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Abstract: Diabetes mellitus now affects more than 400 million individuals worldwide, with significant
impacts on the lives of those affected and associated socio-economic costs. Although defects in insulin
secretion underlie all forms of the disease, the molecular mechanisms which drive them are still
poorly understood. Subsets of specialised beta cells have, in recent years, been suggested to play
critical roles in “pacing” overall islet activity. The molecular nature of these cells, the means through
which their identity is established and the changes which may contribute to their functional demise
and “loss of influence” in both type 1 and type 2 diabetes are largely unknown. Genomic imprinting
involves the selective silencing of one of the two parental alleles through DNA methylation and
modified imprinted gene expression is involved in a number of diseases. Loss of expression, or loss
of imprinting, can be shown in mouse models to lead to defects in beta cell function and abnormal
insulin secretion. In the present review we survey the evidence that altered expression of imprinted
genes contribute to loss of beta cell function, the importance of beta cell heterogeneity in normal and
disease states, and hypothesise whether there is a direct link between the two.

Keywords: genomic imprinting; methylation; beta cell function; type 2 diabetes; diet; beta cell
heterogeneity; pancreatic islets; single-cell transcriptomics; ‘hub’ cells; beta cell connectivity

1. Introduction

Adequate insulin secretion is a sine qua non for the effective control of blood glucose
in mammals and defects in this process are involved in all forms of diabetes mellitus. Thus,
whilst type 1 diabetes involves the immune-mediated destruction of beta cells [1], residual
beta cells often remain, especially in those diagnosed later in life [2] but are unable respond
adequately to stimulation with glucose. In type 2 diabetes (T2D), the beta cell mass is
thought to remain mostly intact [3] but to become largely refractory to stimulation with
glucose [4]. Though certain studies [5] report up to 50% beta cell “loss” in individuals with
T2D, it should be emphasised that the histological studies on which these conclusions are
based are not prospective (i.e., involving measurements in the same individual). Consistent
with the preservation of a substantial number of beta cells, responses to non-glucose stimuli,
including certain amino acids, are often largely preserved in subjects with T2D [6].

Healthy beta cells respond to glucose through the uptake of the sugar via glucose
transporters (GLUT2/SLC2A2 in rodents, GLUT1-3 in man [7]), phosphorylation of the
sugar by a low affinity hexokinase, termed glucokinase (encoded by the GCK gene [8])
and enhanced flux through glycolysis [4]. Efficient mitochondrial oxidative metabolism,
achieved in part through the absence of alternative metabolic fates for glucose carbon [6,9]
then drives increases in ATP/ADP ratio in the cytosol [10] which close ATP-sensitive K+

channels [11], depolarising the plasma membrane to facilitate Ca2+ entry through voltage-
gated Ca2+ channels [4]. The latter then activate the release of stored insulin from secretory
granules through regulated exocytosis. Other, less well-defined, “amplifying” glucose
signalling mechanisms potentiate the actions of Ca2+ on the granules [12–14].
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Compromised beta cell glucose metabolism and the misexpression of critical transcrip-
tion factors and glucose sensors such as GLUT2/SLC2A2 [15,16] appear to underlie the
changes which suppress normal glucose sensing in the islet in T2D. Moreover, re-expression
of genes which are usually expressed at low levels (including those which are selectively
“disallowed” in the beta cell, but strongly expressed in most other tissues, including Ldha
and the lactate/pyruvate transporter MCT-1/Slc16a1 [17]) and markers such as Aldh1a3 [18]
may also be involved in rendering beta cells “blind” to stimulation.

Heterogeneity and connectivity have emerged in recent years as important aspects
of the healthy beta cell population [19] and may be compromised in both type 2 [20] and
type 1 [21] diabetes. Importantly, subsets of beta cells which appear to be highly connected
to other cells within a cellular network [22,23], and to influence overall islet-wide dynamics,
appear to be potential targets for dysfunction in both disease settings. The molecular
mechanisms leading to the establishment of an apparent beta cell “hierarchy” are poorly
defined. Epigenetic changes, including alterations in DNA methylation [24], represent
one possibility.

In the present review, we discuss the importance of both imprinted gene expression
and functional heterogeneity in beta cells, and hypothesise that changes in imprinted
gene expression may be involved in, and contribute to, the loss of beta cell function and
heterogeneity in the settings of nutrient excess and T2D.

1.1. Genomic Imprinting

Genomic imprinting is an epigenetic phenomenon resulting in monoallelic and parent-
of-origin specific gene expression [25]. The specific requirement for the individual contri-
bution from both the male and female germlines was demonstrated in pioneering studies
in the 1980s by showing that pronuclear transfer to create newly-fertilised gynogenetic
(two copies of the maternal genome) or androgenetic (two copies of the paternal genome)
mouse oocytes did not produce viable embryos [26–30]. Further studies later revealed
specific regions of the genome where the presence of two maternal or two paternal chro-
mosomal copies (known as uniparental disomy, UPD) resulted in abnormalities in early
growth, development and viability, and thus formed the basis for our understanding of
these so-called “imprinted regions” of the genome. The phenomenon of genomic imprint-
ing, as well as its appearance alongside the manifestation of the placenta in mammals, have
led to a number of hypotheses regarding the evolutionary advantage of “imprinting” this
small subset of mammalian genes. Major examples include “parental conflict” [31] between
the two genomes whereby the maternal and paternal genomes are centered around re-
source conservation and resource extraction, respectively, particularly during early growth
and development. Co-adaptation between the mother and her offspring, stipulating that
genomic imprinting may benefit their interaction, in terms of the fitness of both individuals,
has also been suggested [32].

Allele-specific epigenetic control at specific imprinted loci is predominantly mediated
by differences in methylation of cytosine residues (at the carbon-5 position) at cytosine-
guanine dinucleotides or “CpGs” (reviewed extensively in [33,34]). Silencing of one
parental allele is governed by an imprinting control region (ICR), that is a differentially-
methylated region (DMR) often controlling multiple imprinted genes within a single
genomic cluster [35,36]. The overall result is monoallelic expression of a subset of “im-
printed” genes (~150 identified to date) that are defined by expression solely driven from
either the paternal or maternal allele. As the epigenetic regulation at imprinted loci is re-
established in the germline, genomic imprinting is carried through to the next generation
in a transgenerational manner.

1.2. Human Imprinting Disorders

Imprinted genes are expressed in several metabolic systems (muscle, adipose, hypothalamic–
pituitary–adrenal (HPA) axis and pancreatic beta cells), particularly at early (fetal, neonatal
and postnatal) stages where they regulate a diverse range of cellular processes that ulti-
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mately mediate key physiological parameters such as growth, development, metabolism
and behaviour [37]. It is, therefore, not surprising that a number of disorders exist in
humans due to large chromosomal duplications (therefore leading to either paternal or
maternal UPD), specific point mutations or mutations to genomic regions critical for epige-
netic control of an imprinted locus (e.g., an ICR) [38–42]. Imprinting disorders are typically
characterised by perturbed growth and development, particularly in early life, and are as-
sociated with “failure to thrive” phenotypes. Furthermore, mutant mouse lines that model
human imprinting disorders generally recreate clinical features described in patients and
demonstrate that even a two-fold alteration in imprinting gene expression has phenotypic
consequences similar to those observed in humans [40,41]. Examples of imprinting disor-
ders include Prader–Willi Syndrome and Angelman Syndrome, two conditions associated
with major developmental and metabolic abnormalities caused by genetic disruption at
15q11-13 [43,44]. Angelman syndrome is most likely caused by disruption of the UBE3A
gene either through direct UBE3A point mutations or via paternal UPD, as reviewed in [45].
Inversely, Prader–Willi Syndrome results from the deletion of paternal 15q11-13, maternal
15q11-13 UPD or ICR disruption reviewed in [46], with both disorders highlighting the
importance of maintaining correct gene dosage at specific imprinted loci. Similar imprint-
ing disorders have been identified with overlapping “failure to thrive” phenotypes (e.g.,
feeding problems, growth restriction or overgrowth, developmental delays, metabolic
syndrome etc) and underlying genetic abnormalities at imprinted loci, for example in the
cases of Silver–Russell Syndrome and Beckwith–Weidermann Syndrome (11p15.5 or “ICR2”
containing CDKN1C and KCNQ1) [47,48] and Temple Syndrome (14q32.2 containing DLK1
and MEG3) [49]. Importantly in the context of an impact on beta cell function and dia-
betes, Transient Neonatal Diabetes Mellitus (TNDM) is associated with paternal UPD of
chromosome 6q24 [50–54] (containing the PLAGL1/ZAC gene) or modified methylation at
the maternal allele [55,56] with overexpression of Plagl1 in mice mimicking the impaired
glucose homeostasis at the neonatal stage [57].

1.3. Imprinted Genes and Pancreatic Beta Cells

Importantly, a significant number of imprinted genes play key functional roles in beta
cells, both during their early development and in the adult [58]. These include regulation
of insulin secretion (Nnat [59,60], Plagl1 (ZAC1) [57,61]), beta cell mass (Cdkn1c [62,63],
Dlk1 [64], Peg3 [65], Grb10 [66,67], Rasgrf1 [68]) and epigenetic regulation (Gtl2 (MEG3) [69,70],
H19 [71]) (Table 1). Interestingly, imprinted gene expression is deregulated in subclones
of stable mouse-derived MIN6 beta cells that are “poorly responsive” in terms of insulin
secretion to glucose and other secretagogues compared with “highly responsive” MIN6
subclones [72], and in pancreatic islets from T2D vs non-diabetic subjects [66,70,73–75].
Furthermore, single nucleotide polymorphisms (SNPs) at imprinted loci in multiple human
cohorts are associated with T2D, possibly due to altered methylation at these genomic
regions [76–79].

Table 1. Effect of modified imprinted gene expression on the function of mouse and human pancreatic beta cells.

Imprinted Gene Proposed Functional Role in Beta Cells Effect of Altered Expression in Beta Cells References

Cdkn1c Cell cycle control Increased beta cell replication upon
knockdown in human islets [62,63]

Dlk1 Cellular differentiation
Overexpression resulted in differentiation of
human pancreatic ductal cells into beta-like

cells and an increase in insulin secretion
[64]

Grb10 Receptor tyrosine kinase adaptor protein

Knockdown in human islets reduced insulin
secretion. However, increased beta cell mass,
insulin secretion and improved whole body

glucose tolerance in knockout mice

[66,67,80]
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Table 1. Cont.

Imprinted Gene Proposed Functional Role in Beta Cells Effect of Altered Expression in Beta Cells References

Gtl2 Long non-coding RNA
Knockdown in stable mouse beta cells

increased sensitivity to cytokine-mediated
oxidative stress

[70]

H19 Long non-coding RNA Knockdown decreased rat beta cell
expansion [71]

Nnat Mediator of preproinsulin processing
Knockout in mice leads to reduced beta cell
insulin content, glucose-stimulated insulin

secretion (GSIS) and glucose tolerance
[59,60]

Peg3 Zinc finger protein, regulates apoptosis Viral-mediated knockdown in vitro activates
beta cell cycling [65]

Plagl1 Zinc finger protein, suppresses cell growth Transient neonatal diabetes upon
overexpression of Plagl1 in mice [52,57]

Rasgrf1 Guanine nucleotide exchange factor
Knockout in mice leads to reduced beta cell

mass, hypoinsulinaemia and impaired
glucose tolerance

[68]

1.4. Beta Cell Heterogeneity

All beta cells are not equal, and within the same islet, individual beta cells display
functional heterogeneity. Early evidence for beta cell heterogeneity was provided as long
ago as 1986, using a haemolytic plaque assay developed to visualise insulin release from
dispersed rat islet cells. This approach showed that beta cells are heterogeneous in terms
of their ability to secrete insulin [81]. These experiments also provided evidence that
cell-to-cell adhesion and/or junctional communication regulate hormone secretion from
individual beta cells [81]. Other studies demonstrated intercellular differences in the se-
cretory activity of glucose-stimulated beta cells, both in terms of glucose sensitivity and
amplitude of insulin secretion. Furthermore, these highly sensitive beta cells were shown
to release insulin in greater quantities at the same glucose concentration when compared
to less glucose-sensitive cells [82–84]. Moreover, repeated stimulation with high glucose
showed that individual rat beta cells from dispersed rat islets demonstrate/retain distinct
and lasting secretion patterns, indicating that their excitability level remains unchanged, at
least acutely [85]. Accordingly, insulin secretion from human beta cells is also heteroge-
neous and appears to be dependent on cell-to-cell contact [86]. Interestingly, a subset of
beta cells that were poorly responsive to glucose still secreted insulin in response to other
stimuli such as tolbutamide or glucagon-like peptide 1 (GLP-1) [87,88].

The molecular mechanisms that lie behind beta cell functional heterogeneity involve
regulation of cellular glucose sensing and differential activity or expression of factors and
pathways contributing to insulin secretion in response to glucose. For instance, variation in
the expression of glucokinase (Gck), the flux-determining enzyme for beta cell glycolysis [4],
is observed between individual beta cells from rat islets [89]. Accordingly, highly responsive
beta cells have a 60% increase in glucokinase activity versus weaker responders [90]. In
mouse islets expressing GFP under the control of the insulin promoter, GFP-“bright” cells
(i.e., signifying a highly active insulin promoter) accounted for ~20% in comparison to
GFP-“medium” cells that represented ~70% of the beta cell population [91]. Indeed, both
GFP-“bright” and GFP-“medium” beta cells contained higher insulin mRNA levels and a
higher secretion index when compared to GFP-“low” beta cells [91].

To further characterise beta cell heterogeneity in the human context, a study using dis-
sociated human islets showed that four antigenically-distinct subtypes of beta cells could
be identified [92]. Beta cells subpopulations designated “β1-4” display differential expres-
sion of ST8SIA1 and CD9, as well as different transcriptional signatures in general, with
some of the differentially-expressed genes associated with beta cell maturation, glucose
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metabolism and insulin secretion [92]. These subpopulations are always present in normal
adult human islets, and interestingly, the authors also described that the distribution of
these beta cell subtypes is altered in T2D islets, demonstrating that beta cell heterogeneity
is functionally relevant [92]. Of note, other antigenic markers have been described, such as
polysialylated-neural cell adhesion molecule (PSA-NCAM) in rat beta cells, separating two
populations that differ notably in their insulin secretion as well as Gck and Glut2/Slc2a2
expression levels [93].

Another criterion of beta cell heterogeneity is whether a given subgroup has the
capacity to proliferate. A study in 2016 showed that Flattop (Fltp), a Wnt/planar cell
polarity effector, acts as a marker gene to distinguish a subpopulation of proliferating
beta cells from more mature (quiescent) beta cells, and that these two populations had
distinct molecular and physiological signatures [94]. Though Fltp in itself is not necessary
for beta cell development, proliferation or maturation, Fltp-positive cells showed higher
insulin secretion, a lower number of immature insulin granules and higher mitochondrial
function, as well as higher expression of genes involved in glucose metabolism and lower
proliferation rates [94]. As shown by the several studies above, heterogeneity between beta
cells can be observed at the transcriptomic level, and the impressive and rapid development
of single-cell RNA sequencing technologies in recent years has allowed us to explore
whole genome mRNA expression levels at cellular resolution. Despite some obvious
technical limitations due to factors such as sample size, dropout effects and the requirement
for efficient computational analysis methods [95–97], studies using single cell mRNA
sequencing to explore the beta cell transcriptome have no doubt played a major role in
bringing new insights for beta cells identity and heterogeneity.

The first studies that performed single cell sequencing from human pancreatic islets
of healthy donors and T2D patients were stepping-stones in terms of assessing beta cell
heterogeneity in the context of diabetic states and also validated previously described
marker genes for endocrine cell types within the islet [98,99]. However, a limitation of
these studies was the number of sequenced cells, notably beta cells. Although Li et al.
explored cellular heterogeneity using a separate principal component analysis (PCA) for
each cell type, the number of cells was ultimately too low to distinguish clear cellular
subpopulations amongst cell types [98].

Shortly afterwards, two back-to-back studies [100,101] sequenced 2209 and 1492 single
cells, respectively, from human islets of healthy and T2D donors. In addition to the large
degree of overlap of gene expression for both alpha and beta cells when compared between
the two studies, the number of cells sequenced also allowed Segerstolpe et al. [100] (but not
Xin et al. [101]) to identify subpopulations within endocrine cell types, including beta cells.
Sub-clustering of beta cells revealed five clusters with combinational expression of RBP4,
FFAR4/GPR120, ID1, ID2 and ID3 [100] and, of note, cells of all five clusters expressed
insulin (INS) at similar level. A later study also showed heterogeneity amongst human
beta cells, in terms of the regulation of genes relating to functional maturation (UCN3)
and ER stress (HERPUD1, HSPA5 and DDIT3) [102]. A similar study assessed beta cell
heterogeneity using an algorithm to detect outliers within the beta cell population to show
that the most significant genes differentially expressed between beta cell subtypes were
SRXN1, SQSTM1 and three ferritin subunits, genes notably highly expressed in one of the
clusters and implicated in the response to the ER and oxidative stress [103].

Very recently, Camunas-Soler et al. implemented a technique to collect both tran-
scriptomic and electrophysiological (“Patch-seq”) data from the same endocrine cell [104].
Using human islets, the authors patch clamped 1,369 individual cells before RNA-seq
analysis. This allowed them to determine how heterogeneity in gene expression correlates
with functional heterogeneity recorded by patch-clamp, including exocytosis, Ca2+ and
Na2+ currents. Thus, they identified genes positively or negatively associated with beta
cell exocytotic capacity such as beta cell transcription factors MAFA and ETV1, insulin
granule-associated SLC30A8, VAMP2, SCG2 and INS as well as several metabolic enzymes
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and ion channels. Impressively, they also identified a gene set associated with functional
heterogeneity in beta cells that can be used to predict electrophysiologal capacity [104].

Functional, metabolic, and transcriptomic heterogeneity between beta cells is now
widely described in the literature (for reviews see [105–108]). A potential advantage of a
heterogeneous beta cell population would be to achieve a more precise regulation of global
insulin secretion while responding to different physiological conditions and, therefore,
fine-tuning the control of blood glycaemia. Different excitability levels of multiple cells
belonging to the same network might also contribute to the organisation of the network.
For instance, one of the roles attributed to beta cell heterogeneity within the islet is to deter-
mine spatiotemporal Ca2+ wave dynamics in order to coordinate insulin release across the
islet, where waves appear to originate in regions of the islet with elevated excitability [109].
Indeed, cells are not isolated within the islet, and islet multidimensional structure, cell-
cell communication and beta cell connectivity are crucial to coordinate adequate insulin
secretion in response to glucose [108]. Cell-to-cell communication is achieved by neural
regulation, paracrine signalling, and possibly through primary cilia and gap junctions [20].
In mouse and human islets, beta cells are electrically coupled by Connexin 36 (Cx36) [110].
Cx36/Gjd2 charge- and size-selective channels that notably permit intercellular passage of
ions such as Ca2+ are important for calcium waves/oscillations, coordination and insulin
secretion in the intact islet under elevated glucose [19,111,112]. Interestingly, fluorescence
recovery after photobleaching (FRAP) experiments showed that cell coupling was heteroge-
nous, with cells having either high or low coupling [113].

In order to analyse beta cell connectivity, functional high-speed Ca2+ imaging experi-
ments have been performed on intact islets with acquisitions subjected to computational
methods to identify the cells with correlated activity; thus, a connectivity map can be
constructed based on the location of significantly correlated cell pairs [20,114,115]. A sub-
population of highly-connected cells was identified in this way ex vivo, in both mouse and
human islets, and these cells exerted a tight control over islet response to glucose [22]. The
identified “hub” cells, which also appeared to be the first cells to show an increase in cytoso-
lic Ca2+ during oscillations in this parameter and have also been termed “leaders” [116],
exhibited lower PDX1 and higher GCK expression levels, as assessed by immunocyto-
chemistry, indicative of a less mature but highly metabolic state. Hub cells accounted for
~10% of the beta cell population and, remarkably, their inactivation via an optogenetic
approach in which the Cl− pump halorhodopsin was activated in selected cells to achieve
their reversible electrical silencing cells greatly impaired calcium dynamics across the
plane of the islet interrogated. Thus, hub cells may act as “pacemaker” cells in response to
elevated glucose and appear to be more sensitive than “follower” cells to pro-inflammatory
factors [22] (Figure 1).
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of “hub” cells has been described that account for up to 10% of total beta cells. These “hub” cells, as opposed to “follower”
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Hub cells were also observed in mouse islets as well as in the living fish embryo,
with the former becoming revascularized and innervated when engrafted into the anterior
chamber of the eye [116]. Similar to what was observed in mouse islets in vitro, photo-
ablation of “leader” cells in the zebrafish led to loss of a coordinated calcium response [116],
confirming their possible role as pacemakers. Moreover, these new findings suggest that
beta cell “hubbiness” is an intrinsic property of this population and not simply reflective of
the localisation of these cells within the islet (e.g., their proximity to blood vessels, nerve
termini, etc.). Others [117] have demonstrated that optogenetic activation of subpopula-
tions leads to the activation of Ca2+ waves, consistent with the above model, though the
degree to which different sub-groups of “hubs”, “leaders” and “first responders” overlap is
a matter of contention. Importantly, the means through which “hubs” transmit Ca2+ waves
across the islet remains unclear, with both a direct mechanism involving cell-cell contacts
and gap junctions [118] and the involvement of other cell types such as delta cells [119] both
possible. Indeed, whilst theoretical considerations have prompted some authors to query
the role of gap junctions [120], the grounds for these concerns can be questioned [121],
and modelling by others [122] is consistent with these cells playing a coordinating role
though gap junctions. Certain characteristics of this “hub/leader” subpopulation are nev-
ertheless still unclear, including their complete transcriptomic (and proteomic) signature.
Nevertheless, analysis of published RNA-seq data has shown higher Gck and lower Pdx1
and insulin expression, and revealed a notable enrichment in genes involved in glucose
oxidation [116]. We attempt, in Figure 2, to ascribe known differences in gene expression in
the mouse to different beta cell subclusters [22,94,123]. Whether imprinted gene expression
differs between beta cell populations (e.g., hubs and followers) is yet to be established and
is an active area of research.
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Figure 2. Evaluating the overlap of defined transcriptomic heterogeneity between beta cell subpopulations in mice. “Hub”
cells [22] exhibit lower Pdx1, Ins1 and higher Gck expression levels, as assessed by immunocytochemistry, indicative of a less
mature but highly metabolic cell state. According to Bader et al. [94], FACS-sorting of islet beta cells into Fltp-positive and
Fltp-negative populations revealed that the former was marked by expression of Pdx1 and several key beta cell transcription
factors (βTF) and, similar to “hub” cells, by increased expression of Gck. Expression of insulin was similar between
Fltp-positive and Fltp-negative beta cells. scRNA-sequencing of primary mouse beta cells by Lu et al. [123] revealed a
population of beta cells (termed “cluster 3”) with increased mitochondrial (MT) gene expression and reduced expression of
insulin, but with comparable levels of beta cell transcription factors (βTF) as mature beta cells (termed “clusters 1 and 2”),
consistent with “hub” cells. “Cluster 4”, in this analysis, represents immature beta cells with significantly reduced insulin
levels and key beta cell transcription factors (βTF). Whether the expression of imprinted genes is enriched in any of the
above subpopulations remains to be determined. Black arrows represent up- or down regulation of gene expression.



Int. J. Mol. Sci. 2021, 22, 1000 8 of 14

1.5. Transcriptomic Diversity between Beta Cell Subpopulations

Early work [81,83,84] and recent single cell transcriptomic profiling [92,99] and imag-
ing studies [22,94,116] have all demonstrated functional heterogeneity amongst individual
beta cells within the islet in terms of metabolism, Ca2+ influx and insulin secretion. These
studies have also revealed diverse transcriptional signatures and secretory profiles amongst
beta cell subpopulations, and alterations in subtype distribution in T2D that are associated
with partial dedifferentiation and loss of beta cell “identity” [92,99]. Cells from the ‘hub’
beta cell subpopulation described above [22,116], appear to be transcriptionally imma-
ture and highly metabolic. Targeting of these hubs by “glucolipotoxic” insults may thus
contribute to the development of T2D [22,116].

Imprinted genes play key functional roles in beta cells [57,59–67,69–71] and a dispro-
portionate number display deregulated expression in a model of diminished glucose-stimulated
insulin secretion (GSIS) [72] and in pancreatic islets from T2D patients [66,70,73–75]. Interest-
ingly, overnutrition (high fat or high sugar diets) has been linked to long-term, programmed
epigenetic changes in gene expression at imprinted loci in humans and rodents [124–126].
It will be interesting to investigate whether imprinted genes are preferentially expressed
across beta cell subtypes and whether or not differences between expression of these genes
in different subsets impact beta cell heterogeneity and islet function in both normal and
diabetic states (Figure 3). In this scenario, the targeting of imprinted genes, in loci with well
understood epigenetic control and functional importance in beta cells, would enable us to
understand the type and genomic distribution of epigenetic and transcriptional control
that mediates stable gene expression between beta cell subtypes and their modification by
environmental factors [127] (e.g., diet).
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Figure 3. A proposed model for beta cell heterogeneity in terms of imprinted gene expression.
Deregulation of imprinted gene expression by environmental factors (i.e., diet) would, in this scenario,
reduce beta cell heterogeneity and therefore insulin secretion. Black arrows represent deregulation of
imprinted gene expression.

Conclusions: a role for altered imprinted gene expression in reducing beta cell hetero-
geneity and function?

As discussed above, alterations in the islet transcriptome are likely to be a key driver of
beta cell dysfunction in diabetes. Important questions for the future are whether imprinted
genes are mis-expressed in beta cells in models of type 1 and type 2 diabetes and whether
such altered expression is driven by epigenetic pathways that are key to controlling im-
printed gene expression (DNA methylation, modifications to histone proteins). New tools,
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including those in which imprinted loci can be examined in mice through the “knock-in”
of reporter genes such as firefly luciferase [128,129], may provide an exciting means to
determine the extent to which gene dysregulation occurs over time in the beta cell in
the living animal and whether these changes are reversible. Imprinted genes, with their
transgenerational epigenetic maintenance and functional importance in pancreatic beta
cells, therefore provide an excellent opportunity to assess epigenetic change in the context
of overnutrition and in other settings such as gestational diabetes, with previous studies
also linking the possibility of altered imprinted gene expression and perturbed beta cell
function being “passed on” from diabetic parents to the next generation [125,126,130–132].
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