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Abstract

The human brain is a complex system of interconnected brain regions that form func-

tional networks with differing roles in cognition and behavior. However, the trajecto-

ries of these functional networks across development are unclear and designing a

metric to track the complex trajectory of these characteristics throughout the

lifespan is challenging. Here, permutation entropy (PE) was used to examine age-

related variations in functional magnetic resonance imaging (fMRI) in healthy subjects

aged 6–85 from global, network, and nodal perspectives. The global PE followed an

inverted U-shaped trajectory that peaked at approximately age 40. The trajectory of

the motor and somatosensory functional network was more consistent with a linear

model and increased with age; other functional networks showed inverted U-shaped

trajectories that peaked between 25 and 52 years of age. All nodes showed inverted

U-shaped trajectories. Using cluster analysis, the peak ages of nodes were grouped

into three clusters (at 24, 38, and 51 years). Overall, we characterized four aging tra-

jectories: networks with a linear increase, early peak age, intermediate peak age, and

older peak age. These findings suggest possible complexity in trajectories at critical

age points regarding changes in related functional brain networks.
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1 | INTRODUCTION

The human brain is an extremely complex system, and with increasing

age, a series of changes occur in the understanding and processing of

complex information. The lifespan of healthy individuals is character-

ized by continuous changes in brain complexity throughout childhood,

youth, middle age, and old age that follow specific maturation pat-

terns. The lifetime trajectory of brain complexity has been studied:

some studies suggest a linear decline from early ages (Fjell

et al., 2013; Goodro et al., 2012), while others have reported a qua-

dratic trajectory, with an increase followed by a decrease

(Gutchess, 2014; Karl et al., 2017; Potvin et al., 2016); alternatively,

other studies have reported a cubic relationship (Fjell et al., 2013;

Potvin et al., 2016). These changes are structurally reflected with

increased white matter (WM) volume and an inverted U-shaped

change in gray matter (GM) volume in developing children and adoles-

cents (Giedd et al., 1999). Upon maturity, both WM and GM volumes

degenerate with healthy aging (Djma et al., 2012; Sowell et al., 2003).

Changes in brain structure are associated with functional changes and

are accompanied by reduced brain activity (Fjell & Walhovd, 2010).Yan Niu and Jie Sun are the co-first authors.
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Previous studies have analyzed these changes in terms of func-

tional connectivity (FC) (Liu et al., 2021; Yan et al., 2018), graph the-

ory (Jezga et al., 2020; Yan et al., 2018), and network efficiency (Zhao

et al., 2017). Studies have found that local efficiency decreases line-

arly from adulthood to old age, while global efficiency remains

unchanged. In Achard et al.'s (Achard & Bullmore, 2007) analysis of

the brain connection network, elderly individuals had lower topologi-

cal efficiency of spontaneous functional networks in a resting state.

Designing a metric to track the complex trajectory of these character-

istics throughout the lifespan from a functional network perspective is

challenging but would establish a foundation for understanding com-

plex systems in the human brain.

Studying the nonlinear dynamics of brain signals during develop-

ment by using the complexity index is not ideal. The complexity index

represents the variability in the information processing ability of the

brain (Yang et al., 2018). A large number of researchers have used

advanced neuroimaging techniques to conduct noninvasive studies

with elderly individuals (Chen et al., 2019; Wang et al., 2020); however,

few subjects were assessed in these studies, and age-related changes

in different brain regions remain unknown. For example, Fenne Mar-

greeth Smits et al. (2016) studied electroencephalography (EEG) signals

from 41 healthy subjects aged 18–85 and found that a parabola was

the best fitting curve for modeling the Higuchi fractal dimension of

age. Entropy is a widely used complexity measure that has the advan-

tages of strong noise resistance, a stable algorithm and high retest reli-

ability (Sun et al., 2020; Yang et al., 2018). The higher the value of

entropy is, the greater the information processing capacity and func-

tional development of the brain. Reduced brain activity means that the

central nervous system is less flexible and efficient in processing infor-

mation. Previous studies have reported that quadratic regression

models can fit developmental trajectories more accurately than linear

models, but linear models are still used in most studies.

Shumbayawonda et al., (2019) used entropy measures to assess mag-

netoencephalography (MEG) signals and found that age had a signifi-

cant impact on complexity in five brain regions. Moses O. Sokunbi

et al. (2015) demonstrated that whole-brain mean fuzzy approximate

entropy (fApEn) was significantly negatively correlated with age using a

resting-state functional magnetic resonance imaging (fMRI) data set

from 86 healthy adults.

Based on the above studies, some advances have been made in

understanding the structural and functional changes in healthy aging,

but the trajectory of functional brain networks remains unclear. Per-

mutation entropy (PE) is a method to measure uncertainty in dynamic

time series (Bandt & Pompe, 2002). PE considers only the grade of

the samples, not their metrics. As it is a sequential measure, PE has

some advantages over other commonly used entropy measures,

including simplicity, low computational complexity without additional

model assumptions, and robustness in the presence of observed and

dynamic noise. PE has been used in EEG studies of human absence

epilepsy (Ferlazzo et al., 2014), typical absence seizures (Jing

et al., 2014), and mild cognitive impairment (MCI) (Timothy

et al., 2014). These studies have suggested that PE is a useful tool for

studying brain complexity.

In this study, we used PE approaches to examine age-related

alterations in a large cohort of 319 healthy subjects ranging from 6 to

85 years old to explore trajectories of brain development. At a system

level, we aimed to determine age-related trajectories of brain devel-

opment from global, network, and nodal perspectives to provide a

complete understanding of the topological changes in PE with age.

2 | MATERIALS AND METHODS

2.1 | Data availability statement

This study included data from 319 healthy individuals (age range, 6–

85 years; mean age, 39.5 ± 45.5 years) from the NKI/Rockland Sample

(NKI-RS), which was provided by the Nathan Kline Institute (NKI, NY)

and is publicly available online in the International Neuroimaging

Data-sharing Initiative (INDI) database (http://fcon_1000.projects.

nitrc.org/indi/enhanced/mri_protocol.html). The NKI Institutional

Review Board approved the research protocol to collect and share

the data.

2.2 | Data acquisition and preprocessing

All participants were scanned with a SIEMENS MAGNETOM TrioTim

syngo MR B17 using the following parameters: repetition time (TR)/

echo time (TE) = 645/30ms, time point = 900, field of view

(FOV) = 222� 222mm2, and slice number = 40. Figure 1 shows the

distribution of subjects' ages. Further details regarding the acquisition

protocol of the study images are available on the INDI website.

The Data Processing Assistant for Resting-State fMRI (DPARSF

v2.3) software (Yan & Zang, 2010) package, which is based on two

software packages, Statistical Parametric Mapping 8 (SPM 8) (http://

www.fil.ion.ucl.ac.uk/spm) and RS-fMRI Data Analysis Toolkit 1.8

(REST 1.8) (Song et al., 2011) was used, and the images were analyzed

on the MATLAB 2014a platform. Briefly, the preprocessing steps

were as follows: the first 10 volumes of the functional images during

the participant's habituation to the imaging process were discarded;

slice-timing correction was performed based on the last slice; the

images were realigned to compensate for head movement using a six-

parameter rigid-body spatial transformation because excessive head

motion may induce large artifacts in fMRI time series; the images were

normalized to the Montreal Neurological Institute (MNI) space; and

the signal drift was removed using a linear model. Additionally, spatial

smoothing of the brain PE maps was performed to reduce the white

noise and suppress the effects due to residual differences during

intersubject averaging using an 8-mm full-width at half-maximum

(FWHM) smoothing kernel.

2.3 | Entropy algorithms

Step 1: Given a time series of length N:
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X¼ x 1ð Þ,x 2ð Þ, � � �x Nð Þf g ð1Þ

Step 2: The pm dimensional phase space reconstruction of raw data

by serial number is:

X ið Þ¼ x ið Þ,x iþ τð Þ, � � �,x iþ pm�1ð Þτð Þ½ �, i¼1,2, � � �N� pm�1ð Þτ ð2Þ

where pm is the embedding dimension and τ is the delay time.

Step 3: Each reconstructed component is then rearranged in ascend-

ing numerical order:

x iþ j1�1ð Þτð Þ≤ x iþ j2�1ð Þτð Þ≤ � � �≤ x iþ jpm�1
� �� � ð3Þ

where j1, j2, � � �, jpm represents an index of the columns of each element

in the reconstructed component.

If two values are equal, for example:

x iþ j1�1ð Þτð Þ¼ x iþ j2�1ð Þτð Þ ð4Þ

They are ordered according to the size of the j1 and j2 values;

when j1 < j2:

x iþ j1�1ð Þτð Þ< x iþ j2�1ð Þτð Þ ð5Þ

Step 4: We can thus obtain a set of symbol sequences by each row of

the reconstructed matrix of any time series, where the symbol

sequences are as follows:

s gð Þ¼ j1, j2, � � �, jpm
� �

,g¼1,2, � � �,k,k ≤ pm! ð6Þ

Step 5: There are pm! possible symbol sequences obtained by the pm

dimension mapping; s(g) is only one of them. The probability of occur-

rence of the various permutations, P1,P2, � � �,Pk , can be calculated and

the permutation entropy is defined as follows:

PE N,pm,τð Þ¼�
Xk

j¼1

PjlnPj ð7Þ

Three parameter values must be set when calculating PE: the

length N of the time series, embedding dimension pm, and time delay

τ. The magnitude of the PE represents the degree of randomness in

the time series: smaller values indicate that the time series is more

regular and larger values indicate that the time series is more random.

If the value of m is too large, the phase space reconstruction will

homogenize the time series, and the subtle changes in the sequence

will not be reflected. To meet this condition, we set m = 4 and τ = 1

(Jing et al., 2014).

2.4 | Power template

A recent study showed that the power template can better define

nodes and has higher retest reliability for whole-brain and local net-

works than anatomical automatic labeling templates and other tem-

plates; therefore, we used the power template in this study. The

10 networks included the power template were as follows: the motor

and somatosensory network (SMN), cingulo-opercular network

(CON), auditory network (AN), default mode network (DMN), visual

network (VN), frontoparietal network (FPN), salience network (SN),

subcortical network (SCN), ventral attention network (VAN), and dor-

sal attention network (DAN) (Power et al., 2011).

2.5 | Cluster analysis

The core idea of the clustering analysis algorithm is to divide data

objects into different clusters through iteration to minimize the objec-

tive function and to make the generated clusters as compact and inde-

pendent as possible. The algorithm steps were as follows:

F IGURE 1 The distribution
map of the subject age. We first
assumed the ribbon distribution,
found the linear regression
equation and the correlation
coefficient r. It is seen from the
figure that r = .65, which
approximately fits with a uniform
distribution.
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(1) randomly select k objects as the centroids of the initial K clusters;

(2) assign the remaining objects to the nearest cluster based on their

distance from the centroid of each cluster and identify the centroid of

the newly formed cluster; and (3) repeat this iterative relocation pro-

cess until the objective function is minimized.

In this article, the PE of 264 nodes in the power-264 template

was calculated, and the trajectory characteristics of each node were

determined after regression analysis of the obtained entropy. The k-

means clustering method was used to cluster the 264 resulting trajec-

tories, and finally, three cluster centers were obtained.

2.6 | Statistical analysis

The DPARSF toolbox was used to define the regions of interest (ROIs)

from the power-264 template to extract the average PE values based

on the peak MNI coordinates (XYZ), and the radius of the spheres was

set to 8mm. All statistical analyses were performed using Statistical

Package for Social Science (SPSS) version 20 (http://www.spss.com/).

A linear model and quadratic regression model were used to fit the PE

developmental trajectory during aging. We applied the false discovery

rate (FDR) to correct for multiple comparisons. We used cluster analy-

sis to classify regression curve patterns in the nodes. Considering the

potential impact of cerebrospinal fluid and gray matter volume on the

experiment, we calculated the CSF and GM volumes for each subject

and input them as covariates using SPSS to evaluate changes in brain

entropy with age. The results indicated that the p-values of the CSF

and GM volumes were .856 and .449, respectively, indicating that

there was no significant effect.

3 | RESULTS

3.1 | Global PE trajectory

We observed the lifetime global brain trajectory, which exhibited an

inverted U-shaped trajectory with age (r = .28, p < .001) (Figure 2).

PE in the global brain peaked at approximately age 40, suggesting

that this age is an important time point for maturation and degener-

ation of the human brain. Of the nodal peaks, 105 of the

264 regions exhibited nonlinear changes with age (p < .001,

Bonferroni correction).

3.2 | Network PE trajectory

We further investigated the age-related changes in network trajecto-

ries. The PE in the SMN was more consistent with the linear model

that showed an increase with age (r = .161, p = .012) (Figure 3). The

PE in the other networks (CON, AN, DMN, VN, FPN, SN, SCN, VAN,

and DAN) was more consistent with the quadratic regression model

that exhibited an inverted U-shaped trajectory, with the networks

peaking at 34, 34, 41, 32, 45, 42, 25, 38, and 52 years, respectively

(Figure 3).

The nodal peak in the networks exhibited nonlinear changes with

age (p < .001, Bonferroni correction). Figure 4 shows the peak varia-

tion in the nodes in each network. With the exception of the nodal

peaks in the DMN and SN, the nodal peaks in the other networks

(CON, AN, VN, FPN, SCN, VAN, and DAN) were near the peaks of the

networks.

3.3 | Nodal trajectories

We further investigated age-related changes in the nodes, all of

which exhibited a nonlinear inverted U-shaped trajectory across the

lifespan. The peak ages for individual nodes varied across brain

areas and ranged from 17 to 62 years (Figure 5b). Notably, most of

the regions with peaks at older ages were in the SMN, FPN, and

DAN. Then, we used cluster analysis and found that the peak points

of nodes were grouped into three clusters: Cluster 1 (23.5830,

0.9863), Cluster 2 (38.3830, 0.9910), and Cluster 3 (51.0339,

0.9901) (Figure 5a). Three key points during aging were obtained:

24, 38, and 51 years.

Subsequently, we classified the peaks of the nodes and calculated

the proportion of each cluster in the different networks. As shown in

Figure 6, all nodal peak points in the SMN were concentrated at

approximately 51 years, which may be related to compensatory mech-

anisms in aging. In the AN, SCN, and VAN, all nodal peak points were

concentrated at approximately 38 years, which indicated that these

nodes were mature at approximately 38 years. In the CON, DMN, and

SN, the nodal peaks were distributed among the three clusters, indi-

cating that there were differences between the aging of networks and

the aging of nodes. The nodal peaks in the FPN and DAN were

F IGURE 2 The developmental trajectory of the global brain.
Global human brain developmental trajectory; black represents the
linear model, and red represents the quadratic regression model. The
entropy of the global human brain throughout its lifecycle shows an
inverted U-shaped trajectory with increasing age (r = .28, p < .001).
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distributed among two clusters (38 and 51 years). In the VN, the nodal

peaks were distributed between two clusters (24 and 38 years).

Next, we further characterized the three clusters. In Figure 7,

each color represents a different network. First, we studied Cluster

1 (peak at 24 years). Figure 7a-1 shows the proportions of the SN,

VN, DMN, and CON in this cluster; the proportion of corresponding

network nodes in the cluster were 12%, 25%, 25%, and 38%, respec-

tively. Figure 7a-2 shows the locations of these networks in the whole

brain. Then, we studied Cluster 2 (peak at 38 years). Figure 7b-1

shows the proportion of the networks (SN, AN, VN, DMN, DAN,

VAN, FPN, SCN, and CON) in this cluster. Most nodes peaked at

approximately 38 years. Notably, the largest proportion of nodes was

from the DMN, at 26%. The locations of these networks are pres-

ented in Figure 7b-2. Finally, we studied Cluster 3 (peak at 51 years).

Figure 7c-1 shows the proportion of the networks (DAN, SN, FPN,

VN, CON, and SMN) in this cluster. The FPN and SMN accounted for

27% and 30%, respectively. The locations of these networks in the

whole brain are shown in Figure 7c-2.

4 | DISCUSSION

In this study, we used PE approaches to examine age-related brain

alterations in a cohort of healthy subjects ranging from 6 to 85 years

old. We reached three conclusions. First, the global PE followed an

inverted U-shaped trajectory with a peak age around age 40. Second,

with the exception of the SMN (which was more consistent with a lin-

ear model and increased with age), most of the networks showed

inverted U-shaped lifespan trajectories, with the peak ages for PE

varying across networks (ranging from 25 to 52 years). Third, we fur-

ther investigated age-related changes in the nodes, all of which

showed inverted U-shaped lifespan trajectories, with the peak values

across nodes ranging from 17 to 68 years. Finally, this study identified

four basic aging trajectories: a functional network that exhibited a lin-

ear increase (i.e., the SMN); networks with an early peak age (<35

years) (i.e., the CON, VN, AN, and SCN); networks with a peak in mid-

dle age (35–44 years) (i.e., the DAN, SN, and VAN); and networks with

an older peak age (>44 years) (i.e., the FPN and DAN).

F IGURE 3 The developmental trajectory of network trajectories. The black line represents the linear model, and the red line represents the
quadratic regression model. The SMN was more consistent with the linear model, which increased with age (r2 = .161, p = .012). The other
networks (CON, AN, DMN, VN, FPN, SN, SCN, VAN, and DAN) were more consistent with the quadratic regression model and exhibited an
inverted U-shaped trajectory with peaks at different ages.
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4.1 | Peak global brain development at age 40

We found that the global PE followed an inverted U-shaped trajectory

with a peak age around age 40, suggesting that this age is an impor-

tant time point for maturation and degeneration of the human brain.

The whole brain showed deviations from linearity at critical ages, that

is, the ages where estimated atrophy started to decelerate. This is

consistent with human psychology and behavior. Psychological devel-

opment in early childhood gradually matures, and the ability to handle

events constantly improves. Middle age is a turning point in develop-

ment; after this point, there is a decline in various brain functions,

which manifests in cognition and behavior. Previous studies (Fjell

et al., 2013; Zhixiong et al., 2016) have shown that the human brain

peaks at approximately age 40, which is an important time point

regarding degeneration of the brain. In childhood, memory and cogni-

tive processing ability continuously improve, while in adulthood, they

are relatively stable. The age of 40 is a turning point in development

when cognitive function begins to decline. This notion is consistent

with our understanding of the cognitive function of the brain and the

results of this article.

4.2 | The inconsistency of the network peaks

Previous neuroimaging studies (Hasan et al., 2009; Kochunov

et al., 2012) revealed different lifespan trajectories for different WM

tracts, with peak ages varying from 20 to 40 years old (Djma

et al., 2012; Yeatman et al., 2014). Many studies have shown a

nonlinear relationship between the topological efficiency of the brain

and the volume of WM and GM with age (Allen et al., 2005; Lupien

et al., 2007), including a study with sample overlap (Walhovd

et al., 2011). Since each network may be functionally inconsistent, the

developmental trajectory of this network may also vary throughout

the lifespan, leading to changes in peak points. Overall, these studies

F IGURE 4 The nodal peaks in 10 networks exhibited nonlinear changes with age (p < .001, Bonferroni correction). With the exception of
nodal peaks in the DMN and SN, the nodal peaks in the other networks (CON, AN, VN, FPN, SCN, VAN, and DAN) are near the peaks of the
whole networks.

4364 NIU ET AL.



are largely consistent with our results; the inconsistencies may be due

to differences in sample selection. Below, we discuss each network in

detail.

4.3 | The SMN exhibits a linear increase with age

The trajectory of the SMN was more consistent with a linear model

and showed increases with age. Sofie Heuninckx found a positive cor-

relation between activation levels in the higher sensorimotor network

and motor abilities in elderly individuals (Heuninckx et al., 2008),

which is consistent with our study. Functional imaging studies have

shown that older people engage in more complex brain activities than

young people when performing motor tasks. We believe that this age-

related hyperactivity reflects a compensatory mechanism or dediffer-

entiation. Compensation refers to additional activation that can coun-

teract age-related brain dysfunction, whereas dedifferentiation leads

to activation of classic motor coordination regions but also activation

of higher sensorimotor regions in elderly individuals (Yeatman

et al., 2014). Although the trajectory of the SMN as a whole is more in

F IGURE 5 The peak for each node and the clustering of node development trajectories divided into three clusters. (a) We used K-means
cluster analysis and found that the peak points of the nodes were grouped into three clusters: Cluster 1 (23.5830, 0.9863), Cluster 2 (38.3830,
0.9910), and Cluster 3 (51.0339, 0.9901). (b) The nodal peak of human brain. A total of 105 of 264 regions exhibited nonlinear changes with age
(p < .001, Bonferroni correction). The peak ages for nodal varied across areas, from 17 to 62 years.

F IGURE 6 The proportion of
each cluster in the different
networks. We found that all
nodal peak points in the SMN are
concentrated at approximately
age 51. In the AN, SCN, and VAN,
all nodal peak points are
concentrated at approximately
age 38. In the CON, DMN, and
SN, the nodal peaks are
distributed among the three
clusters. The nodal peaks in the
FPN and DAN are distributed
between two clusters (peak = 38
cluster and peak = 51 cluster). In
the VN, the nodal peak is
distributed between two clusters
(peak = 24 cluster and peak = 38
cluster).
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line with the linear model, the trajectory of the internal nodes was

more in line with the inverted U-shape. The peak age of all nodes was

late and concentrated in Cluster 3.

4.4 | Peak primary sensory network maturation is
at approximately age 30

The trajectories of the SCN, VN, and AN were more consistent with

the quadratic regression model, which exhibits an inverted U-shape,

and the PE in these networks peaked at 25, 32, and 34 years, respec-

tively. Based on previous research findings (Zhixiong et al., 2016), the

visual, auditory, and sensory cortices reach their peaks earliest and

then exhibit a downward trend. The primary sensory brain network

shows the fastest development. This is consistent with our results.

The nodes in the SCN were all concentrated at approximately age

38, but the final peak age of the SCN as a whole was at approximately

age 25. Thus, the peak age of the functional network as a whole was

inconsistent with each node. This difference may be due to the pro-

cess of calculating an average value for the functional network; addi-

tionally, nodes focus only on particular locations and therefore exhibit

significant differences. In the AN, the overall peak age was essentially

the same age as each node in the network, which showed consis-

tency. Based on previous studies, the causes of aging in the VN may

be related to slower processing speed and reduced brain tissue vol-

ume in elderly individuals (Müller-Oehring et al., 2013). Regarding the

subcortical functional network, changes in subcortical structures sur-

rounded by myelinated neurons with long axons may be related to

myelination (Ostby et al., 2009). Recent diffusion tensor imaging stud-

ies have confirmed that myelination is the main principle underlying

late childhood and adolescent development (Giorgio et al., 2008;

Lebel et al., 2008). The decrease in complexity may reflect the process

of synaptic pruning (Huttenlocher, 1990). We found that the overall

peak age of primary sensory networks was slightly earlier and concen-

trated at approximately 30 years old. The peak ages of the internal

nodes were different from those of the whole networks, but most of

the peaks of the aging nodes were concentrated in a certain range.

4.5 | Peak control network development at
approximately age 40

The trajectories of the CON and FPN were more consistent with the

quadratic regression model, which exhibited an inverted U-shape.

F IGURE 7 The proportion of
each network in the three clusters
and location of the networks in
the brain. Each color represents a
different network. (a-1) The
proportion of networks, such as
SN, VN, DMN, and CON in peak =

24 cluster, with the proportion of
nodes in these networks being

12%, 25%, 25%, and 38%. (a-2)
shows the location of these
networks in the brain of peak =
24 cluster. (b-1) shows the
proportion of the networks (SN,
AN, VN, DMN, DAN, VAN, FPN,
SCN, and CON) in peak =
38 cluster. (b-2) The location of
these networks of peak =

38 cluster. (c-1) The proportion of
the networks (DAN, SN, FPN, VN,
CON, and SMN) in peak =

51 cluster. (c-2) The location of
these networks of peak =

51 cluster.
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These networks peaked at ages 34 and 45, respectively. The CON is

involved in many complex physical and visceral motor functions and

pain responses, while the posterior cingulate gyrus is the region that

monitors sensory, stereotactic and memory functions. Some studies

have shown that the peak ages for nodal efficiency vary across net-

works, and the peak age for CON efficiency was reported to be at

approximately 40 years, which is slightly different from our study

(Zhao et al., 2015). We think that this difference may be related to the

selection of subjects and research methods. We found that the final

peak age for this network was at approximately 34 years, but the

nodes peaked at different ages. The peak age of the frontoparietal

functional network was not exactly the same as reported in previous

studies; however, the general scope was consistent with previous

findings. For example, previous studies have found that aging of the

frontal cortex begins at approximately 45 years old (Zhixiong

et al., 2016), and Tengda Zhao et al. (2015) found that the peak value

of the parietal lobe appeared later, at approximately 50 years. Regard-

ing the frontoparietal functional network, the peaks in the prefrontal

regions were consistent with the peak range reported for various cog-

nitive measures, such as inductive reasoning, spatial visualization, epi-

sodic memory, and perceptual speed (Salthouse, 2009; Zhao

et al., 2015), suggesting that the age-related adjustments in functional

network organization may support alterations in cognitive abilities

across the lifespan. Although the aging of nodes in the functional net-

work was not completely consistent with the peak age of the whole

network at age 45, the peak ages in most nodes were later, which was

consistent with the overall peak age.

4.6 | Peak DMN development at approximately
age 41

The entropy in the DMN reached its peak at 41 years of age and then

began to decline. Studies have shown that during normal aging, func-

tional connectivity between the DMN in the anterior and posterior

parts of the central axis of the brain changes (Zhixiong et al., 2016).

From childhood to adulthood, the connection strength gradually

increases, reaches a peak, and then shows a downward trend. In old

age, the functional connectivity of the DMN is significantly weakened.

This is reflected in the decline in cognitive abilities such as memory

and attention. This functional change manifests in deficits, such as

atrophy in the cerebral cortex, damage to WM integrity, abnormal

dopamine neurotransmission, and amyloid deposition (Lindbergh

et al., 2019; Sokunbi et al., 2013). We found that the nodal peak age

in the DMN was distributed across the three clusters, while the whole

network peaked at 45 years. This finding shows that the aging of the

DMN varies rather than aging in unison.

4.7 | Peak development of the attention networks

The attention networks included the VAN, SN, and DAN, and they

peaked at 38, 42, and 52 years, respectively. The VAN is mainly driven

by bottom-up stimulation. Basic networks, such as those related to

motor control, attention/cognitive control, conflict monitoring, social

information processing and emotional management, develop in chil-

dren and adolescents, consistent with a series of behavioral phenom-

ena, such as children's “learning peak” and adolescents' “adolescence”
(Liu et al., 2019; Zhixiong et al., 2016). Compared with adults, the func-

tional connectivity of the VAN is weaker at younger ages. The nodes in

the VAN all peaked at approximately age 38, and the final peak of the

whole network was at approximately 38. Interestingly, the peak ages

of the whole network and internal nodes were highly consistent. Both

affective processing and executive function are linked to the brain's

SN (Touroutoglou et al., 2018). As with the DMN, the peak age of the

internal nodes in the SN was distributed across the three clusters, and

the peak age of the whole network did not represent the peak age of

each position in the network. The DAN provides top-down attention

orientation, which matures later (Hoffmann, 2020). Although the peak

age for the internal nodes varied in the middle-aged and elderly age

groups, the peak age for most nodes was consistent with that of the

whole network. These brain regions belong to the attention network;

the peak ages of these brain regions were concentrated in a certain

range and followed a hierarchical order. The peak ages of their internal

nodes also followed hierarchical pattern. Therefore, although there

was some internal consistency within brain areas during aging, the spe-

cific degree of aging in each brain region is different.

4.8 | Comparison with existing research methods

Most previous studies in this area have constructed brain networks,

and the resulting functional connectivity mainly focused on the syn-

ergy between nodes; in contrast, the entropy measurements applied

in this study mainly start with the complex dynamics and focus on

changes in that complexity in each node. Previous studies have ana-

lyzed these changes in terms of functional connectivity (FC) (Liu

et al., 2021; Yan et al., 2018), graph theory (Jezga et al., 2020; Yan

et al., 2018), and network efficiency (Liu et al., 2021; Yan et al., 2018;

Zhao et al., 2017). Studies have found that local efficiency decreases

linearly from adulthood to old age, while global efficiency remains

unchanged. The PE method only considers the grade of the samples,

not their metrics. As it is a sequential measure, the PE has some

advantages over other commonly used entropy measures, including

simplicity, low computational complexity without further model

assumptions, and robustness in the presence of observed and

dynamic noise. PE has been used in EEG signal studies of human

absence epilepsy (Ferlazzo et al., 2014), typical absence seizures (Jing

et al., 2014), and MCI (Timothy et al., 2014). These studies suggest

that PE is a useful tool for studying brain complexity.

5 | CONCLUSION

In this study, a cohort of healthy subjects ranging from 6 to 85 years

old was used to comprehensively analyze the whole brain and
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separate networks from linear and quadratic perspectives using PE

methods. We aimed to identify the global and network trajectories in

the human brain during healthy aging to provide a complete descrip-

tion of the topological changes in the PE over time.

Overall, this study identified four basic aging trajectories, addi-

tional patterns with regard to developmental processes, and the dif-

ferentiation of the brain during development. The four basic types of

trajectories were as follows: a linear increase in the PE of a functional

brain network; an early peak in the PE (<35 years); a PE peak in middle

age (35–44 years); and a PE peak in older age (>44 years). These

results suggest that the variations in lifespan trajectories could reflect

associations between variation in entropy and brain development.

These findings are important for elucidating methods to promote opti-

mal healthy development and aging.

5.1 | Limitations

The limitation of this article is that, first, the data used in this study

did not provide corresponding cognitive and behavioral characteris-

tics. Therefore, we did not further explore whether the trajectories

of the motor and neuropsychological scores were correlated with

PE trajectories across age groups. Second, a possible explanation

for the difference in peak points is the partial volume effects at dif-

ferent ages. In existing brain network research, the same template

is used from youth to old age; thus, the technical requirements are

not met, and there is no corresponding brain map from each

period. Third, data on a wide range of age groups are currently

scarce; our results would be more convincing if they were obtained

from multiple data sets. We will continue our research in the

future.

ACKNOWLEDGMENT

This project is supported by the National Natural Science Foundation

of China (61873178, 61906130, 62176177) and Shanxi Province

Basic Research Program (Free Exploration) Project (20210302123112,

20210302124550, 20210302123099).

CONFLICT OF INTEREST

The authors declare no conflicts of interest. The funders of this study

had no role in the design; the collection, analyses, or interpretation of

data; the writing of the manuscript; or the decision to publish the

results.

AUTHOR CONTRIBUTIONS

Yan Niu and Jie Sun completed the experimental process and wrote

the manuscript. Xin Wen and Yanli Yang provided advice and guid-

ance on the article. Bin Wang and Jie Xiang revised the manuscript

content. Jie Xiang provided the direction and ideas of the research.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available in

the Nathan Kline Institute (NKI, NY) and publicly available at the

International Neuroimaging Data-sharing Initiative (INDI) online

(http://fcon_1000.projects.nitrc.org/indi/enhanced/mri_protocol.html).

ORCID

Jie Sun https://orcid.org/0000-0002-6470-9452

Bin Wang https://orcid.org/0000-0001-7771-5360

REFERENCES

Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain

functional networks. PLoS Computational Biology, 3(2), e17.

Allen, J. S., Bruss, J., Brown, C. K., & Damasio, H. (2005). Normal neuroana-

tomical variation due to age: The major lobes and a parcellation of the

temporal region. Neurobiology of Aging, 26(9), 1245–1260 discussion

1279-1282.

Bandt, C., & Pompe, B. (2002). Permutation entropy: A natural complexity

measure for time series. Physical Review Letters, 88(17), 174102.

Chen, M. L., Fu, D., Boger, J., & Jiang, N. (2019). Age-related changes in

Vibro-tactile EEG response and its implications in BCI applications: A

comparison between older and younger populations. IEEE Transactions

on Neural Systems and Rehabilitation Engineering, 27(4), 603–610.
Djma, B., Ijb, C., Ab, D., Ggp, B., Nkca, E., & Awsa, E. (2012). Diffusion ten-

sor imaging of cerebral white matter integrity in cognitive aging.

Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease,

1822(3), 386–400.
Ferlazzo, E., Mammone, N., Cianci, V., Gasparini, S., Gambardella, A.,

Labate, A., Latella, M. A., Sofia, V., Elia, M., & Morabito, F. C. (2014).

Permutation entropy of scalp EEG: A tool to investigate epilepsies.

Clinical Neurophysiology Official Journal of the International Federation

of Clinical Neurophysiology, 125(1), 13–20.
Fjell, A. M., & Walhovd, K. B. (2010). Structural brain changes in aging:

Courses, causes and cognitive consequences. Reviews in the Neurosci-

ences, 21(3), 187–222.
Fjell, A. M., Westlye, L. T., Grydeland, H. K., Amlien, I., Espeseth, T.,

Reinvang, I., Raz, N., Holland, D., Dale, A. M., & Walhovd, K. B. (2013).

Critical ages in the life course of the adult brain: Nonlinear subcortical

aging. Neurobiology of Aging, 34(10), 2239–2247.
Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., &

Rapoport, J. L. (1999). Brain development during childhood and ado-

lescence: A longitudinal MRI study. Nature Neuroscience, 2(10),

861–863.
Giorgio, A., Watkins, K. E., Douaud, G., James, A. C., James, S.,

Stefano, N. D., Matthews, P. M., Smith, S. M., & Johansen-Berg, H.

(2008). Changes in white matter microstructure during adolescence.

NeuroImage, 39(1), 52–61.
Goodro, M., Sameti, M., Patenaude, B., & Fein, G. (2012). Age effect on

subcortical structures in healthy adults. Psychiatry Research, 203(1),

38–45.
Gutchess, A. (2014). Plasticity of the aging brain: New directions in cogni-

tive neuroscience. Science, 346(6209), 579–582.
Hasan, K. M., Iftikhar, A., Kamali, A., Kramer, L. A., Ashtari, M., Cirino, P. T.,

Papanicolaou, A. C., Fletcher, J. M., & Ewing-Cobbs, L. (2009). Devel-

opment and aging of the healthy human brain uncinate fasciculus

across the lifespan using diffusion tensor tractography. Brain Research,

1276, 67–76.
Heuninckx, S., Wenderoth, N., & Swinnen, S. P. (2008). Systems neuro-

plasticity in the aging brain: Recruiting additional neural resources for

successful motor performance in elderly persons. Journal of Neurosci-

ence, 28(1), 91–99.
Hoffmann, M. (2020). Right dominant Frontoparietal network for spatial

orientation (dorsal attention and visuospatial attention). Clinical Men-

tation Evaluation.

Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex

development. Neuropsychologia, 28(6), 517–527.

4368 NIU ET AL.

http://fcon_1000.projects.nitrc.org/indi/enhanced/mri_protocol.html
https://orcid.org/0000-0002-6470-9452
https://orcid.org/0000-0002-6470-9452
https://orcid.org/0000-0001-7771-5360
https://orcid.org/0000-0001-7771-5360


Jezga, C., Aaaaa, B., Ct, D., Amg, B., & Ot, E. (2020). HGC: HyperGraph

based clustering scheme for power aware wireless sensor networks -

ScienceDirect. Future Generation Computer Systems, 105, 175–183.
Jing, L., Jiaqing, Y., Xianzeng, L., & Gaoxiang, O. (2014). Using permutation

entropy to measure the changes in EEG signals during absence sei-

zures. Entropy, 16(6), 3049.

Karl, N., Sarah, T., Richard, C., Wayne, M., & Christian, B. (2017). Evolution

of deep gray matter volume across the human lifespan. Human Brain

Mapping, 38(8), 3771–3790.
Kochunov, P., Williamson, D. E., Lancaster, J., Fox, P., & Glahn, D. C.

(2012). Fractional anisotropy of water diffusion in cerebral white mat-

ter across the lifespan. Neurobiology of Aging, 33(1), 9–20.
Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Micro-

structural maturation of the human brain from childhood to adulthood.

NeuroImage, 40(3), 1044–1055.
Lindbergh, C. A., Zhao, Y., Lv, J., Mewborn, C. M., Puente, A. N.,

Terry, D. P., Renzi-Hammond, L. M., Hammond, B. R., Liu, T., &

Miller, L. S. (2019). Intelligence moderates the relation between age

and inter-connectivity of resting state networks in older adults. Neuro-

biology of Aging, 78, 121.

Liu, J., Xu, P., Zhang, J., Jiang, N., Li, X., & Luo, Y. (2019). Ventral attention-

network effective connectivity predicts individual differences in ado-

lescent depression. Journal of Affective Disorders, 252, 55–59.
Liu, T., Yan, Y., Ai, J., Chen, D., Wu, J., Fang, B., & Yan, T. (2021). Disrupted

rich-club organization of brain structural networks in Parkinson's dis-

ease. Brain Structure and Function, 49, 1–13.
Lupien, S. J., Evans, A., Lord, C., Miles, J., Pruessner, M., Pike, B., &

Pruessner, J. C. (2007). Hippocampal volume is as variable in young as

in older adults: Implications for the notion of hippocampal atrophy in

humans. NeuroImage, 34(2), 479–485.
Müller-Oehring, E. M., Schulte, T., Rohlfing, T., Pfefferbaum, A., &

Sullivan, E. V. (2013). Visual search and the aging brain: Discerning the

effects of age-related brain volume shrinkage on alertness, feature

binding, and attentional control. Neuropsychology, 27(1), 48–59.
Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tonnessen, P., &

Walhovd, K. B. (2009). Heterogeneity in subcortical brain develop-

ment: A structural magnetic resonance imaging study of brain matura-

tion from 8 to 30 years. The Journal of Neuroence: The Official Journal

of the Society for Neuroence, 29(38), 11772.

Potvin, O., Mouiha, A., Dieumegarde, L., & Duchesne, S. (2016). Normative

data for subcortical regional volumes over the lifetime of the adult

human brain. NeuroImage, 137, 9–20.
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., & Petersen, S. E.

(2011). Functional network organization of the human brain. Neuron,

72(4), 665–678.
Salthouse, T. A. (2009). When does age-related cognitive decline begin?

Neurobiology of Aging, 30(4), 507–514.
Shumbayawonda, E., L�opez-Sanz, D., Brua, R., et al. (2019). Complexity

changes in preclinical Alzheimer's disease: An MEG study of subjective

cognitive decline and mild cognitive impairment [J]. Clinical Neurophys-

iology, 131(2).

Smits, F. M., Porcaro, C., Cottone, C., Cancelli, A., & Tecchio, F. (2016).

Electroencephalographic fractal dimension in healthy ageing and

Alzheimer's disease. PLoS One, 11(2), 1–16.
Sokumbi, M. O., Cameron, G. G., Ahearn, T. S., Murray, A. D., & Staff RT.

(2015). Fuzzy approximate entropy analysis of resting state fMRI sig-

nal complexity across the adult life span. Medical Engineering & Physics,

37(11), 1082–1090.
Sokunbi, M. O., Fung, W., Sawlani, V., Choppin, S., Linden, D. E. J., &

Thome, J. (2013). Resting state fMRI entropy probes complexity of

brain activity in adults with ADHD. Psychiatry Research: Neuroimaging,

214(3), 341–348.

Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y.,

Yan, C. G., Zang, Y. F., & Harrison, B. J. (2011). REST: A toolkit for

resting-state functional magnetic resonance imaging data processing.

PLoS One, 6, e25031.

Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E.,

Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across

the human life span. Nature Neuroscience, 6(3), 309–315.
Sun, J., Wang, B., Niu, Y., Tan, Y., & Xiang, J. (2020). Complexity analysis of

EEG, MEG, and fMRI in mild cognitive impairment and Alzheimer's dis-

ease: A review. Entropy, 22(2), 239.

Timothy, L. T., Krishna, B. M., Menon, M. K., & Nair, U. (2014). Permutation

entropy analysis of EEG of mild cognitive impairment patients during

memory activation task. Springer International Publishing.

Touroutoglou, A., Zhang, J., Andreano, J. M., Dickerson, B. C., &

Barrett, L. F. (2018). Dissociable effects of aging on salience sub-

network connectivity mediate age-related changes in executive func-

tion and affect. Frontiers in Aging Neuroscience, 10, 410.

Walhovd, K. B., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N.,

Agartz, I., Salat, D. H., Greve, D. N., & Fischl, B. (2011). Consistent neu-

roanatomical age-related volume differences across multiple samples.

Neurobiology of Aging, 32(5), 916–932.
Wang, C., Kang, M., Li, Z., Li, Y., & Xu, J. (2020). Altered relation of resting-

state alpha rhythm with blood oxygen level dependent signal in

healthy aging: Evidence by EEG-fMRI fusion analysis. Clinical Neuro-

physiology, 131(9), 2105–2114.
Yan, C., & Zang, Y. (2010). DPARSF: A MATLAB toolbox for "pipeline" data

analysis of resting-state fMRI. Frontiers in Systems Neuroscience,

4(13), 43.

Yan, T., Wang, W., Yang, L., Chen, K., Rong, C., & Ying, H. (2018). Rich club

disturbances of the human connectome from subjective cognitive

decline to Alzheimer's disease. Theranostics, 8(12), 3237–3255.
Yang, L., Yan, Y., Wang, Y., Hu, X., Lu, J., Chan, P., Yan, T., & Han, Y.

(2018). Gradual disturbances of the amplitude of low-frequency fluc-

tuations (ALFF) and fractional ALFF in Alzheimer Spectrum. Frontiers in

Neuroence, 12, 975.

Yeatman, J. D., Wandell, B. A., & Mezer, A. A. (2014). Lifespan maturation

and degeneration of human brain white matter. Nature Communica-

tions, 5, 4932.

Zhao, T., Cao, M., Zuo, X. N., Dong, Q., He, Y., & Shu, N. (2015). Age-

related changes in the topological Organization of the White Matter

Structural Connectome across the human lifespan. Human Brain Map-

ping, 47, 26–27.
Zhao, T., Sheng, C., Bi, Q., Niu, W., Shu, N., & Han, Y. (2017). Age-related

differences in the topological efficiency of the brain structural

connectome in amnestic mild cognitive impairment. Neurobiology of

Aging, 59, S0197458017302609.

Zhixiong, Y., Xun, L., Shuping, T., Yunlong, T., Gaoxia, W., Zhi, Y., &

Xinian, Z. (2016). Developmental cognitive neurosciecne: Functional

connectomics agenda for human brain lifespan development. Chinese

Science Bulletin, 61, 718–727.

How to cite this article: Niu, Y., Sun, J., Wang, B., Yang, Y.,

Wen, X., & Xiang, J. (2022). Trajectories of brain entropy

across lifetime estimated by resting state functional magnetic

resonance imaging. Human Brain Mapping, 43(14), 4359–4369.

https://doi.org/10.1002/hbm.25959

NIU ET AL. 4369

https://doi.org/10.1002/hbm.25959

	Trajectories of brain entropy across lifetime estimated by resting state functional magnetic resonance imaging
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Data availability statement
	2.2  Data acquisition and preprocessing
	2.3  Entropy algorithms
	2.4  Power template
	2.5  Cluster analysis
	2.6  Statistical analysis

	3  RESULTS
	3.1  Global PE trajectory
	3.2  Network PE trajectory
	3.3  Nodal trajectories

	4  DISCUSSION
	4.1  Peak global brain development at age 40
	4.2  The inconsistency of the network peaks
	4.3  The SMN exhibits a linear increase with age
	4.4  Peak primary sensory network maturation is at approximately age 30
	4.5  Peak control network development at approximately age 40
	4.6  Peak DMN development at approximately age 41
	4.7  Peak development of the attention networks
	4.8  Comparison with existing research methods

	5  CONCLUSION
	5.1  Limitations

	ACKNOWLEDGMENT
	CONFLICT OF INTEREST
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	REFERENCES


