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Abstract

Background: Current advances of the next-generation sequencing technology have revealed a large number of
un-annotated RNA transcripts. Comparative study of the RNA structurome is an important approach to assess their
biological functionalities. Due to the large sizes and abundance of the RNA transcripts, an efficient and accurate RNA
structure-structure alignment algorithm is in urgent need to facilitate the comparative study. Despite the importance
of the RNA secondary structure alignment problem, there are no computational tools available that provide high
computational efficiency and accuracy. In this case, designing and implementing such an efficient and accurate RNA
secondary structure alignment algorithm is highly desirable.

Results: In this work, through incorporating the sparse dynamic programming technique, we implemented an
algorithm that has an O(n®) expected time complexity, where n is the average number of base pairs in the RNA
structures. This complexity, which can be shown assuming the polymer-zeta property, is confirmed by our
experiments. The resulting new RNA secondary structure alignment tool is called ERA. Benchmark results indicate
that ERA can significantly speedup RNA structure-structure alignments compared to other state-of-the-art RNA
alignment tools, while maintaining high alignment accuracy.

Conclusions: Using the sparse dynamic programming technique, we are able to develop a new RNA secondary
structure alignment tool that is both efficient and accurate. We anticipate that the new alignment algorithm ERA will
significantly promote comparative RNA structure studies. The program, ERA, is freely available at http://genome.ucf.

edu/ERA.

Background

Non-coding RNAs (ncRNAs) have recently been recog-
nized as important regulators of the biological systems
[1,2]. They participate in the control of alternative splicing
[3], gene transcription [4] and translation [5], and mRNA
localization [6]. Most of the ncRNAs exert their biological
functions by folding into specific structures, which makes
the study of the RNA structurome a critical step towards
complete understanding of the operational mechanism
of the biological system [7]. Recently, genome-wide RNA
structurome analysis has led to many interesting discover-
ies regarding novel regulatory mechanisms. For example,
analysis of the RNA structural elements in Drosophila
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melanogaster 3’-UTR suggests a cluster of ncRNA ele-
ments that can direct the localization of their upstream
genes within the spermatids [8]. Similar studies have also
been applied to the Ciona intestinalis genome for novel
ncRNA family discovery [9]. With the finishing of the
ENCODE [10] and modENCODE [11] projects, we expect
that much more RNA transcripts will be experimen-
tally identified. Many of these RNA transcripts may have
exceptionally large sizes [12], and calls for more efficient
computational tools to analyze their structures.

As more RNA transcripts are being discovered, the
experimental approaches for probing ncRNA struc-
tures are also being revolutionized, allowing more
accurate functional investigation through exploiting the
structure-function relationship. Traditional RNA three-
dimensional (3D) structure determination techniques
such as X-ray crystallography, NMR and cryo-EM are
expensive, making them inappropriate for genome-wide
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survey of RNA structures. Currently, the emerging mas-
sive parallel sequencing technology has been incorporated
into the traditional chemical probing methods, making
genome-wide experimental determination of RNA sec-
ondary structures possible and with low cost. Available
techniques in this category include PARS [13], FragSeq
[14], and SHAPE-seq [15]. The RNA secondary structures
determined by these techniques are much more accurate
than those predicted by pure computational methods. For
example, when coupled with SHAPE-seq data, the free
energy minimization approach [16] is able to predict the
secondary structure of a 16S rRNA with over 95% accu-
racy [17]. In this case, the major purpose of this work
is to develop an efficient and accurate RNA secondary
structure alignment algorithm to facilitate genome-wide
comparative studies of these RNA secondary structures.

There are many existing algorithms that focus on the
RNA secondary structure alignment problem [18-24].
RNA secondary structures can be represented as tree
structures, and the edit-distance between the tree struc-
tures can be used to represent their structural similarity
[19]. Algorithms using such strategy are usually called
tree editing algorithms. Using heavy path decomposition,
Klein [25] improved the time complexity of the tree edit-
ing algorithm to O(/3logl). Recently, Demaine et al. [26]
further improved the time complexity to O(/?) based on
Klein’s algorithm. However, Jiang et al. [20] proposed to
compute tree alignment distance for the comparison of
trees. Algorithms that compute such a measure are called
tree alignment algorithms. The tree alignment algorithm
is a special case of the tree editing algorithm [27]. The tree
alignment algorithm has been implemented into an RNA
secondary structure alignment tool called RNAforester
[21]. Both the tree editing and tree alignment algorithms
rely on tree representation of the RNA structure, and
make sophisticated scoring functions difficult to imple-
ment (such as the affine gap penalty for the loop regions).
In addition, both tree editing and tree alignment algo-
rithms do not treat base pairs as units of comparison,
and make it difficult to implement a complete set of
base-pair edit operations for RNA secondary structures
editing (base-pair match, mismatch, breaking, altering,
and removing; as defined by Jiang et al. [24]). We demon-
strate such a problem by showing a real example from
the implementation of the widely-used RNA secondary
structure alignment tool RNAforester [21].

Consider that the two RNA structures shown in
Figure 1 (a) are being aligned as trees. In the first RNA
structure, due to the insertion of a uracil (U), an additional
base pair is predicted (dashed arc, Row 1). Both struc-
tures are enclosed by G-C base pairs, and we focus on the
alignment of their inner regions (boxed regions, Row 1).
Following RNAforester’s extended tree representa-
tion [21], the two RNA structures can be transformed
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into two trees (Row 2). The ‘P’ node represents a base
pair formed between the two corresponding nucleotides.
Because there is no base pair in the second structure,
the only allowed operations are bond breaking and base-
pair deletion (Row 3). For the bond breaking opera-
tion, the base pair formed between A and U is broken,
leaving them aligned to A and G in the second struc-
ture, respectively (blue boxes, Row 3). The alignment
between the U (first structure) and G (second structure)
introduces an unnecessary mismatch, making the align-
ment incorrect (blue boxes, Row 4). For the base-pair
deletion operation, the entire base pair (including the
two nucleotides A and U) is deleted (red box, Row 3).
This operation opens two unnecessary gaps in the align-
ment (red boxes, Row 4), making it underestimate the
real structural similarity. On the other hand, we expect to
handle the mis-predicted base pairs in a more straight-
forward way. As shown in Figure 1 (b), we simply break
the base pair interaction and disassociate the two cor-
responding nucleotides completely (red cross, Row 2).
These two nucleotides are then treated as regular
unpaired nucleotides. We can use the standard sequence
alignment algorithm [28] (with affine gap penalty for bet-
ter alignment quality in the unpaired regions) to evaluate
the pure sequence similarity between the boxed hairpin-
loop regions (Row 3). The resulting alignment contains
only one gap, and correctly interprets the true structural
difference between the two RNA structures (red boxes,
Row 4).

The above example clearly shows the limitation of
the implementation of the tree-based RNA secondary
structure alignment algorithm RNAforester. Imple-
menting the complete set of base-pair edit operations
under the tree representation appears to be not a triv-
ial task. Therefore, we propose to implement the general
edit-distance alignment approach where all edit opera-
tions can be implemented naturally. To guarantee that
the implementation is as efficient as the Demaine et al.’s
algorithm (O(/%)), we incorporate the sparse DP tech-
nique into a simultaneous alignment and folding (SAF)
algorithm RNAscf [29] and restrict its input to fixed
RNA secondary structures (recall that the general edit-
distance alignment algorithm is a restricted case of the
SAF algorithm). Using this technique, we can reduce the
original time complexity by reducing a factor from n?
to z, where # is the number of base pairs in the fixed
RNA structures and # < z < n2. Under the assump-
tion of the polymer-zeta property of RNA molecules [30],
it is expected that z « n? and even z € O(n). In
this case, the new general edit-distance RNA structure-
structure alignment algorithm will have a time complexity
of O(zn? + zI?). The new time complexity has an expected
cubic (z = O(n) = O())) growth behavior, and is the
same as Demaime et al.’s algorithm [26]. In addition, we
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Figure 1 Comparison between the tree-based alignment approach and the general edit-distance alignment approach in handling
mis-predicted base pairs. (a) The tree-based alignment algorithm in handling mis-predicted base pairs. Row 1: The arcs on the sequences indicate
the base pairs (solid arc indicates real base pairs, while dashed arc indicates mis-predicted base pairs). The structure regions indicated by the boxes
are being aligned. Row 2: The two RNA structures are modeled into trees according to RNAforester [21]. The ‘P’ node was introduced to
represent a base pair. Row 3: Either the bond breaking or the base-pair deletion operation is taken. The blue boxes indicate the aligned nucleotides
in the bond-breaking case. The red box indicates the base pair (including its nucleotides) being deleted in the base-pair deletion case. Row 4: The
corresponding alignments resulted from both operations. The boxes in the alignments correspond to those in the RNA structure trees. Neither of
the alignments is correct. (b) The general edit-distance alignment algorithm in handling mis-predicted base pairs. Row 1: The same RNA structures
are being aligned. Row 2: The base-pair interaction is deleted (red cross), leaving two free nucleotides. Row 3: The sequence similarity between the
boxed regions is assessed using a traditional sequence alignment algorithm [28]. Row 4: The corresponding alignment is generated correctly. The

boxes correspond to nucleotides that form the mis-predicted base pair.

also devise a novel online pruning technique to further
speedup the new algorithm, which deletes obsolete candi-
dates on-the-fly. By combining both speedup techniques,
the new RNA structure alignment algorithm is capable
of comparing RNA secondary structures efficiently and
accurately.

We have implemented the proposed RNA structure
alignment algorithm into a program called ERA (Efficient
RNA Alignment). The benchmark results showed that
ERA has the expected O(z/?) time complexity. We showed
the O(z/2) time complexity of ERA through aligning Rfam
[31] RNA structures that were carefully chosen to repre-
sent a wide rage of input sizes. We also used a BraliBase
II [32] benchmark to compare tools ERA, LocARNA and
RNAforester when aligning RNAs with known struc-
tures. Nearly identical alignment quality can be observed
for the general edit-distance alignment tools ERA and
LocARNA, while both of them are more accurate than
the tree alignment algorithm RNAforester. Finally, we
also concluded that ERA is efficiently implemented by
observing an average of 10 fold speedup over LocARNA,
and RNAforester in terms of real RNA structure align-
ments. Based on these results, we confirmed that the

sparse DP technique and the online pruning technique
are successfully incorporated into the original RNAscf
algorithm. We also anticipate that ERA will become
an important bioinformatics tool for comparative RNA
structure analysis.

Methods

In this section, we will present a novel general edit-
distance RNA structure alignment algorithm by incorpo-
rating the sparse DP technique into the RNAscf algo-
rithm. RNAscf was originally designed to identify the
consensus structure between two RNA sequences. It
guides the DP process though stacks and has a time com-
plexity of O(n* + n*I%). Comparing to LocARNA (which
has a time complexity of O(/*+#%[%)), the indexing scheme
used by RNAscf makes it easier to incorporate the sparse
DP technique, which aims to reduce the size of n instead
of /. In addition to the sparse DP technique, we will
also present an online pruning technique, which tries to
reduce the search space of the algorithm as the DP pro-
ceeds. Through combining these two speedup techniques,
the novel algorithm will have an expected O(z/?) time
complexity, where 1 < z < n?.
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The Methods section is organized as follows: In Section
‘Preliminaries and definitions’, we will give the basic
definition of RNA structures and the RNA alignment
problem. In Section “The original O(n* + #*[?) algorithm’,
we will reintroduce the RNAscf algorithm as a basis to
understand the novel algorithm that is developed in this
work. In Section ‘Triangular inequality and optimal pair
matchings’, we will present the triangular inequality in
RNA alignment with necessary proofs, which serves as
a theoretical foundation for the sparse DP technique. In
Section ‘Detection of optimal pair matchings’, we will fur-
ther discuss the implementation details of incorporating
the sparse DP technique. In Section ‘A new algorithm with
cubic time complexity’, we will present the novel RNA
alignment algorithm with the incorporation of the sparse
DP technique. In Section ‘Online pruning of optimal pair
matchings’, we will present the online pruning technique
as an additional speedup step to the novel algorithm.
Finally, in Section ‘Pseudo-code’, we will summarize the
new algorithm using pseudo-code that can be directly
implemented.

Preliminaries and definitions

We will begin with the introduction of the basic sym-
bols and notations. The secondary structure of an RNA
A of length I is represented by a set of base pairs in
A, denoted as PA. A base pair p* € P4 is an interac-
tion formed between two nucleotides in the sequence of
A, whose positions are denoted by I(p?) and r(p?) (with-
out loss of generality, we assume [(p?) < r(p?)). The
base pair p* can also be represented as (I(p*), r(p)). The
base pairs are partially ordered by the increasing order
of their ending nucleotides, i.e. pf‘ < pj‘ if and only if
r(p;“) < r(pf). Since we do not consider RNA ensembles,
no crossing base pair is allowed. That is, we do not allow
l(p{‘) < l(pf‘) < r(pf) < r(p;‘). The two base pairspf‘ and

p}q are either enclosing or juxtaposing to each other. The

base pairp;-4 encloses‘za;‘1 ifl(p;f‘) < l(pf‘) < r(pf‘) < r(p;f‘),
denoted as pf‘ <s pf The base pairp;«4 juxtaposes to and
beﬁJrep]A if r(pf\) < l(p]A), and is denoted bypf1 <y pf
We also define loop regions (i.e. hairpin loop, inter-
nal/bulge loop, and multi-branch loop) whose sequence
similarities are assessed by the alignment. The loop
regions can be viewed as the unpaired regions in
the RNA sequence that are segregated by the paired
nucleotides. Let Afi...j] denote a continuous sequence
region in RNA A, which begins with the ith nucleotide
and ends with the jth nucleotide. Define L(p?) as the
sequence A[l(p?) + 1...r(p?) — 1] (hairpin loop). If
p{‘ <J p;“, define Ll(p‘f‘,pf) as the sequence A[l(plA)—i-
1. ..l(pf‘) 1], and L,(p‘?,pf) as the sequence
A[r(pf) + 1...r(p}.4) — 1] (internal or bulge loop). If
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p‘;‘ <J p}.“, define L(p‘?,p;\) as the sequence A[r(p‘;‘)—k
1... l(p;f‘) — 1] (multi-branch loop).

The structure alignment between RNA A and B is the
optimal matching between their base-pair sets P4 and P?
and the corresponding loop similarities. In other words,
the alignment between RNAs A and B is a one-to-one
binary relation A on the base-pair sets P4 and P5. To
ensure that the alignment will not lead to conflicting base-

pair matchings, for any (p',p%) € A and (pf,pﬁ) € A

either p# <1p;.4 andpf? <1 pﬁ, or p <]p;.4 and p% <, p]]f.
Given the alignment A, the matched base pairs in .4 will
partition the RNA sequences A and B into two sets of loop
regions, C‘j‘ and L5, respectively. The sequence similarity
between these two sets of loop regions is added to com-
pute the overall alignment score. The optimal alignment is
the relation .4 that maximizes overall alignment score M
that combines both structure and sequence similarities:

M = wi* Z Sstr(prpB)+W2*ZSseq(£A:Ei)'
Pt pPreA
(1)

Here, the first term is the summation of all structural
similarities (Ss;) between the annotated base pairs. The
structural similarity score for base-pair substitution is set
using the RIBOSUM matrix [33], denoting such base-
pair substitution matrix as R. We do not give penalty
for base-pair deletion or insertion, as we may expect
incorrectly predicted base pairs in the input RNA struc-
tures. The second term is the summation of the sequence
similarities (Ss4) on all loop (unpaired) regions that are
determined by base-pair matchings in A. The sequence
similarity between two sequence regions is computed as
traditional sequence alignment, with D as a 4-by-4 matrix
that accounts for nucleotide substitution (set using the
RIBOSUM matrix), g as the gap opening penalty, and e
as the gap extension penalty [34] (g and e are both set
to negative values and g < e). The weights w; and wp
are used to balance the structural and sequence contribu-
tion to the overall alignment score, and we set w; > wyp
to emphasize structural similarity. To simplify the expres-
sions, in the rest of this article, we assume that w; has been
multiplied to all structural similarity terms (R), and w;
has been multiplied to all sequence similarity terms (D, g,
and e).

We will now define the matrices that are used by the
DP algorithm. Denote M[p*, p®] as the optimal structure
alignment score between the regions enclosed by p# and
PP, given that p is matched with p®. Denote My, [p?, p?] as
the optimal alignment score when the matching of p* and
pP corresponds to a hairpin loop in the consensus struc-
ture. Similarly, M;[p?, p®] stores the optimal alignment
score when the matching of p# and p® corresponds to an
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internal, a bulge, or a multi loop in the consensus struc-
ture. Assume thatpf‘ <; p4, and pf <1 PP, My[p4, pP]
can be computed by referring to the matrix Mc[p‘;‘, pﬁ],
which stores the optimal alignment score between the
juxtaposed base-pair chains (each chain contains at least
. . B .
one base pair) that end with pf\ and p;, respectively. The
optimal alignment between A and B can be retrieved from
M[pA,pg], where p‘(‘)‘ and pg are pseudo base pair; such
thatp§ = (0,|A|-1), p§ = (0,1B|—1),and Sgr(p4, pE) = 0
[29].

The original O(n* + n?/?) algorithm

In this section, we briefly reintroduce the RNAscf [29]
algorithm for RNA consensus structure prediction as a
basis for understanding the novel algorithm developed
in this work. The recursive functions for the RNAscf
algorithm are outlined as follows:

M4, vP],
= )

My, P21 = Sar @, PP) + Seeg L), LPP)).  (3)

Milp*,p) = Sar (0", pP) + maxy; {Melpf )

@
+ Sseq Lo B P L0l pD) |

Mcw,p?]
M[P‘;‘;Pﬁ] + Sseq(Ll(P}‘l,PA)r Ll(p?,PB)),
Mclp}, o1+ Mp}, o0 1+Sseg L@}, o1, L@ 1),
=, max B B B B
P e Fu) |Melel s p) + GUL® pDI + LG,
pj €F W) | Melp, 81+ GULE, )] + 1L
5)

In these recursive functions, Sy, denotes the structural
similarity between two base pairs p4 and p?, Sseq denotes
the sequence similarity between two unpaired regions,
and G indicates the gap penalty for completely deleting
the corresponding unpaired region. Note that G(|L|) =
g+ Ll xeif |[L| > 0, and G(JL|) = O otherwise.
The base pair set F (pf) contains all base pairs that are
directly before and juxtaposed to plA In other words, if
pf € ]-'(p‘i“), then there is no such base pair p‘,?, such that

pf‘ <y pf <y pf\ In most real scenarios, |F| is consid-
ered as a constant [29,35]. This chaining technique based
on the F set enables us to handle the multi-loop case
efficiently, by only considering |F| cases when computing
M..

Recall that the input RNA sequences have an average
length of [ and form an average of n base pairs. This
algorithm can be computed with an expected time com-
plexity of O(n* + n?[?). To see the time complexity, first
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note that all sequence similarity scores that are referred in
the recursive functions can be computed within O(1??)
time. Because all loop regions are segregated by base
pairs, the number of loop regions is clearly bounded by
O(n). Therefore, there are O(n%) combinations of loop
matchings, and computing each matching requires O(/%)
time using a standard sequence alignment algorithm [34].
To this point, we assume all sequence similarities are com-
puted using O(#%[%) time, and are stored in a matrix for
constant-time lookup. Now, observe that this algorithm
computes the optimal alignment by filling up the DP table
M, which contains O(#?) values. Computing each value in
the matrix M depends on the corresponding values of M},
My, and M. The computation of values in matrix My, can
be finished in a constant time due to the pre-computed
sequence similarities. The computation of M; requires
O(n?) time, as determined by the necessity of travers-
ing all possible combinations i and i’ (see Equation 4).
Finally, M, can also be expected to be computed in a con-
stant time, as |F| is assumed to be a constant. In this case,
the computation of matrix M requires O(n*) time. Adding
up the time required to pre-compute all sequence simi-
larities of the loops, the overall time complexity for this
algorithm thus becomes O(n* + n%[2).

Triangular inequality and optimal pair matchings

The triangular inequality property servers as the theo-
retical foundation for the sparse DP technique, which
saves search space while maintaining the global optimal-
ity. For computational RNA studies, this technique has
been used in RNA folding [30], RNA consensus fold-
ing (SAF) [36,37], as well as RNA-RNA interaction pre-
diction [38] applications. In this work, our aim is to bring
this technique into the RNA structure alignment applica-
tion, where fixed RNA structures are considered instead
of RNA structure ensembles.

Consider the alignment between the RNA sec-
ondary structures within the two regions A[i...j] and
B[i'...j] (see Figure 2 (a)). Denote M[i,j;i',j] as the
optimal alignment score for such alignment. The trian-
gular inequality can be summarized using the following
inequality:

Mli,j;i',j1> Mli, k; i, K1+ M[k + 1,5,k + 1,71,

where i < k < jandi < k' <. This is because the par-
titions of the regions A[i...j] and B[/ ...j] at positions
k and k', respectively, do not necessarily compatible with
the optimal alignment.

To simplify the expression of the triangular inequal-
ity property, we define a number of pseudo base pairs to
indicate specific regions of interest. A pseudo base pair
is a void interaction, such that the structural similarity
between any two pseudo base pairs is defined to be 0. For
instance, let p and p’ be two arbitrary pseudo base pairs,
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Figure 2 lllustration of the triangular inequality property. (a) Triangular inequality property of RNA secondary structure alignment. The
horizontal lines indicate RNA sequences A and B. The dashed arcs are the pseudo base pairs added to the specific nucleotides, while the shaded
areas define the correspondence between regions that are being aligned. (b) Alternative paths that go through either p* and p?, orpf( and pi,. The
two shadings (dark and light gray) along the arcs represent the two alternative paths.

we will have Sy (p,p’) = 0. The pseudo base pairs are
only used for the sake of representational simplicity, and
are not required for the implementation of the algorithm.
Define a pseudo base pair p* (i,j) and a pseudo
base pair p2 = (7,/). In this case, the optimal align-
ment score between the regions A[i...j] and B[/ .../],
i.e. M[i,j;7,j'], can be rewritten as M[p?, p&]. Similarly,
define pseudo base pairs p‘;‘ = k), pA = (k+ 1,)),
pﬁ = (/, k'), and pf‘i = (k' + 1,j) (see Figure 2 (a)). The
triangular inequality can be simplified using the following
observation:

Observation 1. M[p*, pP] > Mp}!, pB1 + M(p2, p2].

Using Observation 1, we can detect potential redun-
dant computations in the original algorithm. Consider
the structural configurations shown in Figure 2 (b), and
assume that the base pairs p* and p® are being aligned at
the current stage. Let p2 and p‘; be arbitrary base pairs
such that p‘; <7 p* <1 p?. Note that p‘; may also repre-
sent a pseudo base pair in order to consider an arbitrary
subregion enclosed by p*. Define pseudo base pairs p2 =
A@H, lp™) =1, pg = AP, Iy — D, Py = @) +
Lrph), pd = () + Lrpd), pf = U@, 1) — 1)
and p‘g = (r(p‘;) +1, r(p‘:)). Pseudo base pairs are also
added to B symmetrically (see Figure 2 (b)). We can then
prove Lemma 1 using Observation 1:

Lemma 1.If 3 p‘;‘ and pf,, such that M[p‘g,p]g,]

+Mlpy, P51 +Mlpf, Pl = Mip*,pP), then Mlp;', p?]

+Mlpy. i) + Mlpgpg) = Mipg.pa) + Mip*,pPl
+M(pf, Pl

Proof.
Mip}, pi )+ Mlpy, ply] + Mipg, p)]
>M[pa’pa/]+M[pA’pﬂ’

+ Mlp, p5) + Mlps, pB] + Mlp2, pP)]
> Mlpy, po 1+ Mp*, pP1+ M(p, pE].
0

The first inequality is a direct application of Observation
1, and the second inequality is specified in the condition
of Lemma 1.

Because p? and pf, are arbitrary base pairs, Lemma 1
implies that the matching between p* and p® is guaran-
teed to be suboptimal. That is, the overall alignment score,
given that p matches with p?, is always lower than that
when assuming they do not match (as the matching of p
and p? is conflicted with the matching of p‘;} and p7), as
well as the matching of pﬁ and pg,). In this case, we can
devise the DP algorithm to bypass the redundant refer-
ences to the scenarios where p* matches p®. Conversely,
for the implementation of this idea, the DP algorithm will
refer to the scenarios of matching p* and p® only when the
condition specified in Lemma 1 is NOT satisfied. These
necessary base-pair matchings are called the Optimal Pair
Matchings (OPMs). If the matching of p# and p? is an
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OPM, we denote this OPM as o045, Similarly, we repre-
sent the OPM formed by base pairs pf\ and pﬁ as ofi’,B .
The new RNA alignment algorithm will maintain an OPM
list O, which is modified online as the DP proceeds, so
as to include newly identified OPMs and remove obsolete
OPMs (which will be discussed in Section ‘Online prun-
ing of optimal pairmatchings’). If we assume that the RNA
molecules have the polymer-zeta property [30], restrict-
ing the search space of the DP using the OPM list O will
reduce the time complexity of the RNA alignment algo-
rithm to O(z/?) (as will be discussed in Section ‘A new
algorithm with cubic time complexity’).

Detection of optimal pair matchings

In the previous section, we have proved that Lemma 1
can be used to detect the OPMs and save redundant com-
putations. In this section, we will briefly discuss how it
will be implemented. Lemma 1 states that if the align-
ment score assuming p matches p® (M[p?, p?)) is higher
than the alignment score assuming p* does not match p?,
the matching between p# and p? is an OPM. Therefore,
to detect the OPMs, we need to compute two alignment
scores, i.e. the one when assuming p** matches p® and the
one when assuming p* does not match p?.

Based on previous definition, the first alignment score
is computed as M[p4, pP]. In this case, we only need to
compute the second alignment score. However, comput-
ing the second alignment score (assuming p** does not
match p®) is difficult. Instead, we can compute the over-
all alignment score without assuming any restrictions.
Apparently, the overall alignment score includes both
cases disregarding whether p# matches with p?. There-
fore, if M[p*,pP®] is greater than or equal to such an
overall optimal alignment, it is guaranteed to be greater
than the alignment score when assuming p* does not
match p®, and ipso facto the matching of p# and p? is
an OPM.

Recall that the alignment score M[p*, p?] corresponds
to the case where p”* matches with p?, and therefore it
can be decomposed as the sum of two parts: the struc-
ture similarity between the two base pairs themselves
Sm(pA, pB), and the optimal alignment score between
the regions A[l(p?) + 1...r(p?) — 1] and B[I(p®) +
1...r(p%) — 1] without any restrictions. In this case,
define two pseudo base pairs p4 = (I@p*) — 1,
r(p")+1) and pf = (I(p®) — 1, r(p®) + 1), then M[ p*, pP]
can also be decomposed as the sum of two parts:
Sst,(ﬁA, ZJB), and the optimal alignment score between
the regions A[l(p?) ... r(p")] and B[I(p®) ... r(p?)] with-
out any restrictions. Note that p* and p® are both
pseudo base pairs, and thus based on the definition,
we have Sy, (p%,p%) = 0. Therefore, M[p4,pP] is
exactly the overall alignment score we need to detect
the OPM:s.
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In this case, based on Lemma 1, if M[pA,pB] >
M{[p?, pP], we will consider the matching of p4 and p® as
an OPM, and add the OPM 02 to the OPM list O. The
overhead for detecting the OPM is that we need to dou-
ble the computation for each combination of p4 and p?.
However, such overhead will not raise the time complex-
ity, and it is worthy as it will lead to a more significant
speedup of the algorithm. In the following section, we will
devise a new algorithm by assuming that the OPM list O
is available.

A new algorithm with cubic time complexity

In this section, we introduce a new general edit-distance
RNA structure alignment algorithm, which improves the
original RNAscf algorithm based on Lemma 1 and has
a time complexity of O(z(n? + [?)). Here, z is the size
of the OPM list O, and we expect that z € O(n) when
assuming polymer-zeta property [30]. If we also assume
O(m) = O(l) (with fixed input RNA structures or effi-
ciently pruned RNA structure ensembles), the overall time
complexity of the new algorithm becomes O(z/?).

The new algorithm is developed based on the RNAscf
algorithm [29]. Therefore, we adopt the same definition
and notation as introduced in Section ‘Preliminaries and
definitions’, as well as the similar recursive functions style
used in Section ‘The original O(n* 4 n?i%) algorithm’.
Because the computations of M[p4, p?] and M, [p4, p®]
are boundary cases for the algorithm and are directly com-
puted without referring to previous alignment results, the
recursive functions for computing them are exactly the
same as in the original algorithm:

B My, [PA’PB] ’
Mlpt,p ]_max{Ml[pA,pB]' (6)
My, [pA’pB] = Sstr(pA’pB) + Sseq(L(pA)xL(pB))- (7)
The computation of Ml[pA, pB], on the other hand,
refers to the previous alignment results that assumes pf\
matches pff (see Equation 4). Using Lemma 1, it is clear to
see that instead of traversing all combinations of p‘lA and
pﬁ , we only need to consider the cases when the matching

ofp;‘\ and p? is an OPM:

Milp*, pP1= S, 1)
[Melp, 81+ Soeq L ), L 0 P

8)
Similarly, for the computation of Mc[pf‘, pf;)’], we need

+ max
ofi’,B eO

: B
to refer to the scenarios where p‘f matches p; and p;“
B : B
matches py- The matching of p‘;\ and p; is guaranteed to
be an OPM, as ensured by Equation 8. Therefore, we only

need to modify Equation 5 to ensure that the matching of
p}q and pﬁ is an OPM:
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My, vy +Sseq(Lz<pA . L, pP)),
Mpt,pil= max [pA P +Mp,pp 14 Sueg L (P2 P, L(p},p)), 9)

A,B A,B
ofvi/ 6}-(01‘,/ )

Here, the set & (oflf,B ) contains all OPMs that are directly
before the OPM oAf,B The F set regarding the OPMs is
defined as the follows. If an OPM o AI,B e F (ol I ) then

eltherp;4 € ]:(pf) orp}B € .7-"(19‘?).

Recall that the time complexity of the original algo-
rithm is O(n* + n212). The first term O(n*) results from
O(n?) computations by traversing all combinations of p*
and p® (see Equation 2) and O(#?) time for computing
M (see Equation 4). In the new algorithm, we introduce
the OPM constraint to Equation 8 and Equation 9, and
thus reduce the time complexity for computing M; from
O(n?) to O(z). In this case, the first term O(n*) of the
original time complexity can be reduced to O(zn?).

The second term O(#%/2) in the original time complexity
results from computing the sequence similarities between
all loop regions. Note that all loop similarities required
for computing M; (Equation 8) and M, (Equation 9) are
associated with OPMs. For example, in Equation 8, all the
loops are defined according to plA and p;.‘}, whose match-
ing is expected to be an OPM. And in Equation 9, all the
loops are defined according to pf‘ and p‘i‘/‘, as well as pj‘
and pﬁ, where both of these matchings are assumed to be
OPMs. In this case, we do not need to compute loop sim-
ilarities for all O(#?) base-pair combinations, instead we
only need to compute the loop similarities that are asso-
ciated with the OPMs. In this case, the time complexity
for computing the sequence similarities between all loops
that are required by the computation of M; and M, can be
finished in O(z{?) time.

The only exception for the sequence similarity com-
putation is the hairpin loop similarity Sseq(L(pA),L(pB)),
which is required for computing M (Equation 7). The
computation of My, is not constrained by the OPM list,
and therefore O(#%[%) time is still required. To resolve
this issue, we observe that most of the RNA structure
alignment algorithms emphasize the structure similarity
other than sequence similarity (w; > wy in Equation
1). In this case, if there exist some base pairs within the
regions enclosed by p* and p® to be matched, we can
expect that M;[p4, pB] > M, [p*, pP] in Equation 6. In this
case, to avoid the unnecessary computation of My, [p4, p?],
we can derive an upper bound Mj,[p*, pF], which satis-
fies My [p?, pB1 > My[p?, pP] and can be estimated in unit
time. Note that if M;[p?, pP] > M;,[p?, pP], we are sure
that M;[p4, p] > My [p?, pB] by transition, and thus can
save the computation of Mjy[p*, pP]. The upper bound
My,[p?*, pP] can be easily derived by assuming maximum

[p;‘ P+ Sseq(L(p} ), L(p) pB» T Sueg L LB,

number of nucleotide matchings and minimum number
of gaps:
Mylp*, p%] = Ser @™, PP) + min(ILp™)), ILEP)) * dinas
+1xg+ (1LY = ILEP)I) *e,
(10)

where d,4, is the highest score in the 4-by-4 nucleotide
substitution matrix D, and [ is a boolean variable that is
set to 1 if |L(p?)| # |L(p®)| and set to 0 otherwise. For
the computation of each M[p?, pB], we first estimate the
upper bound Mj,[p#, p] in a unit time, and then compute
M;[p?, pP] in O(z) time. By comparing these two values,
we will determine whether the computation of M, [p?, p?]
is necessary. The computation of Mj,[p?, p?] is only nec-
essary when there are only a few base pair enclosed by p
and p® to be matched. Such condition implies the scenar-
ios that either p# or p® is a real hairpin loop in the RNA
structures, whose number is bounded by O(#). Overall,
the hairpin loop similarity matrix M} can be computed
in O(nl?) time, and the overall time complexity of this
algorithm is thus O(z(n? + 12)).

Online pruning of optimal pair matchings

In the previous sections, we have presented our
approaches for detecting OPMs and building an OPM list
O, as well as a more efficient algorithm that is developed
based on O. Time complexity analysis of the algorithm
claims that O(z(n*> + [?)) time is sufficient for this new
algorithm. The size of the OPM list O, i.e. z, thus becomes
an important factor that determines the efficiency of the
novel algorithm. Under the current algorithmic setup, as
well as other similar works that implement a candidate list
[30,37], z continuously grows as the algorithm proceeds.
In this case, it is desirable to devise an online pruning
technique, which can remove the obsolete OPMs from O,
and thus achieve further speedup of the algorithm.

In this section, we will present such an online prun-
ing technique to reduce the size of the OPM list O. The
intuition of this online pruning technique comes from the
following observation. The RNA structures are primar-
ily stabilized by a number of helices, or perfectly stacked
base pairs. If pf is perfectly stacked on p?, then l(p;“) =
l(pf) —1,and r(p}q) = r(pf\) + 1. Consider the alignment
between two helices, where each one of them contains
m + 1 perfectly stacked base pairs. Assume that the
first helix contains base pairs pf, p‘;\H, cees p?+m, and the



Zhong and Zhang BMC Bioinformatics 2013, 14:269
http://www.biomedcentral.com/1471-2105/14/269

second helix contains base palrspB pl AT ,p§+m. Based
on Lemma 1, there will be at least m OPMs detected from
such alignment, i.e. oA,B, o’iﬁ FURTRRRT o‘ﬁﬁn i+m- Appar-
ently, maintaining all these m OPMs is unnecessary, as
these base pairs should be aligned together as two com-
plete helices, rather than be aligned separately as two sets
of individual base pairs. In this case, maintaining only
one OPM, i.e. olﬁfn i+ 18 sufficient to represent such an
alignment. The other m OPMs become obsolete as soon as
the OPM ol +m 7+m is detected, and can be removed from
the OPM list O to improve computational efficiency. In
the following paragraphs, we will extend this idea to con-
sider all situations in addition to the perfectly stacked sce-
nario, as well as give formal description of this technique
and related proofs.

We will demonstrate the major idea of our novel online
OPM pruning technique using Figure 2 (b). Imagine that
at the current stage, M[p?, p?] has just been computed
and 0% has been identified as an OPM, where 0%, is an
arbitrary OPM that has been previously identified and is

enclosed by 048 (p‘; <7 p# and p‘?(/ <7 pP). Our aim is to

estimate whether the detection of the OPM 0 will make
0‘;:?(, obsolete. Let p and pf, be arbitrary base pairs such

that pA < pj? and pB <7 pf,. The regions enclosed by pf
and pf, can be partitioned using at least one of the fol-
lowing ways: M[p‘g},pf,] + M[p4, pP] +M[p?,pf,] (which
is indicated by dark gray in Figure 2 (b)) and
M[pA,pf,] —i—M[pA,pi,] +M[pA,pg,] (which is indicated
by light gray in Figure 2 (b)). If the corresponding score
for the first path is higher than the second, M [p‘;, pjf(,]
will not be referred to by any future matching between
arbitrary base pairs p4 and p ., and thus making the OPM

0y X,obsolete In this case, the OPM 0
from O.

We can summarize the criterion for removing oﬁi
an obsolete OPM using the following inequality:

/ can be removed

, as

MIp, p21+Mip?, pP1 + Mip2, pP1 = Mlpi, 2]
+ Mlpy, P51+ Mlps, ph],

which can be rewritten as:

Mip*, pP) = Mlpy, P21 = MIp, pi] — Mlpg, pi])
+ Mlpy, pg] — Mlpl, p21)

To utilize such criterion, we need to have access to all val-
ues included in the above inequality. However, we only
know the values at the left hand side of the inequal-
ity (M[p*, p®] and M[p’;,pl;,]), while the other values at
the right hand side are unknown. This is because the
definitions of these pseudo base pairs are determined
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by pf and pf,, which are arbitrary base pairs that have
not yet been computed by the DP algorithm. To solve
this issue, observe that the score M [p‘)‘}, pf,] -M [pé, pf/]
is strongly related to the regions A[l(p‘;}) e r(p/f})]
and B[I(p2). ..r(pg,)], and M[pg,pg,] —M[p?,pf,] is
strongly related to the regions A[l(p?) ... r(p?)] and
B[l(p?,) ... r(p?,)]. Note that the regionsA[l(p‘g) . r(p‘g)]
and A[l(p‘(;‘) e r(p?)] can be determined when p* andp‘;‘
are known, which makes the estimation of their impact
on future alignments possible (similarly for the regions
BlI@h) ... r(p5)] and BI(pE) ... r(p5)]). In this case, we

can develop two upper bounds Iflﬂ and Us, such that:

Ij[ﬁ > M[pA;Pf/] _M[P‘é;pg/] )
s > Mlpy, p51 — Mlp2, p51.

In this case, if M[p4, pP] —M[p;‘,p?(,] > flﬁ + Us, we are

sure that the criterion for characterizing oA:B, as an obso-
lete OPM will be satisfied, and we will be able to remove
o‘:f:, from O immediately.

Now, we can discuss the details for setting up the upper
bounds Upg and Us. Because Ug and Ujs are defined sym-
metrically, we only discuss the computation of I:[,g. Note
that the upper bound I:lﬁ needs to satisfy the condi-
tion [I,g > M[pA,pf/] —M[pg},pg,]. Clearly, the differ-
ence between M[pA,pf,] — M[p‘g,pg,] directly comes from
concatenating the region A[l(pg) . r(p‘g)] to the region
All(pdy...r(p2)], as well as concatenating the region
B[l(pB,)...r(pg,)] to the region B[I(p5)...r(p5)]. The
best case scenario for such an operation, is to assume that
the concatenation of the regions A[l(pg‘) . ..r(pﬁ)] and
B[l(pg,) .. r(pg,)] will result in as many new base-pair and
nucleotide matches as possible

Assume that there are mﬂ base pairs that are anno-

tated in the region A[ l(pA)...r(p‘g), and mg, base

pairs that are annotated in the region B[l(pg,) . r(pg,)].
Also assume the maximum base-pair substitution score
in the RIBOSUM matrix R is 1y, By concatenat-
ing the regions A[l(p‘g) . r(p‘g)] and B[I(p2) ... r(pg,)],
we introduce at most max(m‘g,mg,) more base—pair

matchings to the alignment indicated by M[p%, pg,].
This implies the maximum structure alignment score
increment of max(m‘g,mg,) * Fmax. Similarly, at most
max(|L(p‘g‘)|, |L(p§,|)) more nucleotide matches, or gap
fill-ups, are possible, compared to the existing align-
ment indicated by the score M[pd,p5]. The cor-
responding alignment score for such case is thus:
max(|L(pA)| |L(pB D) * (dmax — g — e). To explicitly
represent the upper bound usmg only the identified
OPMs, we rename L[ﬁ as Lll[ ,,oAB] (similarly, we
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r Ao AB Arr AB
rename Us as U, 0 X,,OA’B]). Therefore, UZ[UX X,,oA'B]

and flr[o’;i‘i,,oA’B] can be computed using the following
equations:
LAII[O’;:‘)B(/, oA’B] = max(m‘g, mg,) * pax + max(|L(p‘g)|,
ILPED * (dmax — g — @),
— A B A
= max(my, My ) * I'max + max(|L(py)l,

IL@ED) * (dmax — g — ©).

~r AB AB
UVOX,X/,O ]

(11)

With the upper bounds lj[l [Oi’i/y OA’B] and I:[r [Oi’i/;
048], we are able to formally prove the correctness of the

online OPM pruning technique:

Lemma 2. If M[p4, p®] —M[p‘;?,pf(,] > If[;[o‘?:ﬁ,,oA’B]
+ U0}, 0%, where Uil o), oM = Mlp},pl]
— Mlpd, pE1and U, (02, 0*F] = Mlp}, pB] — Mlp2, pE,
then M{p*, pP] + Mipf, 5] + Mlp2,pB] = Mipy, P2 )]
+Mlp, pB)+ Mlpy, pB).

Proof.

Mp*,p") = Mlpy, py )+ Uilofy e o)+ Uil 5 o)

= M[p*, pP] + MIpd, pB1+ Mlpd, pP]

> Mlp}, pi 1+ lofy 2, o1+ Uy [0 2, o]

+ MIpd, pB1+ Mlpd, pP)
= Mp*, p°1+Mlpy, )+ Mlpl, p21 = Mlpy, p5)]
+ Mlp, P21+ Mlps, po1.

O

As a result, when the condition given in Lemma 2 is
satisfied, the enclosed OPM o’;’i/ can be readily removed.

Pseudo-code

The pseudo-code for the new RNA secondary structure
alignment algorithm that implements both speedup tech-
niques is summarized in Figure 3.

Results

We implemented the proposed general edit-distance RNA
structural alignment algorithm into a program called
ERA (Efficient RNA Alignment) using GNU C++. In this
section, we will show that (1) ERA has the expected O(z/?)
time complexity; (2) ERA is as accurate as the other state-
of-the-art RNA alignment tools; and (3) ERA runs much
faster than the other RNA alignment tools. In addition to
these goals, we have also benchmarked ERA to demon-
strate its O(/%) space complexity. For details regarding the
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space complexity issues please refer to the Additional file
1: Section S1 (also see Figure S1, Figure S2, and Table S1).

We benchmarked the ERA with two other state-of-the-
art RNA alignment tools: LocARNA as a representative of
the general edit-distance RNA structure alignment algo-
rithms and RNAforester as a representative of the tree-
based RNA structure alignment algorithms. Note that
although LocARNA is developed to compare RNA struc-
ture ensembles, its flexible parameter setup makes it easy
to prune its input RNA ensembles (see Section ‘Running
LocARNA’ for more details). However, the readers should
note that LocARNA is used in a restricted case for fair
comparison with ERA, and more potential applications
of LocARNA should be recognized. We do not compare
ERA with its predecessor RNAscf, because RNAscft is
implemented to find consensus helical configurations that
do not include individual base pairs [29]. Both LocARNA
and RNAforester were invoked using their default
parameters.

Running LocARNA

Note that LocARNA was originally developed to com-
pare two RNA structure ensembles [39]. Due to the recent
technical advances in experimental RNA structure prob-
ing, we anticipate that RNA structures can be predicted
with much higher accuracy. Therefore, we develop ERA to
compare two fixed RNA structures. In this case, we need
to prune the original inputs of LocARNA, so as to ensure
that they only represent the fixed structures rather than
any additional information.

The input RNA ensembles for LocARNA are repre-
sented using the base-pairing probability matrices, which
can be computed using the McCaskill’s algorithm [40,41].
In a base-pairing probability matrix, each base pair (pos-
sibly crossing) is assigned with a probability to indicate
its thermodynamic stability. Our goal is to prune such
a base-pair probability matrix, such that it only contains
information regarding the fixed RNA structure (in our
experiment, we take the Rfam [31] annotation or the
BraliBase II [32] annotation as the fixed structure for an
RNA sequence). For each base pair in the matrix, if it is not
presented in the annotated structure, its corresponding
probability is reset to 0. On the other hand, if it is included
in the annotated structure, its probability is reset to 1.
In this case, the pruned base-pairing probability matrix
contains only the information regarding the fixed RNA
structure. We show an original and a pruned base-pairing
probability matrix in Additional file 1: Figure S3 as an
example. All LocARNA inputs for experiments mentioned
in this article are preprocessed using this strategy.

Time complexity
In this section, we expect to show that the proposed spar-
sification is successfully implemented, and ERA has the
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Algorithm 1 Pseudo-code for the new O(z1?) algorithm

cleotides; Initialize the OPM list O <« ();
for i = 1 to |P4| do
pA < ith base pair in A
for j =1 to |PP| do
pB < jth base pair in B; Compute M, [p

if My[pA,pP] > M;[p*, pP] then
Compute Mj,[p?, pP]
end if

)

if M[p*,p”] > M[p*,p"] then

for each OPM oﬁ’,f €O do

. A
pair between ok’lf and 04? then

end if
end for
Add o*B to the OPM list O;
end if
end for
end for

Remove 0?}5 from the OPM list O;

Order base pairs in A by their ending nucleotides; Order base pairs in B by their ending nu-

A B
Nk
Estimate My [p?, pP] with Equation 10, Mj,[p4, pP] < My[p?, pB;

M[pA, pP] + mazx(M;[p?, pP], My [p?, pP]); Compute M[p?, pP;

Identify the matching of p and p? as an OPM o045,

Estimate U, [0,?’,5, 0P] and U, [0?’5, 0B with Equation 11;

if Mp?,pP) > U [oﬁﬁ,oA’B] + Ur[oﬁ'}ffmA’B] + M([pi,pE] and There exists no base

Figure 3 Pseudo-code for the implementation of the speedup techniques.

expected O(zl?) time complexity. To show the O(z/?) time
complexity, we chose a number of RNA families from
Rfam that have a wide range of sequence lengths. We then
randomly selected two individual RNA structures from
each family (see Additional file 1: Table S2) to run ERA
alignment. The running time for their alignments, versus
13 (note that # < [ for annotated structures and O(n) =
0O(0)), is plotted in Figure 4 (a). We can clearly observe
the expected O(z/?) time complexity from the figure. In
addition, we are also able to show that the speedup ratio,
when comparing to the O(l* + n2[%) LocARNA algorithm,
is strongly correlated with the efficiency of pair match-
ing reduction due to the sparse DP technique (the ratio
n*/z, see Figure 4 (b)). The relatively large deviations
are observed for biocoid_3UTR and snR86 RNA struc-
tures. This is because they contain a large number of base
pairs and have a high base pair to sequence length ratio.
In this case, the overhead for maintaining the OPM list
becomes apparent and makes the speedup less significant.
In summary, we have shown that the sparse DP technique

is successfully implemented, ERA has an expected time
complexity of O(z/?).

Alignment quality

In addition to time complexity improvement, we also
expect to show that ERA is as accurate as the other state-
of-the-art general edit-distance RNA structure alignment
tools. We used BraliBase II [32] as the reference data
set, and used its corresponding structure annotations
as the fixed input structures. We adopted two mea-
sures to indicate the alignment quality, i.e., the Sum-
of-Pair Score (SPS) [32] and the Structure Conservation
Index (SCI) [42]. The benchmark results are shown in
Figure 5. The alignment qualities of ERA and LocARNA
are nearly identical, since incorporating the sparse DP
technique will not compromise global optimality. The
benchmark results also show that ERA and LocARNA can
produce more accurate alignments when compared to
RNAforester. This is because ERA and the restricted
version of LocARNA are both general edit-distance RNA
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Figure 4 Time complexity and OPM reduction of ERA. (a) Running time versus n®, where n is the average number of base pairs in the RNA
structures. (b) OPM reduction ratio versus running time speedup ratio. The OPM reduction ratio is computed by n? /z, where z is the number of OPMs.

alignment algorithms that are capable of flexibly handling
incorrectly predicted base-pairs, while RNAforester is
more sensitive to such errors, since it implements tree
alignment.

Running time speedup

Finally, after benchmarking the time complexity and align-
ment accuracy of ERA, we also expect to show that ERA is
an efficient implementation and can run faster than other
state-of-the-art RNA alignment tools. We compared the

real running time of ERA, LocARNA, and RNAforester
on the selected RNA structures from Rfam. The bench-
mark results are summarized in Table 1. We can observe
that ERA is capable of speeding up LocARNA by a min-
imum of 5.2 fold and a maximum of 91.5 fold. ERA can
also speedup RNAforester by a minimum of 2.8 fold
and a maximum of 242.6 fold, with only one exception in
which RNAforester is 9.6 times faster than ERA. This is
because the RNA structures being aligned (snR86) contain
only one stem-loop structure; and in such a special case,
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Figure 5 Alignment quality comparison of ERA, LocARNA and RNAforester. The comparison of (a) Sum-of-Pair Score and (b) Structure
Conservation Index between ERA, LocARNA and RNAforester on BraliBase Il data set with fixed input structures. The sequence identity range
is between 0.37 to 0.99. The curves are generated using LOWESS smoothing with a smoothing factor of 0.3.
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Table 1 Comparison on running time of ERA, LocARNA, and RNAforester

RNA family length num. ERA LocARNA ERA Vs, RNAforester ERA Vs,
(bp) pairs (sec) (sec) LocARNA (sec) RNAforester

(fold) (fold)

tRNA 78 21 0.017 0.100 5.882 0.047 2.765

Gly riboswitch 105 22 0.015 0.277 18.46 0.162 10.80

U12 spliceosome 160 42 0.035 0311 8.886 0.657 18.77

Phage_pRNA 244 43 0.124 0.647 5218 6.935 5593

tMRNA 367 64 0.929 2245 24.16 2254 2426

biocoid_3UTR 549 155 4.898 170.3 34.77 13.99 2.856

snR86 1004 333 53.15 4862 91.48 5579 -9.527x%

Sacc_telomerase 1162 181 23.93 5223 21.82 3697 154.5

"ERA is slower than RNAforester when aligning snR86 RNA structures.

the time complexity of RNAforester becomes O(I?)
[21].

To further investigate the real running time speedup
of ERA on randomly selected RNA structures, we com-
piled a much larger data set that contains 1,000 pairs
of randomly selected RNA structures from Rfam. The
benchmark results on this large data set are summa-
rized in Figure 6. In Figure 6, we can see that ERA (blue
triangle) runs much faster than LocARNA (red cross)
and RNAforester (green star). In addition, we can
also observe that the running time of ERA grows slower
than those of LocARNA and RNAforester, which fur-
ther confirms our previous time complexity analysis (see
Figure 4 (a)). This speedup is significant, and renders
ERA with the power of aligning long ncRNAs that are

revealed by recent research advances. In summary, ERA
is an efficient and accurate RNA structure alignment tool
as compared to its state-of-the-art counterparts LocARNA
and RNAforester.

Discussion and conclusions

In this article, we have presented a novel algorithm for
efficient alignment of RNA secondary structures by incor-
porating the sparse DP technique. The major theoretical
contribution of this work lies in two parts. First, to our
knowledge, this is the first application of the sparse DP
technique to RNA structure-structure alignment. Sec-
ond, the novel online OPM pruning technique can pro-
vide insights for future algorithm designs that need to

I I
A ERA running time
+  LocARNA running time H
* *  RNAforester running time
* * I
+ i
o
I
3 i
Q *
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Figure 6 Computational efficiency comparison between ERA, LocARNA and RNAforester on aligning randomly selected RNA
structures from Rfam. The running time for ERA (blue triangles), LocARNA (red crosses) and RNAforester (green stars) on aligning 1,000 pairs
of randomly selected RNA structures from the Rfam database. The x-axis corresponds to the average sizes of the RNA structures being aligned,
which is computed as the product of their average length (/) and their average number of base pairs (n). The y-axis corresponds to the actual
running time in the unit of second. We can see that ERA is significantly faster than the other two tools.
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maintain a candidate list. The implementation of this
novel algorithm is a tool called ERA, which can run in
O(zl?) time and O(/%). Such time and space complex-
ity make ERA one of the most efficient RNA structure
alignment tools that are currently available.

The online OPM pruning technique is newly devel-
oped from this work, which aims at deleting obsolete
candidates as the DP proceeds. Although this technique
cannot improve the computational complexity, it is effi-
cient in reducing the real running time. In Additional
file 1: Table S3, we summarized the running time of ERA
in aligning individual RNA structures, with or without
the online OPM pruning technique. We observed that by
incorporating this technique, the running time of ERA
was reduced by an average of 2.3 fold. Meanwhile, the
speedup ratio is highly uniform (with 1.7 fold as the
lowest and 3.1 fold as the highest) across RNA struc-
tures with different sizes, meaning that it reduces running
time by a constant factor. The online OPM pruning tech-
nique can also be modified and incorporated into other
related algorithms that implement the candidate list, such
as the sparse DP algorithms for RNA folding [30], RNA
consensus folding [36,37], and RNA-RNA interaction
[38].

The speedup of ERA is most significant when the num-
ber of base pairs in the RNA structures is small. This is
because the algorithm is indexed by base pairs and has a
time complexity of O(z(n? + [2)). As n increases, the term
O(zn?) will dominate the overall time complexity. In this
case, an ideal application of ERA is to align fixed RNA
structures, because it guarantees that n < /. Note that as
a sparsified version of the SAF algorithm RNAscf [29],
the new algorithm developed here is also capable of han-
dling RNA structure ensemble alignments. However, we
do not implement this feature into ERA, because one can-
not guarantee n < [ for RNA ensemble alignments. This
would make the speedup of ERA less significant. Besides,
there are other alternative tools [36,37] available for such
a purpose.

With the completion of the ENCODE [10] and mod-
ENCODE [11] projects, more and more RNA tran-
scripts will be experimentally revealed. At the same
time, with the advance of high-throughput RNA struc-
ture probing techniques [13-15], the secondary struc-
tures of these RNA transcripts will also be predicted
with a much higher accuracy. In this case, ERA, which
can compare fixed RNA structure efficiently and accu-
rately, becomes an ideal computational tool to evalu-
ate the structural similarities of these RNA transcripts.
ERA can be used to perform all-against-all alignments on
these RNA transcripts, which will then be subsequently
summarized as the distance matrix for clustering pur-
poses. Various clustering algorithms [8,39] can then be
applied to identify ncRNA families with similar secondary
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structures and infer their amazing cellular and molecular
functionalities.

Additional file

Additional file 1: Supplementary information. This file contains four
sections. In Section S1, we briefly discuss the space issue of ERA and
provide related experimental results. In Section S2, we document the
randomly selected RNA structures used for experiments mentioned in the
main article. In Section S3, we evaluate the impact of the online OPM
pruning technique in speeding up ERA. In Section $4, we give examples of
the pruned base-pairing probability matrix for executing LocARNA.
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