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Supplemental Figure 1
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Supplemental Figure 1. Expression of WWP2 in the kidney of patients with chronic kidney disease
(CKD) and UUO-mice (related to Figure 1)

(A) Representative images of WWP2 immunostaining (leff) and Sirius Red staining (right)
in human kidney biopsy samples, utilized for quantitative analysis for WWP2-positive ar
ea and fibrosis-positive area. Scale bars, 25 um.

(B) Positive correlation between tubulointerstitial WWP2-positive area and fibrosis-positive area in the
Nanjing IgAN cohort (n=23, P=0.024, r=0.469; left) and the Bari IgAN cohort (n=37, P=0.034, r=0.302;
right), which was determined by immunostaining and Sirius Red staining in Supplemental Figure 1A

using ImageScope. Data points represent measurements of individual section obtained from
each patient with CKD.

(C) Positive correlation of tubulointerstitial WWP2-positive area with serum BUN levels (n=68, P=0.036,
r=0.255; left) and with serum creatinine levels (n=54, P=0.037, r=0.284; right) in patients with
CKD (multi-centre cohort).

(D) Correlation of tubulointerstitial WWP2-positive area with proteinuria levels in a subgroup of patients
with CKD (n=14, P=0.646, r=0.135).
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(E) Representative immunostaining images of WWP2 in glomerular area from human renal biopsy
samples, illustrating mild and severe glomerular fibrosis, respectively (110 patients with CKD recorded
from Bari cohort). Scale bars, 25 ym.

(F-H) Correlation of glomerular WWP2-positive area with glomerular fibrosis-positive area (n=92,
P=0.233, =0.128; panel F), proteinuria levels (n=12, P=0.233, r=0.128; panel G) and eGFR levels (n=37,
P=0.673, r=0.072; panel H) in patients with CKD from Bari cohort.
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Supplemental Figure 2
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Supplemental Figure 2. WWP2 overexpression exacerbates renal fibrosis in vivo (related to Figure

1)

(A) Representative western blot showing the levels of WWP2 in kidney tissue from Control™ and WWP2'
mice. Control™ and WWP2™ refer to mice injected with plasmids containing control and WWP2 DNA,
respectively (see Methods for details).

(B) Representative images of Masson’s trichrome staining in kidney tissue sections from Sham and
UUO-treated mice (10 days), with WT and WWP2" genotypes (left, scale bar, 30 um), followed by
quantitative analysis (right). Each dot indicates the average fibrosis-positive area from the section per
mouse, and five non-overlapping fields were taken. Values are reported as mean = SEM. P-values
calculated by two-tailed Mann-Whitney U test.

(C) The expression of ECM genes in kidney tissues from UUO and control mice (n=6-9, each group).
Left, expression changes were determined with RT-qPCR; right, representative western blot for protein
levels analysis. The values are reported as mean £ SD. P-values calculated by two-tailed Mann-Whitney
U test.
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Supplemental Figure 3
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Supplemental Figure 3. Effect of WWP2 deficiency on renal fibrosis at 7 days of UUO (related to
Figure 2)

(A) Representative western blot showing the levels of WWP2 in kidneys from WT and WWP2"- mice.
WWP27" kidneys preserve WWP2 C-terminal isoform, while lack the WWP2-full length (FL) and -N
isoforms.

(B) Representative Sirius Red images of WT and WWP2" mouse kidneys following UUO model for 7
days. (n=6 images recorded for each condition). Scale bars, 10 pm.

(C) Quantitative analysis of cortical fibrosis-positive area (left, %) and HPA collage levels (right, ug/mg)
WT and WWP2"- mouse kidneys following UUO model for 7 days. The data values are summarized using
box-and-whisker plots (n=6). P-values were calculated by two-tailed Mann-Whitney U test. NS, P>0.05.

(D) Heatmap showing of mRNA expression of ECM genes, determined with RT-qPCR, in kidney from WT
and WWP2"mouse following UUO model for 7 days. For each gene, relative fold change was calculated
with respect to Sham WT and averaged across biological replicates (n=6, each group). No statistically
significant differences (P<0.05) were detected between WT and WWP2" groups.

(E) Representative western blot for ECM proteins in UUO kidneys from WT and WWP2"- mouse kidneys
following UUO model for 7 days. No statistically significant differences (P<0.05) were detected between
WT and WWP2™" groups.
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Supplemental Figure 4
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Supplemental Figure 4. Single-cell transcriptomics landscape of kidney cells derived from UUO-
mice (related to Figure 3)

(A) Uniform Manifold Approximation and Projection (UMAP) representation of 74,585 kidney cells
profiled in WT (n=2) and WWP2" (n=2) UUO-mice, showing 16 major cell types. CNT: connecting tubule;
PT: proximal tubule; DCT: distal convoluted tubule; DL & tAL: descending limb and thin ascending limb;
EC: endothelial cells; MF: myofibroblasts; Fib: fibroblasts; IC: intercalated cells; Inf. PT: inflammation
proximal tubule; JGA: juxtaglomerular cells; TAL: thick ascending limb. Top 4 marker genes are reported
in panel C.

(B) Heatmap of enriched pathways identified in each renal cell-type cluster. Only the top 2 significant
terms are shown, and the significance of enrichment is represented by logx(-logs(adjusted p-value)).
Pathways involved in ECM process are highlighted (red box) and were identified in the ECM-expressing
clusters (cluster 7 and 8, light blue box).

(C) Heatmap of the scaled gene expression of top 4 marker genes for each cell cluster (panel A), based
on average log, fold change (FC) in gene expression. The marker gene ACTA-2 is highlighted (red box),
which is detected in JGA cluster and in the ECM-expressing cluster 7 and 8 (light blue box).

(D) Reactome pathways enriched in myofibroblasts from UUO kidneys. These pathways are identified in
the differentially expressed genes between MF1 and MF2, i.e., cluster 7 and 8, respectively, by GSEA
(false discovery rate (FDR)<0.05). Positive normalized enrichment score indicates pathway upregulation
in MF1 compared with MF2.

(E) Box plots showing the proportions (%) of myofibroblasts: MF1 (cluster 7, C7) and MF2 (cluster 8,
C8) cells based on single cell analysis in both WT and WWP2" kidneys after UUQ treatment (14 days).

For each cell subset, P-value for significance of difference in cell proportions was derived by Y? test.
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Supplemental Figure 5
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Supplemental Figure 5. Regulatory function of WWP2 in myofibroblasts and tubular cells derived
from fibrotic kidneys

(A-B) Normalized expression of WWP2 (A) and the percentage of genes regulated by WWP2 (B) in renal
myofibroblasts and tubular cells.

(C) Reactome pathways enriched in tubular cells and significantly different between WT and WWP2"
UUO kidneys by Gene Set Enrichment Analysis (GSEA) (false discovery rate (FDR) <0.05). NES,
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normalized enrichment score, where a positive NES indicate upregulation in WWP2"- compared with WT
myofibroblasts.

(D) Activity of previously reported chemokine ligand-receptor pairs (molecule 1-2 pairs) in tubular cells
(ligands) and myofibroblasts (receptors) derived from WT and WWP27- UUO kidneys. Mean expression
of molecule 1-2 pairs is reported as color intensity.

(E) Differential expression analysis (WWP2" vs WT) of chemokine ligands (in tubular cells) and receptors
(in myofibroblasts). For each chemokine ligand and receptor, we report the percent of expressed cells
and average mRNA expression. Significantly different interactions: *, Benjamini-Hochberg adjusted
P<0.001.
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Supplemental Figure 6
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Supplemental Figure 6. WWP2 overexpression mediates cellular proliferation and activation in renal
myofibroblasts in vitro (related to Figure 4)

(A) Representative western blot showing the levels of WWP2 isoforms in primary cultured renal
myofibroblasts upon TGFB1 stimulation (5ng/ml, 72h).

(B) Proliferation of primary cultured renal myofibroblasts was assessed by MTT assay. Both WT and
WWP2" myofibroblasts were cultured with 10% FBS in DMEM (/eft, P1 cells; n=3 for each group) and
treated with TGFB1 (5ng/ml) (right, P2 cells; n=6 for each group). P-value for statistical significance is
calculated by two-way repeated measures ANOVA; data points are reported as mean * SD.

(C) Representative western blot showing the levels of WWP2 in primary cultured renal myofibroblasts
that were transfected with WWP2 overexpression (WWP2%) or scrambled (Scram) DNAs.

(D) Representative western blot showing ECM protein levels in cultured WWP2% and Scram
myofibroblasts with or without TGFB1 stimulation (5ng/ml, 72h).

(E) Left: representative graph of cell cycle in cultured WWP2% and Scram myofibroblasts using flow
cytometry (TGFB1 stimulation (5ng/ml, 72h)). Right: quantification of cell cycle phases at G0O/G1, S and
G2/M in cultured WWP2% and Scram myofibroblasts (n = 3, i.e., from 3 independent experiments).
Values are reported as mean = SEM.
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Supplemental Figure 7

A Regulation of metabolic reactions by WWP2 in myofibroblasts derived from fibrotic UUO kidneys
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Supplemental Figure 7. Compass-based exploration of metabolic profile (related to Figure 5)

(A) Compass-score differential activity test from ECM-expressing myofibroblasts derived from WT and
WWP27- UUO kidneys. Same analysis as shown in Figure 5A, but showing all metabolic reactions. BH-
adjusted P-value, P-value corrected for multiple testing using the Benjamini-Hochberg method. For each
metabolic reaction, the effect size of the change associated with WWP2 deficiency was estimated by
Cohen’s D (x-axis). The metabolic reactions upregulated in WWP2 deficient mouse kidney are indicated
in red.

(B) Spearman correlation between Compass scores and the expression of WWP2 in renal myofibroblasts
derived 5 CKD patients [1]. Same analysis as shown in Figure 5B, but showing all metabolic reactions.
The nonsignificant correlations are shown in light grey. The metabolic reactions that are negatively
correlated (P<0.01) with WWP2 expression in myofibroblasts are indicated in light blue.
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Supplemental Figure 8

A Spearman correlation between WWP2 expression and metabolic reactions in myofibroblasts derived from CKD kidneys
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Supplemental Figure 8. Compass-based exploration of metabolic reactions regulated by WWP2 in
another CKD cohort (related to Figure 5)

(A) Spearman correlation between Compass scores and the expression of WWP2 in renal myofibroblasts
derived 10 patients with CKD [2]. Same analysis as shown in Supplemental Figure 6B (in 5 CKD patients)
and nonsignificant correlations shown in light grey. The metabolic reactions that are negatively correlated (
P<0.01) with WWP2 expression in myofibroblasts are indicated in light blue.
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(B) Spearman correlation of Compass scores with WWP2 expression in renal myofibroblasts from 10
CKD patients. Upper: The significant Spearman correlation between Compass scores and the expression le
vels of WWP2 in renal myofibroblasts. The color coding represents different metabolic pathways.
Lower: Spearman correlation analysis for 4 key metabolic reactions. The whole set of metabolic reactions
was showed in supplemental Figure 7A.

(C) Histogram showing the distribution of Spearman correlations between WWP2 expression and
metabolic actions in renal myofibroblasts derived from 12 controls and 10 CKD patients, showing that
the correlation (association) is significantly stronger (P<0.001) in CKD compared with control
myofibroblasts. P-value was calculated using two-tailed Wilcoxon rank-sum test.
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Supplemental Figure 9
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Supplemental Figure 9. Profile of metabolites measured in cultured renal myofibroblasts derived
from WT and WWP2™" kidneys (related to Figure 5)

(A-D) Metabolomics profile of metabolites in cultured renal myofibroblasts (P2) derived from WT and
WWP2" kidneys, arranged according to metabolic pathways: glycolysis pathway (A), TCA cycle (B), ACs
in fatty acid oxidation pathway (C), and amino acid metabolism (D). Same analysis as shown in Figure
5C, but showing all metabolites (and not just significantly differentially expressed between WT and
WWP2", as in the main figure). Each metabolite was presented as Z score. (E). Schematic representation
illustrating the metabolic processes changed in WWP2"- myofibroblasts.

EMP: Embden-Meyerhof pathway of glycolysis; PPP: pentose phosphate pathway; FBP: Fructose-1,6-
bisphosphate; PEP: Phosphoenolpyruvate; R5P: Ribose-5-phosphate; S7P: Sedoheptulose-7-phosphate;
G6P: Glucose-6-phosphate; DHAP: Dihydroxyacetone phosphate; BPG: Bisphosphoglycerate or 2,3-
Bisphosphoglycerate; 2PG: 2-Phosphoglycerate; SCAC: small chain of acylcarnitine; LCAC: long chain of
acylcarnitine; MCAC: Medium chain of acylcarnitine; a-KG, a-ketoglutarate; Gly: glycine; Ala: alanine; Ser:
serine; Pro: proline; Val: valine; Leu: leucine; lle: isoleucine; Orn: ornithine; Met: methionine; His:
histidine; Phe: phenylalanine; Arg: arginine; Cit: citrate; Tyr: tyrosine; Asp: aspartic acid; Glu: glutamic
acid; Trp: tryptophan.
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Supplemental Figure 10
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Supplemental Figure 10. Regulation of PGC-1a signalling by WWP2 (related to Figure 6)

(A) Representative immunofluorescence analysis of WWP2 in WT primary renal myofibroblasts showing
nuclear localization after 24 hrs TGFB1 stimulation (5ng/ml). Scale bar: 20 pm.

(B) Normalized gene expression levels (TPM, transcripts per million kilobase) measured by bulk-RNA
seq analysis of PGC-1a in myofibroblasts derived from WT and WWP2" kidneys with or without TGFB1
stimulation (5ng/ml, 72hrs). n=4, from independent biological replicates. Values are reported as mean +
SEM.

(C) Barplots summarizing the effects of ZLNOOS (10 pM and 20 pM) on OCR based on Seahorse Mito
stress assays (upper panel) and on ECAR based on Seahorse Glycolysis assays (lower panel) in cultured
WT myofibroblasts. n=3 independent experiments, each containing readouts from 3-4 microplate wells
(technical replicates), yielding n=9-12 data points.

(D) Barplots summarizing the effects of SR18292 (2.5 yM and 5 uM) on OCR based on Seahorse Mito
stress assays (upper panel) and on ECAR based on Seahorse Glycolysis assays (lower panel) in cultured
WWP2"- myofibroblasts. n=3 independent experiments, each containing readouts from 3-4 microplate
wells (technical replicates), yielding n=9-12 data points.

(E) Schematic summary of the cellular and metabolic phenotypes observed following PGC-1a
pharmacological activation (by ZLN0O5) or inhibition (by SR18292) in primary cultured WT and WWP2-
" renal myofibroblasts, respectively.
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