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Introduction
The American Cancer Society estimates that 233,000 out of 
855,220 new cases of cancer in the United States will be pros-
tate cancer and that prostate cancer will cause approximately 
29,480 deaths, making it the second deadliest cancer for men.1 
Treatment options for prostate cancer include surveillance, 
removal of the prostate and surrounding tissue, radiation 
therapy, hormonal therapy including removal of the testicles 
or suppression of testosterone production, stabilization of 
bone to limit metastases, and chemotherapeutic or immuno-
therapeutic agents.2 Removal of the prostate often results in 
significant morbidity, including urinary and sexual dysfunc-
tion3 or potentially fecal incontinence.4 Hormonal treatment 
of prostate cancer, although standard, has been shown to 

significantly decrease quality of life in the domains of mental 
and general health and activity and energy.5 Chemotherapy 
and immunotherapy are generally used for recurrent prostate 
cancer. A list of drugs used for treatment and palliation of 
prostate cancer are included in Table 1.

With the high impact of prostate cancer in the United 
States and around the world, the continued development of 
effective therapeutic options is of utmost importance. How-
ever, the average cost for bringing a new drug to the mar-
ket has been estimated to be nearly $1  billion in the US.6 
The whole discovery process requires years of development 
and experimentation, including costly and time-consuming 
clinical trials. Thus, the development of an efficient and 
accurate informatics system for drug repurposing, which can 
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leverage the literature without significant manual effort, is 
needed. We propose to use semantic predications extracted 
from the literature to expedite drug discovery and potentially 
to reduce development time and cost.

In this paper, we report on a system built on natural 
language processing (NLP) that can find potential prostate 
cancer drugs based on the knowledge contained within the 
biomedical literature. Specifically, the system extracts all 
relevant semantic predications from SemMedDB7 (a data-
base of semantic relationships generated by SemRep8) and 
identifies candidate prostate cancer drugs based on proposed 
pathway schemas and manual filtering by a physician. Using 
this approach, our methodology discovers potential prostate 
cancer drugs that are supported by evidence in the biomedi-
cal literature.

Background
This study leverages several publicly available NLP tools 
that have been developed at the National Library of Medi-
cine (NLM) including Unified Medical Language System 
(UMLS), SemRep, and SemMedDB.

UMLS. The UMLS provides biomedical domain knowl-
edge for researchers and includes the Metathesaurus, Seman-
tic Network, and SPECIALIST Lexicon.9 The Metathesaurus 
integrates concepts from over 100 vocabularies, classifica-
tions, and coding systems into one structure. The Semantic 
Network provides a hierarchy of semantic types assigned to 
Metathesaurus concepts as well as relationships between those 
semantic types. The SPECIALIST Lexicon10 includes lexical 
information (such as part-of-speech, morphology, and object 
structure of verbs) to support NLP systems.

SemRep. SemRep is an NLP application that extracts 
semantic predications from the biomedical research litera-
ture. The system relies on all components of the UMLS. For 
underspecified syntactic analysis, the SPECIALIST Lexicon 

provides input to the MedPost part-of-speech tagger11 and 
subsequent syntactic rules. MetaMap12 is used to map noun 
phrases in the syntactic structure to Metathesaurus concepts, 
and indicator rules map syntactic components to relationships 
in an extended version of the Semantic Network.

Each semantic predication, a subject–PREDICATE– 
object triple, consists of a semantic relationship from the 
extended version of the Semantic Network as a predicate 
and arguments from the Metathesaurus concepts. SemRep 
predicates cover genetic etiology of disease (eg, ASSOCI-
ATED_WITH, CAUSES), substance interactions (eg, 
INTERACTS_ WITH, STIMULATES), clinical medicine 
(eg, TREATS, DIAGNOSES), and pharmacogenomics (eg, 
AFFECTS, AUGMENTS).13 For example, SemRep inter-
prets the biomedical text in (1) as the semantic predication 
in (2), identifying the word “linked” as an indicator of the 
semantic relationship ASSOCIATED_WITH:

(1)	 Extracellular matrix associated protein CYR61 is linked 
to prostate cancer development (PMID: 20172544).

(2)	 CYR61 ASSOCIATED_WITH Malignant neoplasm 
of prostate (MNP).

SemMedDB. All MEDLINE citations have been pro-
cessed with SemRep, and extracted predications stored in 
a database, SemMedDB.7 The version of SemMedDB used 
for this study is based on citations published as of September 
30, 2013. The database maintains links from each predica-
tion to its source sentence along with the citation identifier 
(PMID). It also includes positional information regarding 
arguments and predicates in a given sentence as well as the 
distance between an argument and its indicator. We have 
recently exploited SemMedDB as a structured knowledge 
resource for discovering drug–drug interactions in clinical 
data.14

Table 1. Standard drugs for prostate cancer.

Hormonal Therapy Immunotherapeutics

Estrogens and Progestins Antiandrogens Antiadrenal agents Prednisone

Diethylstilbestrol Enzalutamide Ketoconazole Sipuleucel-T

Chlorotrianisene Buserelin Aminoglutethimide Chemoprevention

Ethinyl estradiol Flutamide Finasteride

Conjugated estrogens Bicalutamide Radiation therapy Dutasteride

Megestrol acetate Cyproterone acetate Radium-223 Anti-metastatic therapy

LH-RH agonists Nilutamide Chemotherapeutics Bisphosphonates

Goserelin Abiraterone Docetaxel Sodium clodronate

Leuprolide LH-RH antagonists Cabazitaxel Antiosteoclast agents

GR agonists Degarelix Paclitaxel Denosumab

Dexamethasone

Notes: National Cancer Institute prostate cancer treatment website health professional version (http://www.cancer.gov/cancertopics/pdq/treatment/prostate/
HealthProfessional), accessed March 25, 2014, and National Cancer Institute drugs approved for prostate cancer (http://www.cancer.gov/cancertopics/druginfo/
prostatecancer), accessed March 25, 2014.
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Discovery patterns. In the earlier work,14 we used 
discovery patterns to identify pairs of drugs that have a shared 
association with specific genes and biological functions, 
suggesting that the drugs interact. The patterns we used take 
the form Drug1→Gene→Drug2 or Drug1→Gene1→ Biological 
Function←Gene2←Drug2. In this paper, we modified these 
patterns for the new goal of identifying candidate drugs for 
prostate cancer. The idea of discovery patterns was first intro-
duced by Hristovski et  al.15,16 The authors suggested that 
specific combinations of semantic predication patterns could 
provide plausible hypotheses for biomedical phenomena. This 
idea was applied to drug repurposing for cancer by defining 
a discovery pattern that links antipsychotic agents to cancer 
through a common gene.17 Cohen et  al. developed a vector 
space model-based method to automatically detect discovery 
patterns to predict candidate targets for repurposed drugs 
using SemRep predications that contain a drug–gene and 
gene-disorder predication combination.18 An example pro-
vided by Cohen and authors includes several intermediate 
genes linking thalidomide to multiple myeloma.

Related work. Other authors have used a number of tech-
niques to extract cancer-related information from biomedical 
resources, leveraging both the literature and structured data 
sources. For example, Chun et  al. developed a maximum 
entropy-based named entity recognizer and a topic-classified 
relation recognizer to extract information from MEDLINE 
abstracts on prostate cancer.19 They had biologists annotate 
a corpus consisting of gene and prostate cancer relations to train 
the machine learning tools. Epstein used statistical association 
rules primarily applied to co-occurring words in MEDLINE 
citations to explore how text mining can be exploited to 
reduce cost and enhance effectiveness in cancer research. They 
provide examples in several areas, which include designing 
therapeutic strategies, clinical trial design, and targeted drug 
efficacy for different cancer subtypes.20 Deng et al. developed 
a statistical method to select prostate cancer biomarkers from 
mass spectrometry and microarray datasets; the authors then 
used text mining from Online Mendelian Inheritance in Man 
(OMIM) to validate results.21 Finally, Lu et al. used an order-
prediction model to predict cancer drug indications based on 
chemical–chemical interactions.22

Methods
Our approach (Fig.  1) included four basic components:  
(1) identifying possible UMLS concepts (with MetaMap) 
related to prostate cancer, (2) extracting all semantic predica-
tions relevant to prostate cancer concepts as well as the genes 
and drugs that are in a relationship with those concepts from 
SemMedDB, (3) discovering all possible cancer drugs based 
on combinations of semantic predications according to path-
way schemas, and (4) providing potential unknown prostate 
cancer drugs after human review and exclusion of known 
drugs. These components are achieved through a series of 
steps detailed below.

Step 1: Prostate cancer concept extraction. We retrieved 
relevant prostate cancer concepts from UMLS Metathe-
saurus. Two concepts were found and used for this study: 
C0376358: prostate cancer (MNP) [neoplastic process] and 
C0600139: prostate cancer (prostate carcinoma) [neoplastic 
process]. Note that numbers starting with a “C” are concept 
unique identifiers in UMLS Metathesaurus, and their cor-
responding semantic types (eg, neoplastic process) are given 
in square brackets.

Step 2: Semantic predication extraction from SemMedDB. 
We extracted three types of predications from SemMedDB: 
gene–cancer (ie, predications with a gene as the subject and a 
cancer concept as the object), gene–gene, and drug–gene. We 
first find all predications describing an influence between a 
gene and one of the prostate cancer UMLS concepts (Step 1). 
Specifically, predications having a gene as the subject, one of 
the prostate cancer concepts as the object, and one of the six 
restricted predicate types – AFFECTS, ASSOCIATED_
WITH, AUGMENTS, CAUSES, DISRUPTS, and PRE-
DISPOSES – were extracted as gene–cancer predications. 
Additionally, drug–gene predications were extracted by find-
ing those that contained a drug as the subject and a gene 
as the object with any of the following predicates: INHIB-
ITS, STIMULATES, or INTERACTS_WITH. We also 
extracted gene–gene predications. These were required to have 
a gene as both the subject and object and STIMULATES, 
INHIBITS, or INTERACTS_WITH as the predicate.

Step 3: Prostate cancer discovery pathways (Fig. 2)
i.	 Drug→Gene→Cancer (DGC) pathway. We identified the 

potential drugs using the drug–gene and gene–cancer 
predications previously extracted in Step 2. Potential 

UMLS

MetaMap
Prostate cancer

concepts

SemRep

Physician review

MEDLINE

Candidate
drugs

Drug discovery
method

SemMedDB

Figure 1. Prostate cancer concepts are found from the UMLS using 
MetaMap. SemRep extracts semantic predications from the MEDLINE 
database and stores them in SemMedDB. Predications from SemMedDB 
are found containing the prostate cancer concepts as objects and genes 
as subjects and more predications are found that contain drugs as 
subjects and genes as objects. Additional predications are selected that 
contain genes as both subject and object. These predications are lined 
up in either the Drug→Gene→Cancer pathway schema or the Drug→ 
Gene1→ Gene2→Cancer pathway schema to produce a list of potential 
drugs and their mechanism of action in treating prostate cancer.  
A physician selects the best candidates based on the source citations 
and other relevant knowledge.
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Figure 2. (A) Two pathway schemas are utilized. The first connects a drug–gene predication with a gene–cancer predication and the second connects a 
drug–gene predication to a gene–gene predication and then the object gene of the gene–gene predication to a gene–cancer predication. (B) Drug–gene, 
gene–cancer, and gene–gene predications are all retrieved from SemMedDB. While all three types are used for the Drug→Gene1→Gene2→Cancer 
pathway, only the drug–gene and gene–cancer predications are used for the Drug→Gene→Cancer pathway.
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Figure 3. The resulting drug candidates and their mechanism of action in treating prostate cancer are represented schematically.

prostate cancer drug candidates were generated by 
matching the object gene in a drug–gene predication 
with the subject gene in a gene–cancer predication. For 
example, combining dexamethasone INHIBITS EGR1 
with EGR1 PREDISPOSES MNP produces the path-
way dexamethasone→EGR1→MNP. Note that an 
inhibitory effect on a gene that promotes cancer suggests 
the possibility of treating cancer as does a stimulatory 
effect on a gene that suppresses cancer.

ii.	 Drug→Gene1→Gene2→Cancer (DGGC) pathway. We 
also identified the potential drugs by adding the gene–
gene predications as an extension to the DGC path-
way. Potential drug candidates were generated when 
the following two matches were satisfied: (1) The object 
gene in drug–gene predication is the same as the sub-
ject gene in gene–gene predication; (2) the object 
gene in gene–gene predication and the subject gene in 
gene–cancer predication are the same. As an example, 

three predications (quercetin INHIBITS FAS, FAS  
STIMULATES NFKB1, and NFKB1 ASSOCI-
ATED_WITH MNP) can be combined to form the 
pathway quercetin→FAS→NFKB1→MNP.
Step 4: Physician selection of semantic predications. We first 

retrieved the MEDLINE sentences that produced drug candi-
dates based on DGC and DGGC pathways from SemMedDB. 
One author (MJC, a physician) then selected the most promising 
candidates from the semantic predications matching each of the 
pathways. The selection considered the logical implications of 
the combination of predications. For instance, if the gene in 
a DGC pathway contributed to prostate cancer, the drug would 
need to reduce the abundance or activity of the gene. For the 
non-specific predicates INTERACTS_WITH and ASSOCI-
ATED_WITH, the actual nature of the interaction or asso-
ciation needed to be ascertained from the abstract or full text 
article. Consideration was also given to the validity of the com-
ponent predications relative to their source sentence.
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Results
Drugs discovered through DGC pathway schema. Step 

2 of our method resulted in 6511 predications containing 853 
drug terms, 1107 gene terms, and 2 cancer terms. The break 
down for each type of predication is given in Table 2.

Using the DGC pathway schema (Step 3i), we found 18 
potential prostate cancer drugs and 3 drugs with some estab-
lished usage (Table  3). For a gene that promotes growth or 
impact of cancer, the example drug is inhibitory; whereas for 
a gene that decreases cancer progression, the drug is stimula-
tory. Note that ASSOCIATED_WITH can either indicate 
a promoting or decreasing effect and requires exploration of 
the source text. For example, FAS is pro-apoptotic, and so in 
this case the association with prostate cancer is a decreasing 
effect that suggests therapeutic potential. Many drugs share 
the same pathway, for example, No. 1–4, No. 5–6, No. 7–12,  
No. 13–16, and No. 17–19 (Table  3). In the first example, 
simvastatin inhibits the gene CYR61, which has been associ-
ated with prostate cancer (MNP). With further inspection, 
the specific association is that CYR61 expression is increased 
in prostate cancer. This chain indicates simvastatin may have 
potential to inhibit MNP to some degree.

Drugs discovered through Drug→Gene1→Gene2→ 
Cancer (DGGC) pathway schema. Applying the DGGC 
pathway schema (Step 3ii) to our predication set and the sub-
sequent physician selection of semantic predications (Step 4) 
yielded two unknown drug candidates (Sch-23390 and quer-
cetin) and the known prostate cancer drug dexamethasone 
(Table 4). In the pathway to cancer for the compound quercetin 
(Table 4, No. 3), FAS stimulates NFkappaB, which is further 
described in the source (PMID: 15289496) as an inflamma-
tory response instead of a proapoptotic signal, and activation 
of NFkappaB is then associated with prostate cancer progres-
sion. Therefore, inhibition of FAS by quercetin might reduce 
prostate cancer progression.

Literature evidence for cancer drugs generated from 
DGC and DGGC pathway schemas. Some example predi-
cations and their source sentences from those that resulted in 
selected pathways are listed in Table 5. The source of the sen-
tences, including PMID and title/abstract are also extracted. 
The underlined words in sentences are related to subjects and 
objects in the predications. Bold and italic words in the sen-
tences indicate the relationships (predicates) between two 
biomedical concepts. Predicates (eg, STIMULATES) in the 
semantic predications can be generated from verbs (eg, induce, 
promote) or nouns (eg, induction, upregulation, stimulation). 

All biomedical concepts were mapped to UMLS concepts. 
For example, NFkappaB was mapped to the gene NFKB1 
(Table 4, No. 1), zif268 mapped to EGR1 (Table 5, No. 4).

Discussion
Our method of identifying cancer drugs from the biomedi-
cal literature is novel since it makes use of knowledge from 
the entire MEDLINE database (via semantic predications 
extracted by SemRep). Moreover, we design the two different 
pathway schemas to allow for linking knowledge from differ-
ent citations and potentially even different fields of biomedical 
science. This preliminary work is not intended to provide an 
exhaustive list of candidate prostate cancer drugs, but it pro-
vides a significant starting point for future exploration.

Clinical implications. Both of our pathway schemas 
provided both drugs already used for prostate cancer therapy 
and drugs not currently associated with its treatment. One of 
the known drugs, dexamethasone, is part of standard com-
bined therapy for certain prostate cancer patients, whereas 
ketoconazole and paclitaxel are less common in standard 
protocols but exist in studies of experimental treatment. In 
general, the drugs not currently used are obvious candidates 
because they are standard or experimental treatments for 
other cancers, for instance simvastatin has been investigated 
for pancreatic cancer,23 leukemia,24 and lung cancer.25 Tamox-
ifen is a somewhat unexpected candidate since it is an estrogen 
receptor antagonist, but it has been suggested in the literature 
that it may inhibit prostate cell proliferation.26 Adriamycin 
is included in the resulting therapeutic candidates and has 
already been investigated for use in prostate cancer, although 
clinical trials results have been controversial suggesting its 
activity is limited.27

Advantages of SemMedDB predications in finding 
unknown cancer drugs. Our methodology uses semantic 
predications extracted from all of MEDLINE. In addition 
to providing broad access to biomedical knowledge in the 
literature, SemRep predications identify the nature of the 
relationships between entities, going beyond techniques 
that use concept co-occurrence. The semantic predications 
are not only machine readable and computable, but they are 
also human readable and intuitive. In our method, we are 
able to take advantage of this by specifying predicates and 
semantic types of subjects and objects. This is an essential 
component to the construction of our pathway schemas that 
significantly facilitates the automatic generation of mean-
ingful candidate pathways.

Table 2. Counts of predications and unique subjects, predicates, and objects for each type of predication.

Predications Unique subjects Unique predicates Unique objects

Drug–gene 2255 853 3 88

Gene–gene 2621 775 3 117

Gene–cancer 1635 513 7 2
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for three predication types: gene–drug, drug–gene, and gene–
function. The overall precision was 0.60 and varied slightly for 
each type (0.61 for drug–gene, 0.65 for gene–drug, and 0.54 
for gene–function).

Identification of known prostate cancer targets. Our 
results are limited in several ways. One is due to a physician 
having manually reviewed a relatively small, randomized 
subset of candidates. Through this process, we were able 
to identify drug–gene and gene–cancer pairs (eg, tanshi-
none II A INHIBITS AR, AR ASSOCIATED_WITH 
MNP) by looking for specif ic known targets (prostate 
cancer-specif ic androgen receptor and androgen synthesis 
pathways).

However, many complete pairs still did not appear in our 
filtered set; typically, only the drug–gene predication occurred 
(or less commonly we found only the gene–cancer relation-
ship). There are two major reasons for these missed relation-
ships, both due to decisions made when post-processing the 
extracted predications.

SemRep is not always able to resolve ambiguous gene/
protein names, for example, Steroid 17-alpha-monooxygenase 
versus CYP17A1. In such cases, both concepts are included in 
the predication in the database. For this study, we eliminated 
these predications from further processing. Since this step sig-
nificantly reduced the size of our results, disambiguation of 
such cases needs to be pursued in future work.

Table 4. Resulting drug candidates discovered through DGGC 
pathway.

No. Drug → Gene1 → Gene2 → Cancer

1 Dexamethasone INH EGR1 STI SIRT1 ASC MNP

2 Sch-23390 INH EGR1 STI SIRT1 ASC MNP

3 Quercetin INH FAS STI NFKB1 ASC MNP

Abbreviations: STI, STIMULATES; INH, INHIBITS; ASC, ASSOCIATED_
WITH; MNP, Malignant neoplasm of prostate.

Table 3. Resulting drug candidates through DGC pathway.

No. Drug → Gene → Cancer Established use

1 Simvastatin INH CYR61 ASC MNP No

2 Tamoxifen INH CYR61 ASC MNP No

3 Lovastatin INH CYR61 ASC MNP No

4 Pimagedine INH CYR61 ASC MNP No

5 Dexamethasone INH EGR1 PRE MNP Yes

6 Sch-23390 INH EGR1 PRE MNP No

7 Adriamycin STI FAS ASC MNP No

8 Carboplatin STI FAS ASC MNP No

9 Carvedilol STI FAS ASC MNP No

10 Curcumin STI FAS ASC MNP No

11 Hydralazine STI FAS ASC MNP No

12 Paclitaxel STI FAS ASC MNP Yes

13 Hydroxamate INH HDAC9 ASC MNP No

14 Bortezomib INH HDAC9 ASC MNP No

15 Bryostatin 1 INH HDAC9 ASC MNP No

16 Valproic acid INH HDAC9 ASC MNP No

17 Catechin INH HSPA5 ASC MNP No

18 Metformin INH HSPA5 ASC MNP No

19 Nicotinic Acid INH HSPA5 ASC MNP No

20 5,6-dimethylxanthenoneacetic acid STI NFKB1 ASC MNP No

21 Ketoconazole INH CYP3A5 ASC MNP Yes

Abbreviations: ASC, ASSOCIATED_WITH; INH, INHIBITS; PRE, PREDISPOSES; STI, STIMULATES; MNP, Malignant neoplasm of prostate.

Drug discovery guidance. Our method facilitates the 
search for new prostate cancer drugs by focusing on likely can-
didates that already have supporting evidence in the literature 
and provide not only a candidate list but a specific mechanism 
of action. This facilitates preclinical investigation necessary 
before clinical trials may be considered. This method has the 
potential to find candidates that may not have been consid-
ered since the semantic predications are derived from any of 
the journals included in MEDLINE, which are not limited 
to cancer research but come from a wide range of biomedical 
research fields.

Evaluation of semantic predications. SemRep out-
put has been evaluated several times for recall and precision. 
Recall has been evaluated to approximate 0.60.17,28 In previous 
work identifying drug–drug interactions using semantic 
predications,14 we undertook a formal linguistic evaluation 
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Table 5. Sentence citations for selected drug–gene, gene–gene, and gene–cancer semantic predications.

No. Semantic Predications Sentence (PMID, title/abstract)

Drug → Gene predications

1 5,6-dimethylxanthenoneacetic acid  
STIMULATES
NFKB1

Induction of STAT and NFkappaB activation by the antitumor agents  
5,6-dimethylxanthenone-4-acetic acid and flavone acetic acid in a  
murine macrophage cell line. (10484075, title)

2 Adriamycin
SIMULATES
FAS

DR5, Fas, Bax, Bad, Puma and Bnip3L were induced by 5-FU and  
adriamycin (ADR) in HCT116 cells in a p53-dependent manner.  
(21709442, abstract)

3 Simvastatin 
INHIBITS
CYR61

Simvastatin inhibits cytokine-stimulated Cyr61 expression
in osteoblastic cells: a therapeutic benefit for arthritis. 
(20191585, title)

4 Catechin 
INHIBITS 
HSPA5

Our results show that catechin reduces the expression level 
of GRP78/BiP, leads to cell proliferation rates of GD cells similar 
levels to normal cells, and improves wound healing activity. 
(21884680, abstract)

5 Carboplatin
STIMULATES
FAS

Carboplatin induces Fas (APO-1/CD95)-dependent apoptosis of 
human tongue carcinoma cells: sensitization for apoptosis by 
upregulation of FADD expression. (12740905, title)

6 Curcumin
STIMULATES
FAS

Curcumin also promoted the levels of Fas and FADD, Bax, cytochrome  
c release, but decreased the levels of Bcl-2 causing changes of  
DeltaPsim. (19513510, abstract)

7 Dexamethasone
INHIBITS
EGR1

Inhibition of EGR-1 and NF-kappa B gene expression by 
dexamethasone during phorbol ester-induced human monocytic 
differentiation. (1417981, title)

8 Carvedilol 
STIMULATES 
EGR1

Immunocytochemical analysis of rabbit hearts
demonstrated an upregulation of Fas protein in ischemic
cardiomyocytes, and treatment with carvedilol reduced
both the intensity of staining as well as the area stained.
(9468187, abstract)

9 Hydralazine
STIMULATES
FAS

VPA did not increase the expression of Fas on the surface of  
osteosarcoma cells, while hydralazine did, and the combination of  
VPA with hydralazine increased the expression of cell-surface Fas.  
(22576685, abstract)

10 Lovastatin
INHIBITS
CYR61

Lovastatin also completely inhibited arecoline-induced Cyr61  
synthesis and the inhibition is dose-dependent. (21317023, abstract)

11 Metformin
INHIBITS
HSPA5

Metformin reduced the GRP78 mRNA expression in HM rats.  
(22445233, abstract)

12 Nicotinic Acid
INHIBITS
HSPA5

NA and NAM also decreased constitutive levels of both  
activated NF-kappaB and GRP78, two proteins that respond  
to oxidative stress. (10745276, abstract) (Note: NA is the  
abbreviation of nicotinic acid)

13 Paclitaxel
STIMULATES
FAS

Therefore, paclitaxel enhances the thermochemotherapy of the  
osteosarcoma cell line and this is primarily accomplished by the  
upregulation of Fas expression and the induction of apoptosis.  
(22948360, abstract)

14 Pimagedine
INHIBITS
CYR61

Treatment with aminoguanidine inhibited Cyr61 and Ctgf expression  
in diabetic rats, with reductions of 31 and 36%, respectively,  
compared with untreated animals. (17333105, abstract)

15 Quercetin
INHIBITS
FAS

Fas gene expression was significantly inhibited by quercetin but not  
enalapril, losartan, or curcumin compared with the control.
(10925121, abstract)

16 Sch-23390
INHIBITS
EGR1

The dopamine D1 receptor antagonist SCH-23390 decreases the  
mRNA levels of the transcription factor zif268 (krox-24) in adult rat  
intact striatum–an in situ hybridization study. (1491805, title)

17 Tamoxifen
INHIBITS
CYR61

Induction of Cyr61 mRNA was blocked by tamoxifen and  
ICI182,780, inhibitors of the estrogen receptor.  
(11297518, abstract)

18 Ketoconazole
INHIBITS
CYP3A5

we demonstrated a modulatory role of cytochrome b(5) mostly for the
metabolism of domperidone and confirmed selective inhibition of
CYP3A4 over CYP3A5 by Ketoconazole. (21281268, abstract)

(Continued)

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Zhang et al

110 Cancer Informatics 2014:13(S1)

Another post-processing step that reduced results was 
keeping only specific drugs and genes, while removing rela-
tionships in which one of the arguments was a class of drugs 
(eg, anthracyclines or estrogen antagonists) or proteins (eg, 
HSP90 heat-shock proteins). Results containing drug classes 
would likely be nearly as useful as specific compounds. On 
the other hand, including specific drug–gene and gene–cancer 
relationships along with gene families would increase recall 
and provide more candidates but would also significantly 
increase noise and decrease precision.

Limitations and future work. One limitation to this 
work is that we depend on previous evaluations of SemRep 
predications and these evaluations did not include all of our 
predication types, specifically gene–gene or gene–cancer pred-
ications. Although these types are similar to those included 
in evaluations and relatively consistent within other similar 
types, an evaluation on these specific predication types may 
provide additional validation of our methodology.

Our Step 4, physician selection, limits the number of 
potential pathways analyzed because, instead of equal con-
sideration of each and every predication, selection is some-
what limited to a human-readable amount of component 
predications and subject to individual bias. Machine learning 
or similar predictive techniques may be able to simulate selec-
tion process given prior selections as training data. This in turn 
may increase the amount of candidates that may be considered 

computationally and reduce the amount that needs to be con-
sidered by humans as a last step.

An essential part of this physician selection was dis-
tinguishing whether the cancer genes within the predica-
tions were likely to have a “driver” or “passenger” role. This 
need arose in part from the underspecified nature of SemRep 
predications, especially in the case of the predicate ASSOCI-
ATED_WITH. Because this relationship can either indicate 
a promoting or decreasing effect, further clarification was 
gathered from the source text.

One concern that may be significant in our approach is 
that the compounds extracted by SemRep are from the 2006 
version of the UMLS to avoid increased ambiguity in the 2012 
version, and so we are not able to consider potential drugs that 
were added to the newer version. Even the 2012 version may 
leave out a considerable amount of potential drugs and using 
another source for chemical compounds might increase the 
number of drug–gene assertions extracted.

Just as this approach is an extension of our previous dis-
covery of potential drug–drug interactions, it too can be easily 
extended to consider other cancers as well as different diseases, 
conditions, and syndromes. In addition, more levels of gene–
gene interactions can be added, extending the schemas to 
Drug→Gene1→Gene2→ Gene3→Cancer, Drug→Gene1→Gene2 
→Gene3→Gene4→Cancer, etc. The gene position could also 
be substituted with an established biochemical pathway using 

Table 5. (Continued)

No. Semantic Predications Sentence (PMID, title/abstract)

Gene1 → Gene2 predications

19 EGR1
STIMULATES
SIRT1

An autoregulatory loop reverts the mechanosensitive Sirt1 induction  
by EGR1 in skeletal muscle cells. (22820707, title)

20 FAS
STIMULATES
NFKB1

NFkappaB activation by Fas is mediated through FADD, caspase-8,  
and RIP and is inhibited by FLIP. (15289496, title)

Gene → Prostate Cancer predications (MNP: Malignant neoplasm of prostate)

21 EGR1
PREDISPOSES
MNP

These results suggest that Egr-1 may promote prostate cancer  
development by modulating the activity of factors NF-kappaB and AP-1,  
which are involved in cell proliferation and apoptosis. (21743958, abstract)

22 HSPA5
ASSOCIATED_WITH
MNP

GRP78 regulates clusterin stability, retrotranslocation and mitochondrial  
localization under ER stress in prostate cancer. (22689054, title)

23 FAS
ASSOCIATED_WITH
MNP

The decreased expression of Fas in a large fraction of prostate cancers  
compared with their normal cells suggested that loss of Fas expression  
might play a role in tumorigenesis in some prostate cancers possibly by  
inhibiting apoptosis mediated by Fas. (19161534, abstract)

24 SIRT1
ASSOCIATED_WITH
MNP

Overexpressed SIRT1 in advanced prostate cancer may play an important  
role in prostate cancer progression. (23038275, abstract)

25 CYR61
ASSOCIATED_WITH
MNP

Extracellular matrix associated protein CYR61 is linked to prostate cancer  
development. (20172544, title)

26 NFKB1
ASSOCIATED_WITH
MNP

BACKGROUND: Cell line models suggest that activation of NFkappaB is  
associated with progression of prostate cancer. (23093296, abstract)
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predications that assert that a gene interacts with a given 
pathway and that pathway is associated with cancer. This 
would allow a broadening of the search and produce a greater 
number of candidate drugs.

Conclusion
We present a method to identify potential prostate cancer 
drugs that takes advantage of the wealth of biomedical lit-
erature knowledge contained in the MEDLINE database. In 
our study, we identified 18 potential prostate cancer drugs that 
have not previously been used for prostate cancer. Our meth-
odology was also able to identify three substances that have 
already been used in prostate cancer treatment.
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