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ABSTRACT: Spatial metabolomics using mass spectrometry
imaging (MSI) is a powerful tool to map hundreds to thousands
of metabolites in biological systems. One major challenge in MSI is
the annotation of m/z values, which is substantially complicated by
background ions introduced throughout the chemicals and
equipment used during experimental procedures. Among many
factors, the formation of adducts with sodium or potassium ions, or
in case of matrix-assisted laser desorption ionization (MALDI)-
MSI, the presence of abundant matrix clusters strongly increases
total m/z peak counts. Currently, there is a limitation to identify
the chemistry of the many unknown peaks to interpret their
biological function. We took advantage of the co-localization of
adducts with their parent ions and the accuracy of high mass resolution to estimate adduct abundance in 20 datasets from different
vendors of mass spectrometers. Metabolites ranging from lipids to amines and amino acids form matrix adducts with the commonly
used 2,5-dihydroxybenzoic acid (DHB) matrix like [M + (DHB-H2O) + H]+ and [M + DHB + Na]+. Current data analyses neglect
those matrix adducts and overestimate total metabolite numbers, thereby expanding the number of unidentified peaks. Our study
demonstrates that MALDI-MSI data are strongly influenced by adduct formation across different sample types and vendor platforms
and reveals a major influence of so far unrecognized metabolite−matrix adducts on total peak counts (up to one third). We
developed a software package, mass2adduct, for the community for an automated putative assignment and quantification of
metabolite−matrix adducts enabling users to ultimately focus on the biologically relevant portion of the MSI data.

■ INTRODUCTION

Mass spectrometry imaging (MSI) techniques enable the
visualization of hundreds of metabolites across tissue sections,1

biofilms,2 and even individual cells.3 Spatially resolved
metabolomics transforms our understanding of metabolism
in biological systems. Identification of all measured molecules
is a key challenge in metabolomics, irrespective of the
analytical technique used.4,5 Mass spectrometry-based metab-
olomics produces a wealth of data with a very large number of
peaks, especially for MSI where one dataset consists of
thousands of pixels, each represented by an information-rich
mass spectrum. The spectral information is influenced by many
factors like the known formation of adducts and less
characterized chemical background signals.5

Currently, there is a gap in transforming the measured m/z
values to knowledge. This means that we lack easy methods to
distinguish chemical background signals from real metabolite
signals.6,7 One main reason for the lack of signal identification
at a molecular level is the structural diversity (isobars and
isomers) and dynamic range of metabolites.8 In addition, there
is a lack of commercial analytical standards (only a few

thousands available), which are needed for the identification of
a metabolite, according to the metabolite standard initiative.9

The typically thousands of measured signals in metabolomics
experiments often remain unidentified and have been
described as dark metabolome.10,11 For untargeted metab-
olomics approaches using liquid chromatography-mass spec-
trometry (LC-MS), da Silva et al. estimate that only 1.8% of
the spectra can be annotated.11 Similarly, low numbers of
spectra are expected to be annotated in MSI datasets. In spatial
metabolomics, metabolite identifications are further limited by
a reduced sensitivity and lower throughput, for instance, during
on-tissue fragmentation experiments.
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In this study, we focus on metabolite adducts in MSI data
and how to determine their presence and abundance.
Metabolites typically form adducts with ions derived from
inorganic salts or residual water, inherently present in all
biological samples. The most common adducts are formed
with H+, Na+, K+, or Cl− and are included into mass spectral
annotation platforms like Mascot,12 METASPACE,13,14 and
METLIN.15 The formation of multiple adducts results in an
increased number of signals from one metabolite and
simultaneously decreases signal intensity for each individual
metabolite adduct peak. The abundance of adducts is
influenced by the way the metabolite is ionized (e.g.,
electrospray or laser desorption) and by the chemical class
and concentration of other ions present in the sample. In the
case of spatial metabolomics, this effect is a big disadvantage
and a source of variability due to changes in local ion
concentrations,16 directly impacting adduct formation.17,18

One of the most commonly used MSI techniques,19 MALDI-
MSI, additionally uses a highly concentrated matrix layer to aid
ionization. MALDI matrices tend to form abundant ion
clusters of matrix molecules20 and occasionally were described
as matrix adducts (e.g., one or more matrix molecules attached
to a parent ion).21,22 Over the years, these matrix adducts,
especially for 2,5-dihydroxybenzoic acid (DHB), have been
recognized by the scientific community using MALDI-MS and
have been usually discarded as rare “chemical noise”.5,23,24

However, the impact of matrix adducts has so far never been
quantified in MALDI-MSI datasets from spatial metabolomics
experiments.
In this study, we investigated the abundance of adducts

across a broad spectrum of MALDI-MSI datasets by leveraging
the high mass resolution and the co-localization of matrix−
metabolite adducts with their parent metabolites. Our findings
with mass2adduct, developed for adduct abundance estimation,
highlight adduct formation of metabolites with known alkali
metal ions and also matrix molecules. Our multiplatform
comparison across sample types shows that matrix adduct
formation is a rather frequent effect during MALDI-MSI. We
observed particularly prominent effects when using the most
widely applied matrix, DHB, and when employing atmospheric
pressure MALDI sources. We propose to include matrix
adducts into annotation processes to improve ion identifica-
tions in spatial metabolomics datasets to reduce the high
percentage of previously unannotated m/z values, improving
the quality of real metabolite annotations.

■ MATERIALS AND METHODS
MALDI-MSI Datasets. This study is based on 20 MALDI-

MSI datasets that were selected with the aim to represent
various types of tissue, two different matrices, and three
different measurement devices. This included tissue sections of
vertebrate brain25 and urinary bladder,26 marine inverte-
brates,27 marine and terrestrial plants,28 and chemical stand-
ards. A mixture of 23 chemical standards was spotted on a glass
slide and consisted of equal amounts aminomethylphospho-
nate, carnitine, cellobiose, citric acid, cytidine, dimethylsulfo-
niopropionic acid, dodecanoic acid, folic acid, glucose, glucose-
6-phosphate, glycine, leucine, maleic acid, mannitol, N-
acetylglucosamine, nonanoic acid, phenylalanine, phosphogly-
ceric acid, phosphonoacetic acid, pyruvic acid, ribose, thymine,
and urea. The data used was acquired on different MSI setups,
including three different MALDI sources and three detectors
(atmospheric pressure, 337 nm of laser, AP-SMALDI10,

Orbitrap (Q Exactive Plus); high vacuum, 337 nm, MALDI2,
QTOF (Synapt G2-S), HDMS; high vacuum, 355 nm,
SmartBeam-II, MRMS (SolariX)) (for full information, see
Tables S2 and S3). MSI datasets referred to as “this study”
were acquired with an AP-SMALDI10 setup using an
atmospheric pressure matrix-assisted laser desorption/ioniza-
tion ion source (“AP-SMALDI10”, TransMIT GmbH,
Germany), coupled to a Q Exactive HF mass spectrometer
(Thermo Fisher Scientific GmbH, Bremen, Germany). MS
images were collected with a specified step size (see Table S3)
and without overlapping of the laser spots. Mass spectra were
acquired in positive-ion mode for all sections prepared with
CHCA and DHB using different m/z ranges (see Table S3)
and a constant mass resolving power of 240 000 at m/z 200.

Preprocessing of MALDI-MSI Datasets. Peak lists and
intensity matrices for datasets #1−3, #5−7, #9, #13−16, #19,
and #20 were generated with SCiLS v2019b (Bruker,
Germany), using 5 ppm bin width. For full details, see Table
S2. Peak intensity matrices were exported in text CSV format.
Peak lists were filtered to retain those with an intensity
threshold ≥0.05% of the maximum ion intensity of the total
ion chromatogram. Datasets #11 and #12 were processed with
Waters Imaging software (HDImaging, Waters), retaining the
most intense 4000 peaks of the total ion chromatogram.
Datasets #4, #8, #10, #17, and #18 were binned with Cardinal
MSI v2 at a bin width of 1 mDa, and further processing
included a 1% frequency filter (default setting) and a threshold
of 0.05% top peak intensity.29

Adduct Identification. Adduct formation increases the ion
content and complexity of MALDI-MSI datasets but results in
specific mass differences between parent and adduct ions. For
each dataset, possible parent−adduct ion pairs were identified
in the following way: The mass difference was calculated for all
pairs of peaks, and matched against a list of known adduct
types24,30,31 (see Table S1) within an uncertainty of

± +m p m p( ) ( )A
2

B
2 , where mA and mB are the parent and

adduct masses, respectively, and p is the mass accuracy of the
processed dataset (see Table S3).

Controls for Matrix Cluster Ions and False Positives.
To identify DHB matrix-only adduct clusters, three MALDI-
MSI measurements were performed on slides containing only
Super-DHB (9:1 (w/w) mixture of 2,5-DHB and 2-hydroxy-5-
methoxybenzoic acid) (Sigma-Aldrich, Steinheim, Germany),
with a combined m/z range of 100−2000. Data were
preprocessed in SCiLS as described above with a mass
accuracy of 5 ppm and filtered to retain only peaks with
intensity threshold ≥0.05% of the maximum intensity peak.
For each dataset, peaks matching the combined matrix-only
peak list within the uncertainty range (calculated as described
above) were subtracted.
For a true matrix adduct, the parent and adduct ions are

expected to be positively spatially correlated. Therefore, for
each dataset, Pearson’s two-sided correlation test was
performed for all ion pairs using per-pixel intensity values.
We applied three different methods to screen for false
positives: (1) The Bonferroni correction was applied to the
p-values from the correlation test, and pairs with corrected p ≥
0.05 were rejected (see all details at https://doi.org/10.5281/
zenodo.3363065). (2) Uncorrected p-values for positively
correlated pairs were used for false-discovery-rate analysis with
the R package qvalue v2.10.1,32,33 and we applied a q-value
cutoff of 10−7 (see https://doi.org/10.5281/zenodo.3363065).
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(3) A minimum correlation coefficient cutoff of r > 0.3 was
applied directly; the first two methods (Bonferroni-corrected
p-values, q-value cutoffs) are effective methods to choose a
correlation coefficient cutoff for each dataset (https://doi.org/
10.5281/zenodo.3363065).34 For the data presented in Figure
3, we chose a correlation cutoff of r > 0.1, because it was the
most conservative option.
To produce the summary plot, the number of putative

adducts above the q-value or correlation cutoff for each dataset
were tabulated by adduct type as a fraction of the total number

of peaks in the mass spectrum and plotted with respect to the
instrument platform used to acquire the respective datasets.
For the removal of matrix cluster ions in dataset #1, three

MALDI-MSI measurements were acquired with 1024 pixels
each of pure Super-DHB, covering the m/z range 50−2000.
Peak lists were created with Cardinal as described above,
without the 1% frequency filter (default setting for binning).
The peak lists were combined and used as a template from
which peaks were subtracted that matched peak list of dataset

Figure 1. Determination of abundant matrix adducts in MSI data. (A) Total ion spectrum of mouse brain section and spatial metabolite
distributions of adducts from PC(36:1) (dataset #10, AP-SMALDI10, DHB matrix). (B) Histogram of mass differences between all peak
combinations from mouse brain MSI dataset. (C) On-tissue fragmentation of m/z 788.616 (top plot) and m/z 924.632 (bottom plot). (D)
Correlation matrix with spatial correlation values (Pearson) of M = PC(36:1) and its adducts including natural 13C isotope peaks shows a high
spatial correlation between [M + H]+ and metal adducts as well as matrix adducts.
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#1 within a 5 ppm threshold; this removed 2243 matrix peaks
from the 8208 original peaks.
The remaining 5965 peaks were reanalyzed for adducts as

described above. Identified adduct pair candidates were
checked using ion intensity correlations. An intensity matrix
for every ion of the respective peak list in each pixel on the
dataset was exported with the software MSiReader v0.09.35

The intensity matrix was loaded into R, where correlations of
adduct pairs were calculated.
Data and Code Availability. Software to perform the

adduct identification and correlation testing are implemented
in an R package, mass2adduct. The software and installation
instructions are available on GitHub at https://github.com/
kbseah/mass2adduct and are also archived on zenodo
(https://doi.org/10.5281/zenodo.1405088). MSI data to
replicate the analysis are available at https://www.ebi.ac.uk/
metabolights/MTBLS954, and the analysis pipeline and output
are archived on zenodo (https://doi.org/10.5281/zenodo.
3363065). Data for metabolite standard analysis with DHB
and CHCA are available via www.metaspace2020.eu (datasets:
MPIMM_221_QE_P_MetaMix, CHCA matrix and
MPIMM_222_QE_P_MetaMix, DHB matrix)
MALDI-MSI Ion Map Processing. MSI ion maps were

produced with MSiReader v0.09 using an m/z tolerance
window of ±2.5 ppm and displayed with a modified Jet
heatmap without interpolation. Post processing of the exported
images such as cropping and resizing was done in Adobe
Photoshop CS5.
Confirmation of Adducts by On-Tissue MS2 Measure-

ments. Conformation of selected annotated ions was done via
on-tissue MS fragmentation. A consecutive tissue section of

dataset #1 was covered with Super-DHB by spraying 30 mg·
ml−1 Super-DHB in 60:40 acetone/H2O (v/v) with 0.1%
formic acid onto the sample using the TransMIT matrix
sprayer (TransMIT, Gießen). The matrix was sprayed for 30
min with a N2 flow of 5 L·min−1 and a liquid flow of 7.5 μL·
min−1. Afterward, the slide was shortly placed into a Petri dish
with a drop of methanol for recrystallization.3 A 1 Da isolation
window and a resolution of 240 000 at m/z 200 at the mass
range 100−900 m/z were used for MALDI-MS2 experiments
with the AP-SMALDI10 setup. The sample was manually
screened for the presence of target ion with a laser energy of
6.5 μJ. For each mass spectrum, ions of 30 laser pulses were
accumulated in the ion trap before they were fragmented with
a collision energy of 15 eV via HCD (higher-energy collisional
dissociation). A total of 100 spectra were averaged using
XCalibur Qual Browser v3.0.63 (Thermo Fisher Scientific,
Bremen).

■ RESULTS

Prediction of Abundant Matrix Adducts from the
Mass Spectrum. The types and abundance of matrix adducts
in mass spectrometry datasets cannot be predicted a priori.
Currently, most studies ignore the chemical background signals
and the extent of adduct formation. We aimed to develop a
method that enables automatic and unbiased detection of
abundant adducts in MSI data. A common method to find
adducts is the matching of mass differences between a parent
ion and higher m/z values. By leveraging high mass resolution
and high mass accuracy data, ideally below 5 ppm,36 the
accuracy of detecting specific and common mass difference is
higher. We applied this idea to high-mass-resolution MSI data

Figure 2. Adduct counting and spatial correlation with mass2adduct. MSI data in imzML format or intensity matrices in CSV format can be
imported to mass2adduct. (1) mass2adduct takes all possible pairwise masses and calculates the mass difference for each pair. (2) A mass difference
histogram is matched to a list of known mass differences to identify adducts. (3) Spatial correlation of m/z values is used to identify co-occurring
metabolites. Then, a Pearson correlation coefficient is used to validate identified adducts. (4) Filtering with a correlation cutoff excludes false
positives from identified adducts.
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collected in positive ionization mode by first calculating mass
differences (Δmass) between all pairs of detected peaks in a
MALDI-MSI dataset from a mouse brain tissue section
(dataset #10) and then creating a histogram of all Δmass
(see Figure 1A). We found high counts of Δmass of 21.985
and 37.955 Da, which matched the Δmass between [M + H]+

and [M + Na]+ or [M + K]+, respectively. This confirmed the
presence of abundant Na+ and K+ adducts, common to animal
tissue samples. In addition, the histogram revealed an abundant
Δmass of 136.016 Da (2- to 3-fold more counts compared to
Na+ and K+) (see Figure 1A). This Δmass equals C7H4O3
(136.016 Da) and matches the molecular formula of the
applied matrix compound DHB without one H2O molecule
(C7H6O4−H2O, 154.027−18.011 Da). The histogram also
includes a peak at a Δmass of 154.027 Da, matching DHB.
One reason for the high count of Δmass DHB could be the
presence of matrix oligomers.5,24

Metabolite Matrix Adduct Confirmation by On-Tissue
MS2 and Co-localization. To confirm the metabolite−matrix
adducts, we performed on-tissue MS2 fragmentation experi-
ments on mouse brain tissue section (dataset #10). We chose
four pairs of m/z values with Δmass = 136.016 Da and
performed on-tissue MS2 on each (Figures 1B, S1, and S2).
One example of a parent ion that matched the molecular
formula of a membrane lipid was phosphocholine (PC(36:1),
molecular formula C44H86NO8P), detected as [M + H]+ at m/
z 788.617. [PC(36:1) + H]+ showed identical fragments in the
MS2 spectra as m/z 924.632 (Figure 1B). We identified m/z
924.632 as [M + (DHB-H2O) + H]+ adduct of PC(36:1),
including the fragment m/z 788.616 as neutral loss of DHB-
H2O (Figure 1B). Further, the similar spatial distributions
(corr. coeff. r = 0.9, Pearson) supported the hypothesis of the
formation of the metabolite−matrix adduct pair between [M +
H]+ and [M + (DHB-H2O) + H]+ (Figures 1C and S3).
Focusing on PC(36:1) revealed a multitude of adducts (15 in
total) including nine metabolite−matrix adducts (see Figure
1D). We found that the neutral addition of matrix molecules is
not restricted to the [M + H]+ ion but also occurs with
metabolite-alkali adducts (e.g., [M + Na]+). Our analysis
indicated a second matrix adduct to PC(36:1) [M + 2(DHB-
H2O) + H]+ (m/z 1060.648, corr. coeff. r = 0.324) and a third
one [M + 3*(DHB-H2O) + H]+ (m/z 1196.667, corr. coeff. r
= 0.063) to the [M + H]+ of PC(36:1). We show that DHB
does not only form clusters as reported previously,37 but
results in additional metabolite adducts. Similarly to the Na+

and K+ adducts, DHB adduct cluster peaks spatially correlate
with the [M + H]+-ion distribution (see Figure 1D). In
summary, nearly 50% of detected adduct types from PC(36:1)
are DHB-derived adducts, thus heavily influencing the mass
spectral content of MSI data.
Single Metabolites Can Form a Multitude of Adducts.

The fact that one metabolite can form multiple adducts with
the matrix and other metal ions prompted us to build a
workflow for automated screening for adducts. Our approach is
based on two major steps, calculating Δmass values between all
peaks of a dataset and testing for spatial correlation only
between parent and putative adduct ions (see Figure 2). We
compiled a set of matrix-related adducts into a list of adducts
and mass differences for typical chemical transformations30,38

to match calculated Δmass values of a dataset (see Supporting
Table S1).30 We used the list to identify the number of
possible adducts based on specific m/z differences for each ion
pair in a dataset. Our workflow is available as a software

package for R, called mass2adduct. It allows data import in
various formats (e.g., imzML via Cardinal,29 intensity tables in
CSV format), parallelization to speed up correlation testing,
and several visualization tools. The input data needs to be
generated with high mass accuracy (below 5 ppm) to allow for
an accurate and reliable detection of Δmass for ion pairs.
Detection of peaks in each single mass spectrum of an MSI
dataset is a challenging task, and rigorous care should be taken
to perform this step as accurate as possible. One important
measure to consider is the signal-to-noise ratio and its
estimation using, e.g., three-sigma rule across all spectra of a
dataset. Signal intensity thresholds for each dataset should be
adopted based on the data, including testing whether the data
is normal distributed.39

Spatial Correlation Analysis of Metabolite Adducts
Reduces False-Positive Hits. The experimental confirma-
tion of every potential adduct identified by the mass2adduct
analysis with on-tissue MS2 measurements would not be
feasible with current methods, especially for multiple datasets.
Therefore, we propose a fast and universally applicable
approach to screen for potential adduct annotations via spatial
correlation analysis.40 Adducts are expected to co-occur in the
same spot as their parent metabolite for any given tissue
sample. Consequently, calculating individual correlation values
between the intensities of a peak and its putative adduct peak
across all pixels of a MALDI-MSI dataset provides statistical
support for MS1-based adduct identifications (see spatial
correlations between possible adducts of PC(36:1), Figure
1D).
We showcase the identification of adducts using the

distribution, identity, and co-localization of the lipid
PC(36:1) and its adducts (Figure 1D). The parent ion
[PC(36:1) + H]+ showed a similarly strong ion intensity
correlation to its matrix adduct [PC(36:1) + (DHB-H2O) +
H]+ (corr. coeff. r = 0.779) and to its respective 13C isotope
peak [PC(36:1)13C + H]+ (corr. coeff. r = 0.883) (Figure 1D).
A positive correlation value alone does not guarantee that two
ions are chemically related. However, in combination with our
prior knowledge on sample and matrix composition, it provides
additional confidence to screen for potential adducts. Although
changes in local sodium or potassium concentrations can
impede strong correlations,16 an effect similar to strong local
ion suppression occurs. The correlation values can be
influenced by very low abundant ion pairs41 or the presence
of isobaric metabolites with overlapping monoisotopic
distribution patterns.
We extended our correlation analysis to every proposed

adduct pair within a dataset, which enabled us to remove false
positives. Our final mass2adduct approach provides estimates
on the adduct composition of a dataset through (1) adduct
counting by Δmass calculation, (2) excluding matrix cluster
ions (see the Materials and Methods section) from the list of
ion pairs, and (3) excluding nonspatially related ions by
performing a correlation test and false-discovery-rate (FDR)-
based analysis of the remaining adduct pairs (see Figure 2). We
included an output analysis into mass2adduct, highlighting the
peaks of a total ion count spectrum that are related to DHB
adducts (see Figure S5B)

Metabolite Adduct Composition across Multiple
Samples and MALDI-MSI Systems. We extended our
mass2adduct analysis toward a broad spectrum of MSI datasets,
covering tissue sections of vertebrate brain25 and urinary
bladder,26 marine invertebrates,27 marine and terrestrial
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plants,28 and chemical standards. The data was acquired on
different MSI setups, including three different MALDI sources
and detectors (for a full list of datasets and settings, see Tables
S2 and S3).
With mass2adduct, we detected comparable Na+ and K+

adduct counts across different tissue types and MALDI
systems. Notably, we found abundant [M + (DHB-H2O) +
H]+ adducts in all datasets prepared with the DHB matrix. We
tested if our approach could detect adducts from other
matrices and included samples prepared with α-cyano-
hydroxy-cinnamic acid (CHCA), another commonly applied
MALDI-MSI matrix. Compared to DHB, CHCA formed fewer
matrix adducts based on the counts of peaks with Δmass =
189.04 Da (Figure 3). The fractions of total peaks matching
13C isotope (Δmass = 1.003) mass difference were amongst
the highest and did not show a large variance between different
matrices and MSI setups. In our comparison, atmospheric
pressure MALDI-MSI (AP-SMALDI10/Orbitrap) showed the
highest abundances of [M + (DHB-H2O) + H]+ adducts with
∼31% of all peaks (equals 0.31 fraction of peaks, see Figure 3)
compared to high-vacuum MALDI-MSI datasets (e.g.,
SmartBeam-II/MRMS ∼6%; MALDI2/QTOF ∼6%). This is
in agreement with earlier observations of the adduct
composition varying between atmospheric and high-vacuum
MS systems.21

In MSI datasets treated with CHCA matrix, [M + CHCA +
Na]+ with Δmass = 212.032 Da was found to be the major
matrix adduct with ∼0.1 fraction of peaks (see histogram of
datasets #5, #6, #7, and #18, https://doi.org/10.5281/zenodo.
3363065; see fraction of peaks in Figure 3, gray background).
However, CHCA datasets included also ion pairs whose mass

difference matched [M + (DHB-H2O) + H]+ adducts (counts
0−1.2% of total peaks). Such false-positive matches possibly
originate from metabolites, different in their molecular formula
by C7H4O3. The same applies for Δmass of CHCA adducts in
datasets prepared with DHB as matrix (fraction of peaks
Δmass CHCA <1% for “AP-SMALDI/Orbitrap,” <2% for
“SmartBeam-II/MRMS”). This prompted us to include an
implausible adduct like silver (Ag+), similar to an approach for
FDR-controlled metabolite annotation.14 Ag is a rare noble
metal that has no known biological function and is therefore
highly unlikely to be present in relevant concentrations in
tissue samples. Δmass = 105.897 Da for 107Ag+ was detected in
every dataset at very low abundances (counts of approximately
0.001 fraction of peaks). This detection rate of <1% is much
lower compared to the ∼1% DHB or CHCA adduct counts in
datasets which were not prepared with the respective matrix.
This may be explained with the fact that DHB and CHCA are
organic CxHyOz compounds and well resemble naturally
occurring differences between molecules. Although Ag is an
inorganic compound with a unique mass defect, it is unlikely to
match Δmass values in tissue samples.

DHB Adducts Can Cause False-Positive Metabolite
Annotations. To determine which metabolites form adducts
with DHB, we compared the mass2adduct peak list toward
results of an MSI metabolite annotation platform (www.
metaspace2020.eu).13,14 An example dataset from invertebrate
tissue (dataset #1) showed that out of 604 possible m/z values
with matching peaks to DHB adducts, 103 of the “parental”
ions have been annotated as metabolites (dataset:
MPIMM_030_QE_P_BP_CF_10, FDR <20%, annotation
database: LIPID_MAPS-2016). Almost all annotated m/z

Figure 3. Adduct counts across 16 MSI datasets from four instrument systems. For each MSI system (AP-SMALDI10/Orbitrap (Q Exactive Plus);
SmartBeam-II/MRMS (SolariX); MALDI2/QTOF (SYNAPT G2-S HDMS)), the fraction of total peaks from multiple datasets is shown (AP-
SMALDI10: DHB n = 7, CHCA n = 5; SmartBeam-II: DHB n = 2; MALDI2 DHB n = 3; DHB matrix: white background; CHCA matrix: gray
background). To exclude false positives, a cutoff correlation coefficient >0.1 was applied. Using a false-discovery rate cutoff <10−7 produced
qualitatively similar results (see https://doi.org/10.5281/zenodo.3363065).
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values were lipids from different groups, mainly phosphocho-
lines (n = 62), phosphoethanolamines (n = 37), and
sphingolipids (n = 12). Among this list of ion pairs, one case
was found with m/z 742.575 [M + H]+ of monounsaturated
PC lipid (PC(P-16:0/18:2), molecular formula C42H80NO7P)
and its annotated DHB adduct [M + (DHB-H2O) + H]+ m/z
878.591. The annotation was polyunsaturated phosphatidyl-
serine (PS) lipid (PS(21:0/22:6), molecular formula
C49H84NO10P), with a difference of C7H4O3 to (PC(P-16:0/
18:2)). This example highlights that DHB adducts can be the
cause for false-positive annotations if only the exact mass is
used for annotation. Further MS2-based on-tissue identification
will be needed to verify that such correlation pairs are DHB
adducts and not based on the co-localization of two
endogenous compounds with C7H4O3 difference.
Small Polar Nonlipid Metabolites Form Matrix

Adducts. With MALDI-MS research focusing on lipids,23

lipopolysaccharides, and proteins,42 the formation of metabo-
lite−matrix adducts was initially noticed for larger molecules
only (500−1200 Da).5,24 Our investigation of MSI datasets
measured in a small mass range (50−500 Da) revealed
metabolite matrix adducts for small metabolites. We processed
mussel tissue and spotted chemical standards analyzed with the
AP-SMALDI setup and the matrices DHB (datasets #4 and
#17) and CHCA (datasets #8 and #18). We identified a
comparable fraction of total peaks as matrix adducts, shown in
Figure 3 (e.g., fraction of total peaks for [M + (DHB-H2O) +
H]+ = 0.36 (#4) and 0.32 (#17)).
A mixture of 23 pure chemical standards contained amino

acids, sugars, fatty acids, and other organic acids (see the
Material and Methods section) was analyzed using DHB as
matrix in positive ionization mode. We detected 16 out of 23
standards, of which 7 showed at least one metabolite matrix
adduct. All metabolites with a matrix adduct contained at least
one amine group in their structure (i.e., aminomethylphosph-
onate, carnitine, cytidine, folic acid, leucine, N-acetylglucos-
amine, phenylalanine), whereas metabolites without nitrogen
showed no matrix adducts (e.g., sugars, small organic acids)
(see Figure 4A). We could confirm the carnitine-DHB adduct
via MS2 (Figure 4B). The same metabolite mixture analyzed
with CHCA showed metabolite−CHCA adducts as well, but
less abundant compared to DHB adducts. Our results show
that metabolite−matrix adducts occur not only with lipids
(e.g., amine-containing phosphocholines and sphingomye-
lins23,24) but also with amino acids and other amine-group-
containing metabolites. Whether this effect is transferable to
negative-mode ionization needs to be determined.

■ CONCLUSIONS
In summary, our study shows that metabolite−matrix adducts,
previously considered to be negligible chemical background
signals, can be abundant across major MSI systems and sample
types. This poses an issue for peak identifications if not
considered. We developed a software pipeline mass2adduct to
perform a simple mass difference calculation and spatial
correlation analysis as a rapid and efficient way to screen for
these adducts in existing MSI datasets. Considering the
thousands of MALDI-MSI datasets measured (e.g., available
at www.metaspace2020.eu13), each containing thousands of
detected signals, it is crucial to acknowledge the high frequency
of matrix adducts for identifications. Our results suggest that
including metabolite−matrix adducts into database annota-
tions can reduce the number of unannotated peaks and, on the

other hand, will prevent possible false annotations and
biological misinterpretations. Our findings also show the
need for MSI-independent verification of annotated metabo-
lites using an orthogonal method. Suitable approaches could be
microsampling or laser capture microdissection with following
LC-MS analysis.43 Taken together, our results highlight that
the dark metabolome of MALDI-MSI datasets might be not so
dark after all, but merely clouded by the signals added through
matrix adducts.
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.0c04720.

On-tissue MS2 mass spectra and respective MS images of
parent ions and DHB matrix adducts from mouse brain

Figure 4. Carnitine forms adducts with DHB and CHCA. (A) Ion
maps of carnitine and its adducts, standard spotted and analyzed with
DHB (left) and CHCA (right) as matrix. (B) MS2 spectrum of
carnitine adduct with DHB [C7H15NO3 + (DHB-H2O) + H]+ (m/z
298.13) fragmented with normalized collision energy 35; the most
abundant fragment 137.02 matches the mass of DHB-H2O ([C7H4O3
+ H]+ calc. 137.02 Da).
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dataset #10; ion maps for PC(36:1) (mouse brain
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mass2adduct workflow in R; output options from
mass2adduct; list of mass differences of adducts and
chemical transformations; list with details about
analyzed samples; and list with details about analyzed
MSI datasets (PDF)
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