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How networks endure damage is a central issue in neural network research. In this

paper, we study the slow and fast dynamics of network damage and compare the results

for two simple but very different models of recurrent and feed forward neural network.

What we find is that a slower degree of network damage leads to a better chance of

recovery in both types of network architecture. This is in accord with many experimental

findings on the damage inflicted by strokes and by slowly growing tumors. Here, based

on simulation results, we explain the seemingly paradoxical observation that disability

caused by lesions, affecting large portions of tissue, may be less severe than the disability

caused by smaller lesions, depending on the speed of lesion growth.

Keywords: spatiotemporal dynamics, brain damage, network dynamics, network damage, brain network models,

network recovery, fast dynamics, slow dynamics

1. INTRODUCTION

The performance of networks enduring damage is a central issue in biological and non-biological
networks (Cohen et al., 2000b; Nawrocki and Voyles, 2011). Intuitively, the degree of disability
following damage must be correlated with the size of damage. However, different networks
architectures, show different responses to spatial pattern of damage (Callaway et al., 2000; Cohen
et al., 2000a; Albert et al., 2000; Vazquez and Moreno, 2002; Murre et al., 2003; Bondarenko, 2005;
Fortney et al., 2007; Alstott et al., 2009; Lee et al., 2011; Wang et al., 2011).

Attractor neural networks, for example, are known to preserve stored information in spite of
big damages incurred on their synaptic connections (Amit, 1992). Moreover, experiments show
that it is easier to recover from lesions that grow slowly than from those that grow fast. In fact,
recovery from a lesion with given size is possible depending on whether the lesion evolved slowly or
fast (Duffau et al., 2002, 2003; Desmurget et al., 2007; Varona, 2010). This is important because in a
realistic setting of optimal recovery, the temporal rate as well as the size of injury must be taken into
account. Experimental data or rats, cats, and monkeys show a time interval between brain lesions
has a strong effect on deficits that animals bear after operation (Stewart and Ades, 1951;Meyer et al.,
1958; Adametz, 1959; Finger et al., 1971; Rosen et al., 1971; Glick and Zimmerberg, 1972; Patrissi
and Stein, 1975). In amore clinical setting this proves to be a crucial aspect of how the brain recovers
from strokes or lesions caused by slow-growing tumors. The biological basis of recovery after stroke
and how the brain reorganizes itself, for example, is still largely unknown (Pantano et al., 2003;
Calautti and Baron, 2003) but certainly it is possible that the degree and speed of recovery varies
considerably for different lesion locations and depends on structural alterations taking place in the
spared brain tissue during a slow and gradual temporal lesion (Stewart and Ades, 1951; Meyer et al.,
1958; Glick and Zimmerberg, 1972).
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In these cases, two main points need to be emphasized. First,
the spatial damages are not spread out at random but are highly
localized. Second, damages evolve in the face of brain on-going
activity. This makes the modeling study of brain damage a
challenging task and indeed most of the experimentally observed
cases of brain re-mapping remain unexplored in simulation
studies. To name a few, there seems to be a clear difference of
functional re-mapping to the adjacent lesion areas in slow vs.
fast growing tumors (Desmurget et al., 2007). Here, a gradual
injury with slow dynamics and with the benefit of brain on-
going activity, may increase the healing potential of brain injuries
whereas an acute destruction will limit the chance of recovery
due to a sudden seize of activity in the damaged brain areas.
Neurons near the inflicted areas need time to rewire in order
to compensate for the computational share of neurons in the
inflicted area. Given a sufficient window of time there is a chance
for recovery as long as the resulting disability does not pass a
certain threshold. Now, not much is known about the specifics
of network damage in the case of brain diseases. In a highly
nonlinear dynamics of brain damage, the interplay between an
acceptable level of damage and brain ongoing recovery is an
important question in clinical studies. As a first step one would
want to know how destruction of a given area, changes the
pattern of recovery depending on the dynamics of the injury.

Recently, there has been some attempts using simple recurrent
networks to show the effect of brain remapping and how it
contributes to neuronal homeostasis, following lesions (Butz
et al., 2008, 2009). These findings, however, relate more to the
spatial pattern of brain lesions and need to be extended to what
may be called a spatio-temporal pattern of brain injury. Here, a
distinction has to be made between an acute stroke where there is
a sudden damage inflicted to the brain and a slow growing lesion
such as a low-grade gliomas (Duffau et al., 2002, 2003; Desmurget
et al., 2007; Varona, 2010). Based on many experimental reports,
the slow growing injuries have a much better chance of being
recovered than the injuries caused by acute lesions (Stewart and
Ades, 1951; Meyer et al., 1958; Adametz, 1959; Finger et al., 1971;
Rosen et al., 1971; Glick and Zimmerberg, 1972; Patrissi and
Stein, 1975).

In the present paper two simple but different networks, a
three-layer and a homeostasis model with different temporal
patterns of damages are studied. These models are not only
simple but general enough to account for both biological
and non-biological networks. In the former case, for example,
a feed-forward network is often considered as appropriate
for modeling a sensory processing stage whereas a recurrent
network such as the homeostasis model is related to a higher
level stage. This, however, is rather arbitrary as it is now
possible to design a recurrent network with a feed-forward type
of behavior (Goldman, 2009). Still, studying these prototype
examples separately is preferred when the underlying mechanism
for some common behavior remains unknown.

The three-layer model contains the main ingredients of our
network, consisting of an input, a processing and an output
layer. Processing layer is where we introduce injuries. Network
disability is measured as the Hamming distance between current
and the desired output.

The homeostasis model (Butz et al., 2008, 2009) is a more
realistic model of a cortical circuit. It was first developed by Butz
et al. (2008, 2009) and is based on a recurrent network. For this
model the variance of deviation from homeostasis is measured
as network disability. Of course, at this level of generality the
models are not intended to be any more realistic than being able
to show basic trends and functional behavior of the network. The
parameters chosen in both models make it possible to study most
clearly the effect of damage size relative to the given measures.
As will be shown, a gradual injury is indeed resisted by these
networks provided the lesions inflicted on the networks do not
exceed a critical size. Our main finding is that a gradual injury
will decrease the maximum amount of disability, so network may
have more chance of recovery. Obtaining the same results using
two different models suggests that the results are robust and
independent of details of the models.

2. THREE LAYER MODEL

2.1. The Model
In this model neurons of the input layer are connected to the
middle (processing) layer with weighted connections. After the
processing is done in the middle layer, their activity passes
through another set of weighted connections to the output layer.
Connections from each layer to the next are locally dense, i.e.,
each node is connected to a group of neighboring nodes, similar
to what is generally observed in the real brain.

The network is expected to produce the desired output based
on the input fed to the first layer. Here, the disability of the system
is measured bymeasuring the error ratio in the output layer using
Hamming distance. The resulting disability which is caused by a
specific pattern of injury inflicted on the middle layer, is studied.

In this model, the nodes are binary neurons with two states
of 0 and 1, showing inactive and active states, respectively. The
network consists of three rings of nodes, each containing N
nodes. There is no connection between nodes in each layer but
there are feed-forward connections from the previous to the next
layer. The nodes in input, middle, and output layer are labeled as
Ii, Mi, and Oi, respectively, where i = 0, 1, 2, ...,N. Each node i
is connected to a group of n neighboring nodes in the next layer,
ranging from i− n

2 to i+ n
2 . (see Figure 1).

The activation probability of each node will be shown by its
activation function. The activation function of node, i, of middle
layer at time t, is

F(Xt
i ) =

1

1+ e−β(Xt
i−θml)

(1)

where θml is threshold, β is noise amplitude and Xt
i =

∑N
j= 1 wijIj

where wij is the weight of connection from the node j in the input
layer to the node i in the middle layer. Nodes in the output layer
are binary threshold units with a Heaviside activation function
and threshold θoutput . In our model a Hebb-like learning rule is
applied and the change in connection weight1wij between nodes
i and j is:

1wij = η(asisj − bsi − csj) (2)
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FIGURE 1 | Three layer model network topology: there are

feed-forward connections from each layer to the next one. Each node

from input layer (Ii ) connects to n neighbor nodes in the processing or middle

layer (M
i− n

2
to M

i+ n
2
). Same connections exist between middle layer and the

output layer. There isn’t any connection between nodes of a layer. In this study,

we set N = 500 and n = 100.

where a, b, and c are constants and η is the learning rate, si
and sj show the states of the nodes i and j which are “1” if
they are active and “0” otherwise. The constants a, b, and c are
chosen in a way that if two nodes are active at the same time
their connection weight increases by η/2 and decreases by the
same amount if only one of the two is active. The weight of the
connections is bounded and not allowed to increase or decrease
any further. The minimum value is set to zero to prevent a
neuron to be both excitatory and inhibitory. The upper bound
prevents the system from having infinite connection weights.
This upper bound is coupled with the firing threshold of the
neuron’s activation functions. We use Hamming distance as a
measure of the dissimilarity between the actual and the desired
output:

H =

N
∑

1

|siactual output − sidesired output
| (3)

which counts the number of mismatches between the actual and
desired patterns. In this study all the constants are set as shown
in Table 1.

In the pre-lesion phase, we start with random binary patterns
with 50% active nodes in the input and output layer and give
enough time for the system to learn. In the lesion phase, we
kill a group of neighbor nodes immediately or gradually in the
middle layer and wait for recovery of the system. The fraction n

N
measures network completeness in the sense that if we remove
a group of m neighbor nodes in the middle layer and m > n,
the route from input layer to output layer for some nodes will be
cut. For m < n, although the network may be initially disabled,
it has the potential to recover itself. In each trial one input is
shown to the first layer and the connection weights are changed
according to a Hebbian-like learning rule, Equation (2), as long
as a difference exists between the desired and the actual output.
Also at each time step we calculate Hamming distance (H) in the
output layer as a measure to quantify network disability.

TABLE 1 | Data used in three layer model simulations.

Description Symbol Value

Total number of nodes N 500

Subgroup of connected nodes n 100

Size of injury m Depends on the case

Middle layer threshold θml 5.54

Output layer threshold θoutput 5.54

Noise amplitude β 0.25

Hebbian learn parameter a a 1.5

Hebbian learn parameter b b 0.5

Hebbian learn parameter c c 0.5

Maximum connection weight wmax 10.3

Minimum connection weight wmin 0.0

Base learning rate η0 0.01

Beginning of the learning rate drop H0 5

End of the learning rate drop Hc Depends on the case

We consider three different types of lesions: immediate,
gradual, and resection. For immediate injuries, we remove
a total number of m nodes, simultaneously. In the gradual
injury, we remove adjacent nodes one by one in specific
time steps, until the total number of m nodes (defect size)
are removed. The time interval between these removal time
steps is quantified with a parameter called inter-removal time
(IRT). Resection injury (Stewart and Ades, 1951; Meyer et al.,
1958; Adametz, 1959; Finger et al., 1971; Rosen et al., 1971;
Glick and Zimmerberg, 1972; Patrissi and Stein, 1975), is an
intermediate between immediate and gradual, in which the m
nodes, considered to be removed, are divided in np packages,
and packages (each containing mp = m

np
nodes) are removed,

as a whole, every IRT time units. The immediate injury can be
considered as either the second or the third type with IRT = 0.

2.2. Discussion on the Learning Rate, η

In the simplest case, the learning rate, η, introduced in Section 2,
can be assumed constant. However, to be more realistic η should
be a function of the network disability. We define a modified
learning rate as a tool for better interpretation of the results of
dynamic changes based on the network damage and disability.

Here, we assume a worst case scenario, in which the learning
rate is a decreasing function of network disability. The aim is to
show that although the network declines in performance due to
a lower learning rate (note that we don’t intend to improve the
performance relative to when the rate is held fixed) the system
still does better when damage is gradual compared to a sudden
damage. It is known, for example, that many traumatic injuries,
such as a sudden blow to the head, result in anterograde or
retrograde amnesia. The mechanism, although not yet known,
involves some disruption of synaptic plasticity effecting both
memory and learning processes. We may interpret this, however,
as a decrease in learning rate which also depends on both the
spatial and temporal extend of the damage.

Intuitively, one expects that after a serious injury which yields
a major disability, the network fails in recovery, so there should

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2015 | Volume 9 | Article 130

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Saeedghalati and Abbassian Modeling spatio-temporal dynamics of network damage

be a critical size of disability, Hc, above which the system may
not be recovered (the learning rate, η ∼ 0). On the other hand,
whenH < H0, the learning rate more or less has a constant value
(η ∼ η0). Here in our model, we let η decrease smoothly with the
size of the network disability from η0 to 0. The behavior of the
system is not sensitive to the exact relation of η and H, but it is
sensitive to the critical value of disability, Hc. η(H) is defined as

η =































η0 if 0 ≤ H < H0 (Fixed η for
small H)

η0 (1− ( H−H0
Hc−H0

)2)
1
2 if H0 ≤ H < Hc (η decreases

slowly at first and
rapidly later)

∼ 0 if Hc ≤ H (η ∼ 0 for large H)·
(4)

Figure 2 shows the shape of the modified η. In the homeostasis
model described in Section 3 the learning rate is also a function
of network disability, but an increasing one.

2.3. Three Layer Model Results
To study the relation between damage size and temporal pattern
of injury, we consider the dynamics of network disability for
fixed and modified η in Section 2.3.1. Figure 3 shows a basic
trend for a fixed pattern of injury, but different temporal pattern
of damage. In Section 2.3.2 this relation is shown for different
patterns of injury. Here, we rely on amore useful and informative
parameter which we call maximum amount of disability (MAoD)
which is the maximum disability the system endures during
the simulation after the damage starts. This, rather than the
ultimate disability of the system, is used because it is more reliable
while in general higher MAoD decreases the chance of recovery.
Ultimate behavior of systems with modified η can best show
this relation between MAoD and recovery rate as illustrated in
Figure 4.

2.3.1. Three Layer Model—The Effect of Learning

Rate

Fixed η

The results for the immediate and gradual injury is shown
in Figure 3A. In both cases the total injury size is the same.
This diagram shows how damage, as quantified by the Hamming
distance, evolves with time. Here the recovery/learning rate, η,
is a constant function of disability size. Note that the nodes are
removed after a pre-learning period.

In the case of immediate injury, a roughly linear recovery
over time is observed. In the gradual injury case, a complex
dynamics is observed. At first, there is a period in which the
network resists the injury, but thereafter suddenly suffers a huge
disability, which implies a possible critical size of injury. After this
sudden increase of disability which implies a possible network
break down, disability still increases until the time the last node
is removed, followed by a linear recovery similar to the case of
immediate injury.

To show that these results not just hold for a specific
initialization, we simulated the three layer model with the same
parameters for many different initializations. In Figure 3B the
average of all these simulations is shown. It can be seen that the

FIGURE 2 | The modified η as a function of network disability, H. η is

constant for H ≤ H0, it decreases smoothly for H0 < H ≤ Hc, and is zero for

H > 0. A system with disability higher than a critical value can be rarely

recovered.

previous effect as in Figure 3A still holds. Note that the MAoD
is smaller in gradual injuries than in the sudden injuries.

Modified η

To better observe the effect of critical injury size, we use the
modified relation between the learning rate η, and disability H,
described in Section 2.2 (Also, see Figure 2). This dependency
of η on H captures the state of severe disability. For hamming
distances larger than Hc the learning rate, η, is close to zero and
therefore no learning is observed. Figure 3C shows two single
runs, for the immediate and the gradual injury with modified,
damage dependant, η. When the injury is immediate, MAoD
becomes larger than Hc so the recovery rate η drops down
suddenly and the system can not be recovered. In gradual injury
the Hamming distance doesn’t reach the value which gives η ∼ 0,
hence the system can recover. In Figure 3D the same results
for the average of many different initializations is shown. The
effect of Hc can be observed by comparing Figure 3C and the
corresponding plot in Supplementary Figure S2 where Hc is
35 and 25, respectively. While the system has the chance to
recover with larger Hc, it will endure high value of MAoD with
smaller Hc.

2.3.2. Three Layer Model—The Effect of Injury Types

and Recovery Models

In the previous section the behavior of three layer model for
immediate and gradual injury has been shown briefly. Here
according to injury and recovery models four kind of sub-models
is studied:
Type 1: Gradual injury with fixed η.
Type 2: Gradual injury with modified η.
Type 3: Resection injury with fixed η.
Type 4: Resection injury with modified η.
In each sub-model the relation between size and temporal pattern
of injury, is studied.
Type 1: Gradual injury—Fixed η

For gradual injury the effect of defect size, m, and inter-
removal time, IRT, is shown in Figure 4A. Here, the dynamics
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FIGURE 3 | Dynamics of network disability, H, for total removal of m = 80 neighboring nodes for fixed and modified η. (A) The dynamics of the network

disability, measured by Hamming distance, is shown for immediate and gradual injury. When the nodes are removed suddenly (red curve), MAoD is higher compared

to the gradual removal of the nodes (blue curve). During the removal of the first few nodes (The region shown by i), the network resists damage and shows a small

disability. Thereafter, the hamming distance suddenly increases and the network shows a severe disability (region ii). Removing more nodes from time step 1300 to

1800 (region iii) which corresponds to removing 30–80th nodes, doesn’t change network disability so much. After removing the last node, network starts to recover,

roughly linearly, like the red curve (iv). The existence of a critical injury size could be inferred from the blue curve. (B) All the the parameters in this diagram are equal to

parameters in (A), but this one is the average of 200 different runs. The behavior in the lesion phase is the same as in (A). (C) Simulation with modified η for the injury

size of m = 30 for a single simulation. Red and blue curves correspond to IRT = 0 and IRT = 30, respectively. (D) Simulation with modified η. For this curves we take

the average of 200 runs with different initial conditions. The parameters are the same as in (C). H0 and Hc of modified η are 5 and 35, respectively, in (C,D). Effect of

Hc can be observed by comparing (C) with the corresponding plot in Supplementary Figure S2.

of network disability for fixed and modified learning rate can
be compared for different cases of damage size and IRT of
network nodes. The result shows that despite larger injury size,
the network may endure a smaller disability with larger IRT.
Here, the same result, i.e., gradual injury helps network recovery,
is obtained for all the cases considered.

The MAoD is estimated and summarized in Figure 5A. The
relation between damage size and temporal pattern of injury is
shown in this figure. One sees that a system with large injury and
IRT could have smaller MAoD than a system with smaller injury
and IRT. This observation supports our claim that a rapid small
damage could be more harmful than a bigger but slower one.

Although Figure 5A represents the overall relation between
the damage size and the IRT, complete dynamics for different
values of these parameters can be seen in Supplementary
Figure S1.

Type 2: Gradual injury—Modified η

This section is similar to the previous section except for
the learning rate η. Here, we use a modified η as described in

Section 2.2. Figure 4A shows the behavior of this sub-model for
some selected simulations. Note that the disability stays higher
with the damage-dependent model due to a decreasing learning
rate, and MAoD decreases by increasing IRT.

Looking at Figure 5B, we first note that there is an overall
decline in performance compared to when the learning rate is
held fixed (increase in MAoD). MAoD is about the same in the
regions with defect size less than Hc for fixed and modified η, as
expected (Figures 5A,B), and again, the MAoD tends to decrease
as a function of IRT. As seen again, a system with large injury
and large IRT could have smaller MAoD than a system with small
injury and small IRT.

Complete set of simulations can be seen in Supplementary
Figure S2.

Type 3: Resection injury—Fixed η

Based on the findings and experiments of previous studies,
Stewart and Ades (1951), Meyer et al. (1958), Adametz
(1959), Finger et al. (1971), Rosen et al. (1971), Glick and
Zimmerberg (1972), and Patrissi and Stein (1975) we know
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FIGURE 4 | Dynamics of network disability for different spacio-temporal damages and learning procedures. For the maximum amount of m = 180 nodes

and inter-removal time, in the range of IRT = 0 (immediate injury) to IRT = 1000, different systems are simulated for 9 different initializations. A small subset of these

simulations are shown here. (A) For gradual injury, the effect of defect size, m, and inter-removal time, IRT, is shown. For each case, dynamics of network disability is

shown for fixed (red) and modified η (blue). For larger inter-removal times, even for large injury sizes the network shows relatively small disability. Note that the blue

curves show a higher disability and stay above the red curves due to a decreasing learning rate but the blue curves tend to lower values of MAoD as IRT is increased

as in the case of fixed learning, going from bottom to top in the middle column for example. Time ranges are different for different plots. To make the plots

comparable, vertical dashed line in each sub plot shows time step t = 1000 which is the injury start time. (B) For resection injury, the effect of number of packages, np
and inter-removal time, IRT, is studied. For each case of package number and inter-removal time, dynamics of network disability is shown for fixed (red) and modified

η (blue). Increasing the number of packages and IRT, decreases the MAoD. Here, Hc = 25.

that MAoD in a resection injury is less than an immediate
injury.

To study this kind of injury in our model, we set the injury size
to m and divided them to np packages, each contains mp = m

np

neighboring nodes. Packages are sequentially removed with time
interval equal to IRT.

Simulations were done for different values of np and IRT.
In Figure 4B a selection of these simulations is shown in
red. In agreement with the result of previous sections, more
packages and larger IRT, decrease MAoD although the total
injury size is fixed, i.e., gradual injury reduces MAoD. Same
as the previous sections, the MAoD is plotted in Figure 5C

which shows the effect of package numbers and IRT on MAoD.
Removing more packages with smaller IRT has the same effect
on MAoD as removing less packages but with higher IRT.
Complete set of simulations can be seen in Supplementary
Figure S3.

Type 4: Resection injury—Modified η

For a fixed injury size and modified η described in
Section 2.2, different systems are simulated for various IRTs
and nps. In Figure 4B a selection of these simulations is shown.
The MAoD is plotted in Figure 5D. Note that although the
total number of removed nodes is much greater than Hc

and n, subgroup of connected nodes explained in Section
2.1, still the same behavior as seen in the previous section
is visible for high number of packages and high IRT.
Complete set of simulations can be seen in Supplementary
Figure S4.

3. HOMEOSTASIS MODEL

3.1. The Model
The feed-forward model introduced in the previous section is
not a very realistic model for cortical circuits, where neurons
are recurrently connected. In this section we use a more realistic
model based on a recurrent network, initially proposed by
Butz (Butz et al., 2008, 2009), and compare it with the result of
our three layer model in the previous section. For details of the
homeostasis model see (Butz et al., 2008). The model consists
of 100 simple spiking neurons on a ring where 80% of them are
excitatory and the rest are inhibitory (Figure 6). The activation
function for neurons in this model is:

F(Xt
i ) =

1

1+ e−β(Xt
i−θ)

(5)

where θ is firing threshold and β defines the steepness of
the sigmoid function and determines the noise amplitude. Xi

is a summation over all excitatory and inhibitory connections
to neuron i plus an external input obtained from a Poisson
distribution which plays the role of an external noisy input. For
more information on network topology see (Butz et al., 2008,
2009).

When the internal conditions of a dynamic system remain
stable and relatively constant during regulation of its variables,
the system is in homeostatic state. In neuroscience context, the
state of a network where the firing rate of neurons are similar to
a moderate firing rate is here called a homeostatic state. It has
been shown (Mattson et al., 1988; Lipton and Kater, 1989) that
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FIGURE 5 | The relation between size and temporal pattern of injury: The MAoD of gradual injury is plotted vs. the different injury sizes, m, and

inter-removal times, IRT, using fixed (A) and modified η with Hc = 25 (B). Blue to red represent low to high MAoD, respectively. Compare, for instance, MAoD

values in (A) for IRT = 0 and 70 ≤ defect size < 180 with the values for IRT ≥ 10 and defect size = 180. Also, note that whilst in Figure 5B there is an overall decline

in performance, compared to fixed learning rate, the MAoD tends to decrease as a function of inter-removal time for all defect sizes. The MAoD of resection injury is

plotted vs. the different number of packages, np, and inter-removal times, IRT, using fixed (C) and modified η (D). Blue to red represent low to high MAoD,

respectively. Diagrams (A,B) show that with fast and small injury we can have the same MAoD (same color in the diagrams) as we would have with slow but large

injuries. The same holds for fine removal of nodes (more packages) but fast vs. coarse removal (less packages) but slow (see C,D). These diagrams are the average of

9 independent simulations with different initial conditions.

for biological networks there is a moderate firing rate that may be
different for each network. In this model assuming that there is
a homeostatic state, the firing rate or the probability of firing in
each time step is set to 0.5.

In each time step, we update the neuronal activity but the
number of connections does not change. After each 100 time
steps, which is called a morphological time step, according to
neuronal activity in the last 1000 time steps, we change the
number of connections to reach homeostasis. Average over the
last 1000 time steps is used to prevent short time fluctuations and
unrealistic changes in the number of connections. In each time
step first Xi, the input of each neuron i, is calculated. Then we
update the firing probability, F, of each neuron with a sigmoid
activation function. After updating F, we update the state of each
neuron which fires with probability F. In each morphological
time step, we change the number of connections according to
the history of F. To reach homeostasis, we demand that the
average of F over last 1000 time steps converges to 0.5. For the
average firing rate greater than 0.5, we change the number of
connections to decrease it. We do the opposite for neurons with
the average of F smaller than 0.5. For input connections, first we
calculate

1Ii = ν · 1Fi · Ii (6)

where ν is a small number that adjusts the rate of convergence
to homeostasis, 1Fi = Fi − 0.5 and Ii is the number of
input connections of neuron i. Changing the number of output
connections is similar to this relation.

In Equation (6), the rate of change is proportional to 1Fi,
which shows how far the neuron is from homeostasis, or, how bad
the neuron works. Taking the variance of F over all neurons, we
obtain a parameter showing how far the whole network is from
homeostasis.

In summary, supposing that the variance of F over all nodes
in past 1000 time steps is what may be called network disability,
we aim to study the relation between temporal pattern of injury
and network disability in this model. To study this, first we
let the network reach homeostasis, then we start killing the
neurons by disconnecting them from the other network nodes.
For the number of nodes being removed (injury size, m, in
previous section), we remove them all at once (immediate injury)
or gradually one by one every IRT morphological time steps
(gradual injury). All the constants are set as shown in Table 2.
The values used in this study are borrowed from Butz et al. (2008,
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FIGURE 6 | Homeostasis model network topology: 80% of neurons

(blue) are excitatory and the rest of them are inhibitory (red). Each

neuron has connections to its neighbors. They can make new connections

with nearer neighbors easier. In this study there are a total of N = 100 neurons.

TABLE 2 | Data used in the homeostasis model simulations.

Description Symbol Value

Total number of nodes nnodes 100

Morphological time step T 100

Threshold θ 500

Noise amplitude β 0.002

Probability of deletion pdel 0.1

Learning rate ν 0.005

External input rate λ 30

2009) in which more information about the choice of parameters
and more details about homeostasis model can be found.

3.2. Homeostasis Model Results
In Figure 7 the result of homeostasis model for a fixed defect
size and some IRTs is shown. This figure shows how the network
disability, quantified by the variance of F, evolves with time for
different IRTs. In the simulations, the network is let to reach
homeostasis before the injury starts. As seen in the Figure 7

the amount of network disability declines as IRT increases. This
result is in agreement with the results in the three layer model.

One important point about homeostasis model is that the
recovery rate is proportional to the size of disability, in contrast
with the three layer model with modified η. This can explain why
all three different injury patterns recover almost at the same time.

4. DISCUSSION

Using two simple network models, we studied the effect of
temporal pattern of node destruction on network recovery. In
the three-layer model the learning rate is either a constant or a
decreasing function of overall disability. In homeostasis model,
the learning rate which leads to recovery is an increasing function

FIGURE 7 | The amount of network disability (shown by variance of F)

for different inter-removal time, for N = 100 nodes and removing 10

neighboring nodes. By increasing the inter-removal time, IRT, the maximum

disability of the network is decreased. Here, red line shows immediate injury

but blue and green ones show gradual injury with 10 and 20 time steps

between node removal, respectively. Injury starts for all the simulations at

T = 2700 so that the network has enough time to reach homeostasis before

starting the injury.

of system disability. Regardless of how the the learning rate,
η, changes, increasing the time interval between removing the
nodes, IRT, leads to a decrease in the maximum amount of
network disability (MAoD). In the case of our simple three layer
model theMAoD is much higher when nodes in the process layer
are removed at once (Figure 3). By removing the nodes gradually
MAoD is reduced, as shown in Figures 5A,B. The same results
hold for the more biologically inspired model, the homeostasis
model (Figure 7). In both cases big sudden injury results in
serious disability but large time intervals between removing
nodes decreases MAoD effectively. In general, these results show
a generic property of a distributed network such that when some
nodes are removed gradually the remaining nodes take part in the
process of recovery. More complex interactions, however, may
also be involved explaining the difference of a sudden vs. gradual
damage.

It is reported that following damage, there is a time period
in which the process of recovery speeds up (Duffau et al.,
2003). Also, there are some animal models showing that a focal
damage induces excitability and plasticity in the rest of the brain
(Buchkremer-Ratzmann et al., 1996). So,while we base our three-
layer network modeling on the more plausible assumption that
the rate of learning deceases as a function of network damage
for big damages, the reports stated above show clearly that
many unknowns about the process of brain recovery are yet to
be discovered. One may allude to many experimental findings
reported in the literature on the role of neurogenesis following
damage to the hippocampus, for example. What is important
in our case based on the modeling result is that regardless of
changes of learning rate, η, for both networks increasing the time
interval between removing the nodes, IRT, leads to a decrease
in the maximum amount of network disability (MAoD). More
experimental findings about the relation between learning rate
and network disability may lead to more realistic results. This
is why, in the absence of such findings, we only study MAoD
instead of the long-run behavior of the system. Although the
origins and mechanisms of these changes are still unknown it
is worth studying these models in a more realistic setting, for
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example, it is known for a quite a while that brain recovery after
sequential lesions depends on the amount of tissue resected at
each surgical stage (Stein et al., 1977). In similar animal studies
it is shown that in general a two-stage lesion has a much better
chance of recovery than a one stage acute lesion (Finger et al.,
1971). These are clear examples of what may be called a spatio-
temporal pattern of brain damage. More importantly as has
been argued by Daffauand et al. (Duffau et al., 2003) the same
sort of mechanism may be at work in aging where up to a
certain threshold the system can no longer cope with the neural
destruction. This indeed would be an interesting future research
requiring a more realistic neural modeling.
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