 1.2 (0.16–2.2, p = 0.002)). Skin temperature

amplitude initially decreased (difference day 1 to 2 of -0.31 (99%CI -0.48- -0.14, p<0.001))

and later increased (difference day 2 to 3 of 0.16 (99%CI 0.00–0.23, p = 0.006). In the mortality

cohort, heart rate amplitude decreased from day 1 to 2 (difference of -1.5 (99%CI -2.6- -0.42,

<0.001), and respiratory rate amplitude increased from day 2 to 3 (difference of 0.72 (99%CI

0.27–1.3, p = 0.002).

Discussion

In patients admitted with COVID-19, we could confirm the presence of a circadian rhythm of

heart rate. For respiratory rate and skin temperature, a circadian pattern could only be

observed in patients who ultimately recovered. The amplitude of heart rate circadian rhythm

increased slightly the day before respiratory insufficiency. In dying patients, a slight decrease

in heart rate amplitude and an increase in respiratory rate amplitude can be observed in the

days before death. Although statistically significant, these differences were small.

The existence of a circadian rhythm in vital signs has been well established [18–20]. How-

ever, in daily clinical practice, this physiological rhythm is hardly considered. With the advent

of wireless continuous vital signs monitoring, patterns in vital signs are gaining attention. A

recent study on cardiovascular changes in COVID-19 found a repetitive pattern in cardiovas-

cular parameters and hypothesized this to be part of a circadian rhythm [31]. Our study con-

firms the existence of a circadian pattern in vital signs of hospitalized COVID-19 patients. A

study performed in multiple intensive care units demonstrated circadian patterns for blood

pressure, heart rate, respiratory rate and temperature [21]. This study found that the difference

between the peak and nadir of vital signs is reduced in patients who died compared to patients

who recovered. This led to the hypothesis that a decrease in circadian rhythm amplitude might

Table 2. Coefficients of cosinor models. Recovered patients are compared to patients with respiratory insufficiency and deceased patients.

Recovered (95%CI) Resp. insuf. (95%CI) p-value of difference Died (95%CI) p-value of difference
Heart rate (/min)

• MESOR 74.7 (73.3–76.1) 78.9 (73.9–84.0) 0.04 95.3 (88.0–102.5) <0.001

• Amplitude 6.9 (6.4–7.5) 5.1 (3.1–7.1) 0.76 4.0 (2.0–5.9) 0.58

➢ Rhythmicity p<0.001 p<0.001 p = 0.002

Respiratory rate (/min)

• MESOR 20.7 (20.3–211) 22.7 (21.0–24.5) 0.001 26.0 (24.4–27.6) <0.001

• Amplitude 1.0 (0.7–1.2) 1.4 (-0.24–2.9) 0.90 1.0 (-0.86–3.0) <0.001

➢ Rhythmicity p<0.001 p = 0.18 p = 0.51

Skin temperature (˚C)

• MESOR 34.2 (34.1–34.3) 33.2 (31.4–34.8) 0.003 34.6 (34.1–35.1) 0.07

• Amplitude 0.39 (0.28–0.50) 1.5 (-0.2–3.2) 0.66 0.32 (0.02–0.62) 0.95

➢ Rhythmicity p<0.001 p = 0.22 p = 0.12

Resp. insuf.: respiratory insufficiency, MESOR: midline estimation statistic of oscillation

https://doi.org/10.1371/journal.pone.0268065.t002
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contain prognostic information. In our study, we could not confirm a consistent decrease of

circadian rhythm amplitude in deteriorating COVID-19 patients. Some vital signs even

showed a slight increase of circadian pattern amplitude during of the observation period. The

Fig 3. Progression of cosinor characteristics over the course of three days for heart rate, respiratory rate and skin

temperature, stratified by cohort.

https://doi.org/10.1371/journal.pone.0268065.g003
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method we used here, however, is different. In the study by Davidson et al., the peak-nadir

excursion was used to quantify the circadian rhythm, which is somewhat different from the

cosinor amplitude and might be more influenced by temporary peaks and troughs. These

methodological differences might explain the observed differences in results.

Although we did not find a decrease in amplitude values for deteriorating patients, we did

find a lack of rhythmicity in mean respiratory rate and mean skin temperature in the days

leading up to respiratory insufficiency or death. This could be a sign of a generalized disturbed

circadian rhythm in these patients. Changes in heart rate and respiratory rate during the day

are mostly caused by changes in arousal and level of muscle activity, independent of the time

of day [19, 32–34]. If patients are active during the night, e.g. due to severe illness and/or delir-

ium, they could have similar vital signs during these periods as during the day, resulting in a

lack of rhythmicity. Periods of fever and hypoxemia could also result in temporary deviations

in heart rate and respiratory rate, disrupting the circadian pattern even further.

Patients who died at the hospital ward showed no rhythmicity of respiratory rate and skin

temperature, and a decrease of heart rate amplitude two days before death. This is in accor-

dance with the observations of Davidson et al. 2021 [21]. The decrease of circadian rhythm

might be caused by several factors. Severe illness has shown to influence clock gene expression

and melatonin excretion [35, 36]. Older age is also accompanied with lower levels of melatonin

[37]. Comorbidities and medication suppressing the regulation of vital signs, such as metopro-

lol, could have influenced circadian patterns too. Furthermore, circadian rhythms are influ-

enced by light input [37]. As part of palliative care, patients were often relocated to single

rooms with closed blinds for comfort. These patients also often received sedative medication

such as opioids and benzodiazepines, blurring the difference between wake and sleep. This

might have played a role in the lack of rhythmicity in this cohort. Lastly, patients often died

after more than 72 hours of admission. The selected data therefore represents a later part of

the admission than the data of the other two cohorts. The longer hospitalization time might

have added to the disruption of circadian rhythm. In dying patients, continuous monitoring

was often discontinued as part of palliative care too, so unfortunately only few patients could

be included for analysis.

Skin temperature showed a circadian pattern opposite from heart rate and respiratory rate,

with its peak at night instead of during the day. Core temperature usually drops during the

night due to an increase of skin temperature and the subsequent excess heat loss [38–40]. This

Table 3. Differences in cosinor mixed effect model amplitudes (difference, 99%CI) between days for the A. recovery cohort, B. respiratory insufficiency cohort, and

C. mortality cohort.

day 1 vs day 2 p-value day 2 vs day 3 p-value
A. Recovery

• Heart rate 0.90 (0.64–1.2) <0.001 0.53 (0.21–0.85) <0.001

• Respiratory rate 0.01 (-0.08–0.10) 0.82 0.25 (0.14–0.35) <0.001

• Skin temperature 0.10 (0.06–0.13) <0.001 0.00 (-0.04–0.03) 0.80

B. Respiratory insufficiency

• Heart rate 0.20 (-1.2–1.5) 0.71 1.2 (0.16–2.2) 0.002

• Respiratory rate -0.15 (-0.60–0.26) 0.39 0.12 (-0.19–0.49) 0.36

• Skin temperature -0.31 (-0.48- -0.14) <0.001 0.16 (0.00–0.23) 0.006

C. Mortality

• Heart rate -1.5 (-2.6- -0.42) <0.001 0.40 (-0.75–1.6) 0.39

• Respiratory rate 0.01 (-0.34–0.35) 0.96 0.72 (0.27–1.3) 0.002

• Skin temperature -0.04 (-0.19–0.09) 0.51 -0.02 (-0.16–0.11) 0.68

https://doi.org/10.1371/journal.pone.0268065.t003

PLOS ONE Circadian patterns of vital signs in COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0268065 July 7, 2022 9 / 14

https://doi.org/10.1371/journal.pone.0268065.t003
https://doi.org/10.1371/journal.pone.0268065


is, however, only true for distal body parts. In our study, we used a sensor that was attached to

the chest, two centimeter sub clavicular. In such a proximal location, the skin temperature is

expected to follow the same pattern of the core temperature [38], instead of the inversed pat-

tern that we observed. Why this phenomenon occurred is unknown.

Strengths and limitations

This study shows that a circadian rhythm of vital signs is present in hospitalized COVID-19

patients. All patients were admitted with the same disease, with a known pattern of deteriora-

tion, and for each patient a large set of data points was available for analysis. This made it pos-

sible to not only look at the differences between cohorts, but also to analyze more closely the

changes of amplitude during deterioration. Our study also has multiple limitations. Even

though the overall sample size was large, the respiratory insufficiency and mortality cohorts

were relatively small, resulting in wide confidence intervals. The data selection of the mortality

cohort was of a later stage of admission than the other two cohorts, introducing ‘hospitaliza-

tion time’ as a possible confounder. In future research, this could be avoided by using a case-

control design matched by length of hospital admission. Although previous studies have

shown differences in vital signs patterns between men and women [21, 31, 41], we decided not

to do a sub analysis based on sex due to the limited sample size of two of the cohorts. Secondly,

all patients in our study were admitted with COVID-19, and therefore conclusions can only be

drawn regarding this specific population. Lastly, skin temperature can be modified by many

factors, including environmental temperature, clothing, showering, and exercise. The effect of

miscellaneous factors, such as leakage of airflow from underneath an oxygen mask, are

unknown. The clinical relevance and interpretation of skin temperature therefore is uncertain.

Nonetheless, the observation that a circadian rhythm is present for skin temperature in

COVID-19 patients who recover could be a valuable continuously measured vital parameter

for the future.

Use in predictive modelling and clinical practice

Continuous monitoring is used increasingly outside high care units in an effort to detect dete-

rioration timely [22]. In COVID-19 too, the trajectory of vital signs is hypothesized to aid in

the detection of respiratory and cardiovascular decline [31]. Predictive models and alarm strat-

egies could help clinicians to recognize deterioration, without producing too many false alarms

[42]. The performance of these models might be influenced by the existence of a circadian

rhythm. Previous research has already shown that accounting for differences in vital signs val-

ues between day and night may reduce alarm rate in various models at the general ward [24].

The next step in predictive modeling with continuous data is trend analysis, since changes of

vital signs might be better predictors than single values [43, 44]. Both model builders and hos-

pital professionals should be aware however that a rise in heart rate and respiratory rate in the

morning, or a rise of skin temperature in the evening, might not be a deteriorating trend at all,

but rather a part of a physiological rhythm. Even though this should be accounted for, changes

in circadian rhythm themselves are unlikely to be useful as predictors of deterioration Lack of

rhythmicity is not reflected in a decrease of amplitude, so a different metric should be used to

express decrease of rhythmicity. Furthermore, one would need at least 24 hours’ worth of data

before being able to assess a circadian pattern. Future research should focus on adequately pre-

dicting deterioration with vital sign trends despite the existence of circadian patterns. In clini-

cal practice, several general wards have already implemented continuous monitoring for

COVID-19 patients [31, 45, 46]. Alarm strategies and escalation protocols are often based on

early warning scores, which could be influenced by physiological changes in vital signs over
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the day. Based on our clinical experience during the pandemic, the early warning scores of the

majority of COVID-19 patients increase in the morning when patients become physically

active. Awareness of the existence of a circadian rhythm in common vital signs might aid

nurses and physicians in the interpretation of continuous data and continuous early warning

scores.

In conclusion, a circadian rhythm is present in heart rate of COVID-19 patients admitted

to the general ward. For respiratory rate and skin temperature, rhythmicity was only found in

patients who recovered, but not in patients developing respiratory insufficiency or death. We

found no consistent changes in circadian rhythm amplitude accompanying patient

deterioration.
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