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Disturbance in the proteolytic process is one of the malignant signs of tumors. Proteolysis
is highly orchestrated by cysteine cathepsin and its inhibitors. Cystatin-B (CSTB) is a
general cysteine cathepsin inhibitor that prevents cysteine cathepsin from leaking from
lysosomes and causing inappropriate proteolysis. Our study found that CSTB was
downregulated in both oral squamous cell carcinoma (OSCC) tissues and cells
compared with normal controls. Immunohistochemical analysis showed that CSTB was
mainly distributed in the epithelial structure of OSCC tissues, and its expression intensity
was related to the grade classification. A correlation analysis between CSTB and clinical
prognosis was performed using gene expression data and clinical information acquired
from The Cancer Genome Atlas (TCGA) database. Patients with lower expression levels of
CSTB had shorter disease-free survival times and poorer clinicopathological features
(e.g., lymph node metastases, perineural invasion, low degree of differentiation, and
advanced tumor stage). OSCC cell models overexpressing CSTB were constructed to
assess the effects of CSTB on malignant biological behaviors and upregulation of CSTB
inhibited cell proliferation, migration, and invasion in vitro. Weighted gene correlation
network analysis (WGCNA) and gene set enrichment analysis (GSEA) were performed
based on the TCGA data to explore potential mechanisms, and CSTB appeared to
correlate with squamous epithelial proliferation-differentiation processes, such as
epidermal cell differentiation and keratinization. Moreover, in WGCNA, the gene module
most associated with CSTB expression (i.e., the brown module) was also the one most
associated with grade classification. Upregulation of CSTB promoted the expression
levels of markers (LOR, IVL, KRT5/14, and KRT1/10), reflecting a tendency for
differentiation and keratinization in vitro. Gene expression profile data of the
overexpressed CSTB cell line were obtained by RNA sequencing (RNA-seq)
technology. By comparing the GSEA enrichment results of RNA-seq data (from the
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OSCC models overexpressing CSTB) and existing public database data, three gene sets
(i.e., apical junction, G2/M checkpoint, etc.) and six pathways (e.g., NOTCH signaling
pathway, glycosaminoglycan degradation, mismatch repair, etc.) were enriched in the
data from both sources. Overall, our study shows that CSTB is downregulated in OSCC
and might regulate the malignant characteristics of OSCC via the epithelial proliferation/
differentiation program.
Keywords: oral squamous cell carcinoma, head and neck squamous cell carcinoma, cysteine cathepsin, cystatin-B,
epithelial proliferation/differentiation, WGCNA, GSEA
INTRODUCTION

As the sixth most common cancer in the world, head and neck
squamous cell carcinoma (HNSCC) continues to rise yearly, and
oral squamous cell carcinoma (OSCC) accounts for 90% of
HNSCC cases in the region (1–4). The survival of OSCC
patients, especially those with distant metastases, remains low,
at approximately 39% (1, 4, 5). Moreover, due to the special
anatomical location of the oral cavity, OSCC patients often
experience great psychological stress and compromised quality
of life (6). To date, the potential pathogenesis, including the
progression mechanism, of OSCC is not fully understood. It is
generally accepted that the initiation and development of OSCC is
a complex process requiring the accumulation of genomic
alterations, which is modified by individual genetic
predisposition and environmental carcinogenic risk factors (7–
9). It is necessary and challenging for clinical oncology and
precision medicine science to understand the carcinogenic and
progression mechanisms of OSCC, to identify biomarkers for
early screening and to establish an accurate prognostic evaluation
system, all of which would contribute to the reduction in the
incidence and improvement of both the survival rate and living
quality of tumor-bearing patients (10–12).

Proteolysis has a vital role in the normal life activities of
organisms. Disorders between the enzymatic reaction and the
inhibitory reaction of the proteolytic cascade process are one of
the malignant characteristics of tumors, and they also lead to
tumor invasion and metastasis (13–16). Numerous evidences
have indicated that cysteine cathepsins play a crucial role in
these processes (17–20). Cysteine cathepsin can degrade the
proteins of the extracellular matrix (ECM) and reshape the
tumor microenvironment by regulating a variety of cytokines
and thus participate in tumor growth, invasion, angiogenesis, and
metastasis (21). Compared with the fully elucidated role of the
cysteine protease family in tumors, research on its inhibitors in
tumors is relatively limited. Most studies only focus on certain
types of inhibitors and are not in-depth enough. As an inhibitor
of cysteine cathepsin, cystatin-B (coded by Cstb gene) is
considered a general cysteine cathepsin inhibitor in mammalian
cells, preventing cysteine cathepsin from leaking from lysosomes
and causing inappropriate proteolysis (18, 22–24). CSTB plays a
bimodal role in cancer. Recent studies have associated CSTB with
various cancers [e.g., hepatocellular carcinoma (HCC) (25–28),
epithelial ovarian tumors (29, 30), breast cancer (31), laryngeal
squamous cell carcinoma, and esophageal squamous cell
2

carcinoma, and esophageal squamous cell carcinoma (ESCC)
(32, 33)], in which the expression, in which the expression of
CSTB is changed in different directions. For instance, CSTB was
increased in HCC (25–28), epithelial ovarian tumors (29, 30), and
breast cancer (31), while decreased in laryngeal squamous cell
carcinoma and ESCC (32, 33). Some studies have indicated that
increased CSTB is related to a poorer prognosis in bladder cancer
(34) and a higher risk of tumor metastasis in HCC (27). However,
most of the existing studies on the correlation between CSTB and
tumors just provide observational evidence and whether CSTB
has a causal role in cancers (including OSCC) is unclear. Only a
few studies found that CSTB may participate in tumors by
regulating cell apoptosis and oxidative stress (31). Only one
noninterventional study based on human OSCC tissue
specimens reported that low expression of CSTB in the invasive
tumor front was correlated with local tumor recurrence. In
addition, CSTB-specific peptides in saliva were associated with
lymph node metastasis (35). However, the single study reached a
conclusion based only on OSCC specimens but lacked a
nontumor (normal control) group. Moreover, there is a lack of
in-depth and comprehensive mechanistic studies on the role of
CSTB in the progression of OSCC. Based on the above evidence,
we hypothesized that CSTB may play a role in OSCC. Our
research aimed to identify the role of CSTB in OSCC and to
explore the relevant mechanisms.
MATERIALS AND METHODS

Cell Line Acquisition and Culture
The human tongue squamous cell carcinoma cell lines SCC9 and
SCC25 (ATCC, ATCC® CRL-1629™ and CRL-1628™,
Manassas, VA, USA) and the normal oral epithelial
keratinocyte line HOK (AULU, Guangdong, China) were
purchased and cultured in Dulbecco’s modified Eagle’s
medium (DMEM)/F12 (Gibco, Waltham, MA, USA) and
DMEM, respectively. The complete cell culture medium
contained 10% fetal bovine serum (FBS, Gibco) and
1% penicillin/streptomycin (Gibco), while the medium for
carcinoma cells was supplemented with an additional 400-ng/
ml hydrocortisone (MedChemExpress, Monmouth Junction, NJ,
USA). The serum-free cell culture medium for carcinoma cells
was prepared as DMEM/F12 containing 1% penicillin/
streptomycin and 400 ng/ml hydrocortisone for a number of
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subsequent experiments (e.g., enzyme-linked immunosorbent
assay, wound-healing assay, cell migration, and invasion
assays). The cells were cultured in a 37°C, 5% CO2 incubator.

Clinical Patient Specimen Collection
and Immunohistochemistry Staining
for Cystatin-B
The studies involving human participants were approved by the
Ethics Committee of the Stomatology Hospital of Guangzhou
Medical University. Twenty-three primary OSCC specimens and
fifteen normal oral tissues were obtained from the Department of
Periodontics and Oral Mucosal Diseases, Stomatology Hospital of
Guangzhou Medical University. All OSCC specimens were from
samples pathologically diagnosed as OSCC. Normal specimens were
excess tissues that needed to be removed due to tooth extractions or
oral surgeries, which were also examined as normal oral mucosal
epithelium by pathology. The pathological grading (36) of tissue
sections was classified blindly by a single pathologist (Xin-Hong
Wang). Immunohistochemistry (IHC) staining for cystatin-B was
performed in the above tissues (Materials and Methods S1.1). After
staining, five fields of view were randomly selected to take images
under an upright optical microscope. The integrated optical density
(IOD) value of each point on the image was collected by ImageJ and
then the average density (%, IOD/target distribution area) was
calculated, representing the expression level of CSTB in certain
specimens. Immunostaining was analyzed by a researcher who was
blinded to the pathological grade of the samples. Correlation
analysis between CSTB expression and the degree of pathological
differentiation was conducted.

Upregulation of CSTB in OSCC Cell Lines
by Lentiviral Transfection
The commercial recombinant lentivirus (OBIO, Shanghai,
China) named lenti-CSTB was utilized to overexpress CSTB,
and an empty carrier lentivirus named lenti-NC was used as a
negative control. SCC9 and SCC25 cells were infected with the
above lentivirus (MOI = 30) and screened with puromycin
(3 µg/ml) for 15 days. Quantitative reverse transcription-
polymerase chain reaction (qRT-PCR) and Western blotting
were used to validate the overexpression of CSTB at the
mRNA and protein levels, respectively. After successful
transfection, the cell lines (i.e., SCC9/25-lenti-CSTB and SCC9/
25-lenti-NC) were cultured with complete medium containing
puromycin (1 µg/ml) for subsequent analysis.

RNA Isolation and Quantitative
Real-Time PCR
Total RNA was extracted from the cells using an RNA extraction
kit (AG21017, Accurate Biology, Hunan, China). Extracted RNA
was analyzed for quantity and quality by measuring A260/A280
with a spectrophotometer (NanoDrop 2000, Thermo Fisher
Scientific, Waltham, MA, USA). RNA integrity was confirmed
by 1.5% agarose gel electrophoresis. For qRT-PCR, 1 mg of total
RNA was used to synthesize cDNA (AG11706, Accurate Biology,
China). qRT-PCR was performed using a SYBR Green qPCR kit
(AG11718, Accurate Biology, China). Relative mRNA expression
Frontiers in Oncology | www.frontiersin.org 3
was normalized to that of the internal GAPDH control. The
primer sequences used are listed in the Table S1. The relative
expression of targeted genes was calculated using the 2−△△Ct

method (37). Each test was repeated at least three times.

Western Blotting Analysis
Total protein was isolated from cell samples using precooled cell
lysis buffer (Cell Signaling Technology, Danvers, MA, USA) with
protease inhibitor (RayBiotech, Guangzhou, China) and quantified
using a BCA protein assay kit (Beyotime, Shanghai, China). Equal
protein extracts (20 µg) were separated by SDS-PAGE and
transferred to polyvinylidene fluoride membranes (Millipore,
Burlington, MA, USA). After successive incubations with the
primary antibody and the secondary antibody, the target protein
was visualized by chemiluminescence using an ECL kit (Beyotime).
The following antibodies were used in the Western blot assay: anti-
loricrin polyclonal antibody (1:1,000, 55439-1-AF, Proteintech,
Wuhan, China), anti-involucrin polyclonal antibody (1:1,000,
55328-1-AP, Proteintech), anti-cystatin-B monoclonal antibody
(1:1,000, 66712-1-Ig, Proteintech), anti-beta-actin monoclonal
antibody (1:10,000, 66009-1-Ig, Proteintech), anti-GAPDH
antibody (1:10,000, EPR16891, Abcam, Cambridge, UK), goat
anti-mouse IgG (H+L) antibody (HRP) (1:10,000, SA00001-1,
Proteintech), and goat anti-rabbit IgG H&L (HRP) antibody
(1:10,000, ab205718, Abcam). GAPDH or beta-actin served as the
internal controls to calculate the relative expression of the
targeted proteins.

Enzyme-Linked Immunosorbent Assay
Cells were inoculated at a density of 1 × 106 in complete medium,
which was replaced by serum-free medium after 2 days of culture.
After another 2 days, the supernatant was collected, centrifuged
(4°C, 2,000 rpm, 10 min), and stored at −80°C. The protein levels
of CSTB in cell supernatants were examined by an enzyme-linked
immunosorbent assay (ELISA) kit (R&D Systems, DCYB00)
according to the manufacturer’s instructions. Each test was
repeated at least three times.

Cell Proliferation Assay
Transfected SCC9 and SCC25 cells were inoculated with
complete medium in 96-well plates at a density of 3,000 cells
per well. Cell proliferation was detected using a Cell Counting
Kit-8 (Dojindo, Kumamoto, Japan) at 1, 2, 3, and 5 days
according to the manufacturer’s instructions. Each test was
repeated at least three times.

Colony Formation Assay
Three thousand transfected SCC9 cells and SCC25 cells were
seeded respectively in six-well plates and cultured for 10 days in
complete medium. Afterward, the colonies were fixed with 4%
paraformaldehyde and stained with crystal violet. The colonies
that contained more than 50 cells were counted. Each test was
repeated at least three times.

Wound-Healing Assay
For the wound-healing assay, transfected SCC9 and SCC25 cells
were first incubated and cultured with complete medium. A scratch
August 2021 | Volume 11 | Article 707066
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was made with a sterile pipette tip after a confluent monolayer of
cells was formed. Afterward, the cells were washed with phosphate-
buffered saline (PBS) and cultured with serum-free medium. Images
were taken at 0, 24, and 36 h postwounding. The wound-healing
areas were assessed by ImageJ to calculate the wound-healing rate.
Wound-healing rate% = [Areat0 − Areat1]/Areat0 × 100% (Areat0 is
the area of the wound measured immediately after scratching, and
Areat1 is the area of the wound measured t1 hours after scratching).
In our research, the area of the wound was measured at 0, 24, and
36 h. Each test was repeated at least three times.

Cell Migration and Invasion Assays
Cells were seeded at a density of 1 × 105 (a density of 5 × 104 for
transfected SCC9 cells for the migration assay) in serum-free
DMEM/F12 medium in the upper wells of Transwell chambers
(8 mm pore size, Corning, New York, NY, USA), while the lower
wells were filled with complete medium containing 10% FBS.
Chambers for the invasion assay were coated with 100 µl of
Matrigel (200 mg/µl, Corning) and incubated for 2 h at 37°C.
Cells in the upper layer were removed with a swab after 24 h of
culture, and cells on the bottom membrane were fixed with 4%
paraformaldehyde and stained with crystal violet. The results of
each group were photographed at five randomized visual fields,
and the experiments were repeated three times.

Bioinformatics Analysis for Identifying
CSTB Expression
Five expression microarray series containing OSCC tumor and
normal samples were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
(Table S2). One expression microarray series containing OSCC
tumor and oral leucoplakia samples was also downloaded from
GEO (Table S2). The Cancer Genome Atlas (TCGA) OSCC
mRNA normalized count data and clinicopathological
information of 329 OSCC tissues and 32 matched normal oral
mucosal epithelial tissues were downloaded from the Genomic
Data Commons Data Portal (https://cancergenome.nih.gov/).
The Cstb expression levels of both the OSCC and control
groups in all datasets were extracted and compared using R
Studio software.

Survival Analysis and Clinicopathological
Correlation Analysis
TCGA patients with clinicopathological information were used
for clinicopathological correlation analysis. Among the patients,
291 OSCC patients with complete clinicopathological and
survival data were selected for survival analysis. Next, these
291 patients were divided into high- and low-expression
groups based on the median expression level of Cstb for
weighted gene correlation network analysis (WGCNA) and
gene set enrichment analysis (GSEA).

Weighted Gene Coexpression
Network Analysis
The gene expression data and sample clinical information were
downloaded from TCGA. First, variance analysis of 22,862
Frontiers in Oncology | www.frontiersin.org 4
protein-coding genes (PCGs) was performed, the top 25% (5,716
genes) of which were selected forWGCNA. TheWGCNA package
in R Studio software was applied to construct a gene coexpression
network. The soft threshold power (b = 6) was selected to ensure a
scale-free network. The adjacency matrix was transformed into a
topological overlap matrix (ToM), and the corresponding
dissimilarity was calculated. The module eigengenes were
calculated to identify modules that were significantly associated
with the clinical feature information. In this process, the mRNA
expression level of Cstb was also regarded as a feature and was
inputted into the correlation analysis, aiming to identify the
functional modules related to its expression. Modules with a
high correlation coefficient were considered candidate modules
related to clinical features and were selected for subsequent
analysis. Finally, Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses were
performed to reveal the functions of the genes in the target
modules. p-Value ≤0.05 and q-value ≤0.05 were considered
statistically significant. The detailed method for WGCNA is
shown in the Materials and Methods S1.2.

mRNA Sequencing of the Transfected
Cell Line
The total RNA of transfected SCC25 cells (lenti-CSTB/NC-SCC25)
was extracted for further RNA-seq analysis (n = 3). High-
throughput sequencing was conducted by SEQHEALTH
(Wuhan, China). The raw reads of samples were obtained. The
clean reads were mapped to the reference genome of Homo sapiens
(Homo_sapiens, GRCh38) using STRA software (version 2.5.3a)
with default parameters. The reads mapped to the exon regions of
each gene were counted by FeatureCounts (Subread-1.5.1;
Bioconductor), and then the reads per kilobase of exon model
per million mapped reads (RPKM) were calculated. Genes
differentially expressed between groups were identified using the
edgeR package. A p-value cutoff of 0.05 and fold-change cutoff of
1.5 were used to judge the statistical significance of gene expression
differences. Afterwards, the differentially expressed genes (DEGs)
were compared with the mutational cancer driver gene set
published in IntOGen (https://www.intogen.org/search#driver-
genes:table) (38). Detailed methods for mRNA sequencing are
shown in theMaterials andMethods S1.3. Details of the mutational
cancer driver genes are shown in the Supplementary Data Sheet 1.

Gene Set Enrichment Analysis
First, samples obtained from TCGA were divided into high- and
low-expression groups based on the median expression level of
Cstb. A similar analysis was also performed based on the RNA-
seq data acquired from mRNA Sequencing of the Transfected Cell
Line. KEGG and GO analyses were used to explore potential
cancer-related biological pathways, while Hallmark GSEA was
used to correlate the expression level of Cstb with the biological
functions of oncogenes. p-Value ≤0.05 and FDR ≤25% were
considered statistically significant.

Statistical Analysis
The data were analyzed using data statistics software (GraphPad
Prism 7.0 and SPSS Statistics 16.0). The data are presented as the
August 2021 | Volume 11 | Article 707066
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means and standard deviations. Student’s t-test was performed
for two independent samples, while analysis of variance
(ANOVA) was used for multiple independent samples, and
post-hoc comparisons were made. The correlation between
CSTB expression and the degree of pathological differentiation
in IHC analysis was determined using Fisher’s exact test. Logistic
regression analysis was performed to analyze the relationship
between the expression of CSTB and the clinicopathological
characteristics of OSCC patients. The correlation between
genes in WGCNA was analyzed using Pearson’s correlation.
p-Value <0.05 was considered statistically significant.

A snapshot of the entire experimental process is shown
in Figure 1.
RESULTS

CSTB Is Downregulated in OSCC Both
In Vivo and In Vitro
Based on the data from public databases, the expression of Cstb
was lower in OSCC tissues than in normal oral mucosal epithelial
tissues (Figures 2A–F) and potentially malignant disorder tissues
(i.e., oral leucoplakia tissues, Figure 2G). IHC analysis of tissue
samples (independently collected from OSCC patients by the
coauthors) also showed a downregulation of protein CSTB
expression in OSCC tissues (Figure 2H). CSTB was located in
the epithelial structure of OSCC tissues, similar to the distribution
Frontiers in Oncology | www.frontiersin.org 5
of CSTB in the epithelial layer of normal oral mucosal epithelial
tissues. The staining of CSTB was lighter in OSCC and showed
preferential localizations in well-differentiated structures (i.e.,
cancer nests and keratinized pearls). There was little staining of
CSTB in either the tumor stroma in OSCC or subepithelial tissues
in control tissues (Figure 2I). Correlation analysis revealed that
the levels of CSTB were positively correlated with the degree of
tissue differentiation (p < 0.05, Table 1). For subcellular
localization, positive CSTB staining was mainly distributed in
the cytoplasm and occasionally distributed in the nucleus in both
OSCC and control tissues (Figure 2I).

The results of the in vitro experiments were consistent with
those of the in vivo experiments. CSTB was downregulated
intracellularly in common OSCC cell lines (i.e., SCC9 and
SCC25) compared with the normal cell line (i.e., HOK)
(Figures 2J–L). Interestingly, extracellular CSTB (i.e., in the
cell culture supernatant) was also downregulated in OSCC cell
lines (Figure 2M).

Downregulation of CSTB in Tissues Is
Associated With Poor Prognosis in
OSCC Patients
To explore whether there was a link between CSTB expression and the
clinical prognosis of OSCC patients, a correlation analysis between
them was conducted based on the data extracted from the TCGA
database. There was no significant difference in the overall survival
rates between the two groups (Figure 2N). However, the disease-free
FIGURE 1 | Snapshot of the entire experimental process. WGCNA, weighted gene correlation network analysis; GSEA, gene set enrichment analysis.
The identifications of CSTB expression at gene/protein levels are obtained by in vitro (OSCC cell lines) and in vivo (public database/clinical specimens) experiments.
Possible mechanisms for the involvement of CSTB in OSCC were explored using OSCC cell lines and public database data together. Using OSCC tissue samples
(from public databases and independent clinical specimens) for clinicopathological correlation analysis.
August 2021 | Volume 11 | Article 707066
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FIGURE 2 | CSTB is downregulated in OSCC and is associated with poor prognosis. Relative expression of CSTB mRNA in OSCC tissues (n = 329) and matched
normal tissues (n = 32) from the TCGA database. (B–F) Relative expression of CSTB mRNA in OSCC tissues and normal tissues from the GEO database.
The sample size of each group is shown in the figures. (G) Relative expression of CSTB mRNA in OSCC tissues (n = 34) and oral leucoplakia (OPL) tissues (n = 15)
from the GEO database. (H) Average optical density of CSTB in normal (n = 15) and OSCC (n = 23) tissues in IHC analysis. (I) IHC staining of CSTB in normal and
OSCC tissues. Magnification at ×100 (upper panel) and ×200 (lower panel); scale bars, 200 mm. (J) The relative expression of CSTB mRNA in the oral epithelial
keratinocyte line and OSCC cell lines was quantified by RT-qPCR. (K, L) CSTB protein expression in the oral epithelial keratinocyte line and OSCC cell lines was
identified by Western blot analysis (K) and quantitatively analyzed (L). (M) The content of CSTB in the culture supernatant in the oral epithelial keratinocyte line and
OSCC cell lines was quantified by ELISA. (N, O) Kaplan-Meier survival curves of overall survival and disease-free survival in the high and low CSTB expression
groups. Error bars represent the standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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survival (DFS) rate (an indirect indicator of cancer recurrence and
metastasis) of the lowCstb expression groupwas lower than that of the
high Cstb expression group (Figure 2O). Logistic regression analysis
indicated that patients with lower expression levels of Cstb had poorer
clinicopathological features (e.g., lymph node metastases, perineural
invasion, low degree of differentiation, and advanced tumor stage).
Patients with lymphovascular invasion tended to have lower Cstb
expression (p = 0.06). No association was found between the
abundance of Cstb and demographic characteristics, including age
and sex (Table 2).

Upregulation of CSTB Inhibits Malignant
Biological Behaviors of OSCC Cell Lines
Next, the regulatory role of CSTB in the malignant behaviors of
OSCC was explored in vitro. CSTB was successfully transfected into
OSCC cell lines (SCC9 and SCC25), and its content was upregulated
both intracellularly and extracellularly (Figures 3A–D).
Overexpression of CSTB suppressed the proliferation of SCC9
and SCC25 cells (Figures 3E, F) and caused a reduction in
colony formation by 17% to 18% (Figures 3G, H). Compared
with the NC groups, the wound-healing rate was decreased by 5% to
31% in SCC9/25 cells (Figures 3I–K). Regarding the invasive
characteristics, overexpression of CSTB reduced the migration
ability by ~37% and the invasion ability by 23%–38% in OSCC
cell lines (Figures 3L–N).

WGCNA to Identify the Target Module
To explore the relevant mechanism of CSTB in OSCC, WGCNA
was used as a nontargeted method to identify gene sets that were
Frontiers in Oncology | www.frontiersin.org 7
highly synergistic with CSTB. In WGCNA, the top 25% variant
PCGs (a total of 5,716 genes) were selected as the input in the
analysis. Thirteen outlier samples were removed, and the
remaining 278 samples were clustered with clinical features and
Cstb expression (Figure S1). A soft threshold power of b = 6 was
selected to establish a ToM and further construct a scale-free
network (Figure S2). The clustering tree was divided into 18
modules using dynamic shearing, and the modules were merged
according to the coefficient of dissimilarity of <0.25 (Figure S3).
The relationships between the input features and the module
eigengenes are shown in Figure 4A. Interestingly, the module
most associated with Cstb expression (i.e., the brown module,
r = 0.83, p = 4 × 10−113, Figures 4A, B) was also the one most
associated with grade classification (r = 0.73, p = 2.1 × 10−74,
Figures 4A, C). This result suggests that the gene set highly
coexpressed with Cstb may have a certain effect on the grade
classification phenotype, which indicated that CSTB may play a
regulatory role in the phenotype of grade classification.
CSTB Regulates Neoplastic Epithelial
Differentiation and Keratinization in OSCC
Given the strong association of the brown module with the two
traits (i.e., CSTB expression and grade classification), it was
regarded as the target module for further GO enrichment
analysis (Supplementary Data Sheet 2). The top 10 enriched
biological processes (BPs) mainly included pathways associated
with the epithelial proliferation/differentiation program, such as
epidermal development, epidermal cell differentiation, and
keratinocyte differentiation (Figure 4D). The top 10 enriched
cellular components (CCs) consisted of cellular structures
associated with epithelial proliferation/differentiation, including
cornified envelopes, intermediate filament cytoskeleton,
intermediate filament, etc. (Figure 4E). Moreover, GSEA was
conducted as a targeted method to verify whether the pathways
related to epithelial differentiation and keratinization showed
differences between the high and low Cstb expression groups.
The results showed that the high Cstb expression group activated
more epithelial differentiation and keratinization processes (e.g.,
cornification, epidermal cell differentiation epidemics development,
etc.) (Figure 4F).
TABLE 2 | Association between CSTB expression and clinicopathological features.

Clinicopathological feature Total (n) Odds ratio for CSTB expression p-Value

Age (continuous) 329 1.00 (0.98~1.02) 0.98
Sex (male vs. female) 329 0.93 (0.58~1.48) 0.75
Lymphovascular invasion (positive vs. negative) 237 0.455 (0.258~0.800) 0.06
Lymph node metastases (positive vs. negative) 276 0.58 (0.36~0.94) 0.03
Perineural invasion (positive vs. negative) 249 0.54 (0.32~0.89) 0.02
Stage (II vs. I) 73 0.13 (0.03~0.44) 2.88 × 10−3

Stage (IV vs. III) 226 0.5 (0.27~0.90) 0.02
Differentiation (moderate vs. well) 253 0.33 (0.17~0.62) 6.16 × 10−4

Differentiation (poor vs. moderate) 270 0.45 (0.23~0.84) 0.01
T stage (T2 vs. T1) 129 0.21 (0.08~053) 1.29 × 10−3

T stage (T3 vs. T1) 96 0.39 (0.14~0.99) 0.05
T stage (T4 vs. T1) 139 0.27 (0.10~0.65) 5.27 × 10−3
August 2021 | Volume 11 | Ar
TABLE 1 | Association between CSTB expression and tissue differentiation.

Degree of
differentiationa

Low CSTB
expression (n)b

High CSTB
expression (n)b

Sum p-
valuec

Well 5 10 15 0.027
Moderate to poor 7 1 8
Sum 12 11 23
aGrade 1 was regarded as well differentiation. Grades 2 and 3 were regarded as moderate
~ poor differentiation.
bPatients were divided into two groups (low and high CSTB expression) based on the
median expression of CSTB.
cStatistical method: Fisher’s exact test; statistical significance at p < 0.05.
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FIGURE 3 | Upregulation of CSTB inhibits the proliferation, migration, invasion and adhesion of OSCC cell lines. (A) Relative expression of CSTB mRNA in OSCC
cell lines after lentivirus transfection. (B, C) CSTB protein expression in OSCC cell lines after lentivirus transfection was identified by Western blot analysis (B) and
quantitatively analyzed (C). (D) The content of CSTB in the culture supernatant of OSCC cell lines after lentivirus transfection was quantified by ELISA. (E, F) CCK8
assays for transfected OSCC cell lines. (G, H) Colony formation assays for transfected OSCC cell lines. (G) The representative staining images of each group; (H) the
number of clones formed in each group. (I–K) Wound-healing assays for transfected OSCC cell lines. Representative images in (I) and statistical results in (J, K) at 0,
24, and 36 h in each group. (L–N) Transwell assays for transfected OSCC cell lines. Representative images for cell migration and invasion of each group are shown
in (L). Statistical results for cell migration and invasion are shown in (M, N), respectively. Error bars represent the standard deviation. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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Finally, cell differentiation/keratinization-related markers
(i.e., IVL, LOR, KRT1, KRT5, KRT10, and KRT14) were
validated at the protein and gene levels in OSCC models
Frontiers in Oncology | www.frontiersin.org 9
overexpressing CSTB (Figures 4G–J). It was found that
upregulation of CSTB promoted the expression of these
markers, reflecting a tendency for differentiation and
A B

C
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E

F

G H I J

FIGURE 4 | CSTB may regulate epithelial cell differentiation and keratinization in OSCC. (A) Heatmap of the correlation between module eigengenes (vertical axis) and
clinical features (horizontal axis). The correlation coefficient (upper row) and p-value (lower row) are presented in each block. The color of each block represents the
correlation coefficient according to the legend axis on the right. (B) Scatter diagram for the correlation between module membership and the gene significance of CSTB
expression in the brown module. Cor, correlation coefficient; p, p-value. (C) Scatter diagram for the correlation between module membership and gene significance of
grade classification in the brown module. Cor, correlation coefficient; p, p-value. (D, E) GO enrichment analysis of the brown module genes. (F) Squamous epithelial
keratinization- and differentiation-related pathways with statistically significant differences in GSEA using KEGG enrichment analysis. (G, H) Relative mRNA expression of
cell differentiation and keratinization-related markers in OSCC cell lines after lentivirus transfection. (I, J) Protein expression of cell differentiation and keratinization-related
markers in OSCC cell lines after lentivirus transfection. Error bars represent the standard deviation. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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keratinization. In summary, CSTB might regulate the epithelial
proliferation/differentiation program in OSCC.

RNA Sequencing Derived Pathways/Genes
of Interest Associated With CSTB in OSCC
In addition to keratinization- and differentiation-related
pathways, other pathways of interest that CSTB may
participate in were also identified. A comparison was made
between the GSEA enrichment results of RNA-seq data (from
the OSCC models overexpressing CSTB) and existing public
database data (Supplementary Data Sheets 3–4). Three gene
sets (i.e., apical junction, G2/M checkpoint and mitotic spindle)
and six pathways (i.e., glycosaminoglycan degradation,
homologous recombination, mismatch repair, NOTCH
signaling pathway, nucleotide excision repair, and steroid
biosynthesis) were enriched in the data from both sources
(Figures 5A, C–F). These nine pathways/gene sets were named
as shared pathways/gene sets. In the GSEA results for the cell line
RNA-seq data, the core enrichment genes in the above shared
pathways/gene sets were used to compare with 256 DEGs in
order to obtain crossover genes (Table 3, No. 1–12), suggesting
that overexpression of CSTB may be involved in the above
shared pathways by regulating these 12 crossover genes.

In addition to exploration at the pathway level, RNA-seq data
were used for comparisons with the existing recognized
mutational cancer driver genes. Among the 256 DEGs, five
genes (i.e., CEBPA, EGR2, MEF2B, SOCS1, and SP140) were
recognized as mutated cancer driver genes (Figure 5B).
Overexpression of CSTB can upregulate EGR2 and MEF2B
while downregulating CEBPA, SOCS1, and SP140 in OSCC
cell lines (Table 3, No. 13–17).
DISCUSSION

The roles of CSTB, a cysteine cathepsin inhibitor associated with
various cancers, have been poorly understood, and few studies have
focused on its association with HNSCC. The present study focused
on OSCC and explored the regulatory roles of CSTB in vivo and in
vitro with both experimental and bioinformatic data. The findings
supported our hypothesis and showed that CSTB was
downregulated in OSCC compared with normal tissues, and this
downregulation was related to worse clinical outcomes or signs of
tumor malignancy. The promoting role of CSTB in the OSCC
proliferation-differentiation program was unprecedentedly
proposed. In addition, some relevant mechanisms by which CSTB
might participate in OSCC were suggested at both the pathway and
gene levels.

In OSCC, we found that CSTB was downregulated both in
vivo and in vitro, both at the protein and gene levels. CSTB has
been reported to have abnormal expression in various types of
tumors, in which the variation trend of CSTB was inconsistent
between different tumors. For instance, CSTB seems to be
upregulated in HCC (25–28), epithelial ovarian tumors (29,
30), and breast cancer (31), but downregulated in ESCC
Frontiers in Oncology | www.frontiersin.org 10
(32, 59) and laryngeal squamous cell carcinoma (33) (another
certain kind of HNSCC). To systematically compare the
expression of CSTB in common tumor types, the GEPIA
database (60) was used to show the difference in CSTB
expression between the tumor and normal groups (Figure S4):
(1). CSTB was downregulated in HNSCC, which was consistent
with the findings of our study and a previous study on HNSCC
(i.e., laryngeal squamous cell carcinoma) (33) (2). CSTB was
upregulated in most carcinomas (i.e., malignant tumors of
epithelial origin), except for HNSCC and ESCC. This radically
different trend of expression may be partly explained by the
different histological origins of these epithelial-derived
tumors. Among these carcinomas, HNSCC and ESCC share
a common histological origin (i.e., stratified squamous
epithelium), while other carcinomas originate from simple
columnar epithelium (e.g., cholangiocarcinoma, colon
adenocarcinoma, cervical squamous cell carcinoma, and
uterine corpus endometrial carcinoma) or glandular epithelium
(e.g., pancreatic adenocarcinoma, rectum adenocarcinoma, and
stomach adenocarcinoma). In addition, the pleiotropic roles of
CSTB in tumors may also contribute to this inconsistent trend.
For instance, knockdown of CSTB in an epithelial ovarian cancer
cell line inhibited cell proliferation and promoted apoptosis (29),
whereas the opposite result was found in a gastric cancer cell line
(61) (3). The same expression trend of CSTB in HNSCC and
ESCC could be attributed to the similarity of these two tumors.
First, they are both located in the proximal digestive tract and
originate from stratified squamous epithelium, sharing some
similar histological characteristics under physiological and
pathological (i.e., appearance of keratin pearls in tumor status)
conditions (62). Second, the histological distributions of CSTB
in HNSCC and ESCC are also consistent, that is, it is located in
the epithelial structure of carcinoma tissues (59) (Figure 2I).
Under physiological conditions, CSTB is located in the epithelial
layer of both normal oral cavity tissues and esophageal
tissues (Figures 2I and S5). Third, similarities in genomic
characterization between ESCC and HNSCC may also lead to
the same expression trend of CSTB (7, 63–67). There are some
groups of gene sets that mutate in both ESCC and HNSCC,
which indicates that common mechanisms can regulate the
initiation of squamous cell carcinoma (SCC) across different
tissues (7, 8, 62, 64, 68–72).

As the expression trend of CSTB differs from tumor to tumor,
the relationship between CSTB and prognosis is also inconsistent in
different tumor types. Elevated levels of CSTB in tumor samples
were related to a higher risk of recurrence and advanced tumor
stages in bladder cancer (34) and were linked to a higher risk of
tumor metastasis in HCC (27). In our study on OSCC, CSTB
expression was inversely related to the risk of aggressive tumor
characteristics (i.e., lymph node metastasis, perineural infiltration,
and lymphovascular invasion). These characteristics favor tumor
recurrence and metastasis (73) and pose great challenges to the
tumor-free goal of radical surgery (73–79). Enhanced cancer cell
migration and the capacity of stromal infiltration are essential steps
of OSCC invasion and metastasis, as is the proliferation of cancer
cells in metastatic foci (80). These three abilities of OSCC cells were
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FIGURE 5 | CSTB may participate in OSCC through other tumor-related pathways. (A) The process and results of GSEA based on data from the TCGA database/
cell lines mRNA sequencing. (B) Comparison between mutational cancer driver genes and DEGs obtained from cell line mRNA sequencing. (C, D) GSEA using
Hallmark gene sets. Gene sets with statistically significant differences based on data from the TCGA database/cell line mRNA sequencing. (E, F) GSEA using KEGG
enrichment analysis. Pathways with both statistically significant differences based on data from the TCGA database/cell line mRNA sequencing.
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regulated by CSTB in vitro in the present experiments. Upregulation
of CSTB inhibited the proliferation of OSCC cells, regardless of
whether proliferation was initiated by a group of cells (i.e., CCK-8
assays) or by a single cell (i.e., colony formation assays). The
inhibitory effect of CSTB on cell migration and invasion seems to
be more obvious, whether it was simple cell migration movement or
invasion requiring the degradation of ECM. These results might
partly explain the lower DFS rate of OSCC patients in the low CSTB
expression group, given that DFS is an indicator of tumor
recurrence and metastasis. In addition, in the early stages of
OSCC (i.e., lower clinical stage or pathological grade), the
expression changes of CSTB seemed to be more obvious, and the
correlation with the corresponding clinical features (stages I–II or
grades 1–2) was higher. This result indicated that CSTB might have
more dramatic changes in the early stage of disease and might be
better at distinguishing and predicting early OSCC. CSTB had no
obvious relationship with demographic characteristics, including
age and sex, suggesting a relatively stable expression of CSTB in the
physiological state. Instead, CSTB tends to be changed specifically
under pathological conditions [e.g., cancer (21), viral infection (81–
83), and neurodegenerative diseases (84, 85)], which suggests that it
is a potential pathological marker. The relationship between CSTB
and the prognosis of OSCC in our study was also consistent with
previous research reporting that low expression of CSTB in
neoplastic islands from the invasive tumor front (ITF) was related
to local recurrence in OSCC (35). Other studies of HNSCC/ESCC
also reported that a lower concentration of CSTB increased the risks
of lymph node metastasis (35, 59) and local tumor recurrence (35)
and may thus result in a shorter DFS (35, 86). The different
expression patterns (i.e., different expression trends and
inconsistent relationships with prognosis) of CSTB in tumors
Frontiers in Oncology | www.frontiersin.org 12
imply that CSTB could be a tumor-specific whistleblower. For
instance, when tumoral diseases are speculated to have tissular or
humoral changes in CSTB, the types or primary focus of tumors
could be predicted according to the change modes of CSTB.

Another major finding was that CSTB was involved in the
squamous epithelium proliferation-differentiation program. This
finding was supported by several lines of evidence, as follows (1).
In WGCNA, the gene modules most associated with CSTB were
also closely related to epithelial development, differentiation and
keratinization (2). In GSEA, epithelial differentiation and
keratinization processes were more active in the high CSTB
expression group (3). The expression of CSTB was positively
related to the degree of tumor differentiation at the protein level
(IHC). In WGCNA based on TCGA data, CSTB and tumor
grade classification showed an indirect relationship at the gene
level through the bridging role of the brown gene module; that is,
the gene module most associated with CSTB expression was also
the one most closely related to the phenotype of grade (4).
Upregulation of CSTB increased epithelial differentiation/
keratinization markers [i.e., IVL (87, 88), LOR (87, 89), and
KRT1/10 (90, 91)] and decreased epithelial basal-like markers
[i.e., KRT5/14 (90, 91)]. While our study provided a direct
evidence on the association between CSTB and squamous
epithelium differentiation, previous studies on other diseases
have implied a possible link between CSTB and epithelial
differentiation. In ESCC, CSTB always exists in the clearly
differentiated cells rather than basal-like cells, and the
expression of CSTB disappears after malignant transformation
of keratinocytes (92). Moreover, in psoriasis, a condition that
manifests as uncontrolled keratinocyte proliferation and
epithelial hyperplasia (93, 94), the amount of CSTB is
TABLE 3 | Highlighted genes out of 256 differentially expressed genes.

Items No. Gene Fold
change

p-
Value

Enriched pathway/
gene sets

Description in NCBI Reported in
HNSCC

Enriched in KEGG pathways/Hallmark
gene sets in GSEA

1 MAML3 1.84 <0.01 Notch signaling
pathway

Mastermind-like transcriptional
coactivator 3

–

2 NOTCH3 1.78 <0.01 notch receptor 3 (39–41)
3 HSD17B7 −1.55 0.01 Steroid biosynthesis Hydroxysteroid 17-beta

dehydrogenase 7
(42)

4 HS3ST3B1 1.80 <0.01 Glycosaminoglycan
degradation

Heparan sulfate-glucosamine 3-
sulfotransferase 3B1

–

5 IDUA 1.64 0.03 alpha-L-iduronidase /
6 CRB3 1.79 <0.01 apical junction crumbs cell polarity complex

component 3
(43)

7 CX3CL1 1.73 <0.01 C-X3-C motif chemokine ligand 1 (44–46)
8 GRB7 1.67 <0.01 growth factor receptor bound protein 7 (47)
9 ACTN2 3.14 <0.01 actinin alpha 2 (48, 49)
10 MYBL2 −1.84 <0.01 G2/M checkpoint MYB proto-oncogene like 2 (50)
11 PIF1 −1.51 0.05 mitotic spindle PIF1 5′-to-3′ DNA helicase –

12 DOCK2 −1.61 <0.01 dedicator of cytokinesis 2 –

Mutated cancer driver genes 13 CEBPA −1.69 0.02 – CCAAT enhancer binding protein alpha (51, 52)
14 EGR2 1.59 0.01 – early growth response 2 (53, 54)
15 MEF2B 1.51 0.01 – Myocyte enhancer factor 2B –

16 SOCS1 −1.62 <0.01 – Suppressor of cytokine signaling 1 (55, 56)
17 SP140 −1.49 <0.01 – SP140 nuclear body protein (57, 58)
August 2021 | Volume 11
Genes No. 1–12 are the crossover genes obtained by comparing 256 DEGs with the core enrichment genes in the shared pathways/gene sets. Genes No. 13–17 are identified as the
existing recognized mutational cancer driver genes in 256 DEGs. In the last column (“Reported in HNSCC”), “–” means that the associations of these genes with HNSCC have not been
reported in the literatures and may be innovative findings.
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increased, which is usually not seen in healthy epidermis (92)
(i.e., normal skin). The regulatory mechanisms of CSTB in
squamous epithelial keratinization and differentiation
programs are not yet clear. There might be at least two
possible mechanisms, i.e., by affecting the formation of
cornified cell envelopes (CE) or by regulating the NOTCH
signaling pathway. First, the terminal differentiation of
squamous epithelium is a process accompanied by the
formation of CE (95), which is mediated and regulated by
TGM1 [transglutaminase-1 (TGase-1)] (96, 97). In our study,
the CE was enriched as a cell component in GO analysis in the
brown module in WGCNA (Figure 4E) and TGM1 was a
significant hub gene in the brown module (module
membership = 0.85, module eigengene = 0.65). Given that the
brown module was a gene module containing genes coexpressed
with CSTB, these results suggested that CSTB might regulate the
TGM1-mediated CE formation process and ultimately regulate
the terminal differentiation of squamous epithelium. Second,
NOTCH is mostly regarded as a tumor suppressor in HNSCC,
and loss-of-function mutations in NOTCH1 are common events
in HNSCC. The NOTCH signaling pathway plays an important
role in the normal functioning of squamous epithelium
development and differentiation (7, 62, 67, 98–100), acting as a
promoter of keratinocyte differentiation (101, 102). Conditional
deletion of NOTCH1 in the mouse epidermis can lead to basal
hyperplasia and basal cell carcinoma (103). Our GSEA results
based on cell line RNA-seq data were consistent with this
downregulation trend of NOTCH signaling. The NOTCH
signaling pathway became more active after CSTB
overexpression, which was also in line with the differentiation-
promoting effect of CSTB that we have observed. However, this
alteration in the NOTCH signaling pathway showed an opposite
trend (i.e., more active in the low CSTB expression group) based
on patient RNA-seq data from TCGA. This could be explained
by the contextual and bimodal role of NOTCH in cancers,
including HNSCC (64, 67, 104–106). NOTCH can act as an
oncogene and tumor suppressor gene in different cell
populations within the same tumor (103), which was a possible
reason for the difference in NOTCH signals in the data from two
sources (TCGA data and cell line RNA seq data). The cell line
RNA-seq data came from a single type of tumor cell (OSCC cell
line), while the tissue sequencing data of TCGA were composed
of a variety of cells including tumor cells, stromal cells, immune
cells, etc. Another possible reason for the different NOTCH
signals is that the involved NOTCH paralogues and ligands vary
in different disease contexts, resulting in different biological
outcomes (107). For instance, in GSEA, NOTCH1, and
NOTCH3 were enriched in the high CSTB expression group
based on cell line RNA-seq data, while NOTCH1 and NOTCH4
were enriched in the low CSTB expression group based on
TCGA data (Supplementary Data Sheet 4). Studies have
identified a bimodal role for NOTCH3 in HNSCC (39), while
MAML3 is essential for the operation of NOTCH signaling
(108). In the RNA-seq data, we found that overexpression of
CSTB could upregulate the expression of NOTCH3 and MAML3
in vitro (Table 3), suggesting that CSTB may be involved in the
Frontiers in Oncology | www.frontiersin.org 13
NOTCH signaling pathway by regulating these two genes, but
additional validation is required.

An interesting phenomenon was found in our research: the
content of extracellular/intracellular CSTB showed a consistent
change trend in the in vitro experiment (Figures 2M, D). CSTB
is regarded as a protease inhibitor that is localized in the
intracellular region (18, 23, 24). However, many studies have
shown that CSTB and its changes can be detected in the body
fluids of cancer patients [e.g., serum (28), ascites (109), and urine
(34)] and are related to the clinical characteristics or prognosis.
Given the consistency of the anatomical location, saliva as a body
fluid may be more representative for reflecting the disease state of
OSCC. A study of OSCC emphasized the potential of CSTB-
specific peptides in saliva to reflect the status of lymph node
metastasis in tumor-bearing patients (35). Although our study
found differences in the content of CSTB in normal/OSCC cell
culture supernatants, whether CSTB could be used to specifically
identify tumor patients from the normal population is worthy of
further research. Furthermore, a study showed the presence of
CSTB in oral acquired enamel pellicles (110, 111). Future
research may consider the changes in CSTB in plaque as a
novel research direction in terms of the potential of CSTB as a
biomarker, given that plaque could be regarded as a more stable
form reflecting the biochemical composition of saliva. Other
nontumor studies have identified certain extracellular effects of
CSTB. CSTB in mouse synaptosomes can be secreted into
cerebral spinal fluid in a depolarization-controlled manner and
is involved in synaptic plasticity (84, 112). HIV-infected
microglia secret more CSTB, participating in the neurotoxicity
induced by cathepsin B (113). These studies suggest that
pathological signals (tumor, virus, and abnormal nerve signals)
may cause CSTB to translocate and participate in extracellular
biological processes, while its specific extracellular role in tumors
needs to be clarified by more tracer studies.

Other roles of CSTB in the context of OSCC were explored at
both the pathway and gene levels in our study, which might
provide a comprehensive perspective for further elucidating its
mechanism. First, pathways related to the DNA damage repair
mechanism (G2/M checkpoint, mitotic spindle, homologous
recombination, mismatch repair, and nucleotide excision
repair) were more active in the low CSTB expression group.
This finding indicated that downregulation of CSTB might act as
a predisposing factor of DNA damage in OSCC, thereby
activating the pathways related to DNA damage repair
pathways. Many studies have emphasized the protective effect
of CSTB against oxidative stress (31, 114, 115). CSTB deficiency
increases the sensitivity of cells to oxidative stress in cerebellar
granule neurons (114) or breast cancer primary cells (31). Given
that oxidative stress is a common factor that causes DNA
damage (116, 117), we speculate that the effect of CSTB on the
DNA damage repair mechanism in OSCC might be related to
the loss of the protective role of CSTB in oxidative stress. Second,
the identification of all the mutated genes capable of driving
tumors is a landmark achievement towards tumor research (38).
To explore the correlation between CSTB and the known cancer
driver genes, we compared the DEGs obtained by cell line mRNA
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sequencing with the cancer driver gene set. As a result, five genes,
CEBPA, EGR2, MEF2B, SOCS1, and SP140, were identified.
CEBPA was reported to be mutated in HNSCC (51) and to play
an important role in regulating the epidermal differentiation
program (51, 52, 118–121). SP140 is an immune-related gene
mutated in OSCC cell lines (57, 58, 122, 123). SOCS1, a negative
regulator of cytokine signaling pathways (55, 124–126), was
reported to regulate epigenetic modification in head and neck
cancer (56, 125, 127). Cumulative studies have suggested the role
of CSTB in immunomodulation, especially the relationship
between CSTB and macrophages (128, 129). The lack of CSTB
could transform macrophages to a proinflammatory phenotype
by regulating related cytokines such as IL-10 (128). Meanwhile,
some immune-related pathways (e.g., antigen processing and
presentation and primary immunodeficiency) were enriched by
GSEA based on cell RNA-seq data in our study (Supplementary
Data Sheet 3). Both EGR2 and MEF2B are regulators of cell
transcription (130, 131), and the former was reported to be
involved in the epithelial-mesenchymal transition (EMT)
pathway (131, 132), while the latter was differentially expressed
between primary tumors and nodal metastasis tumor in HNSCC
(53). Our experiments did not identify genes that are mutated
due to changes in the expression level of CSTB, although changes
in the expression level of the transcriptome are a common
consequence of gene mutations. However, our aim was to
interpret the possible role of CSTB in cancer at the genetic
level, and the results still provide innovative insights while
exploring the functions of CSTB in OSCC.

There were some limitations in our study. First, the
correlations between Cstb and clinical characteristics found
through data mining methods have not been confirmed by
additional independent clinical data. The findings should be
validated at the protein levels in tissues and body fluid (e.g., saliva
and blood). Second, the regulatory role of CSTB in the
epithelium differentiation phenotype was mainly recognized
through bioinformatic analysis and in vitro experiments and
needs in vivo confirmation in future studies. Third, the regulated
pathways/genes identified by GSEA provided a relatively
comprehensive perspective in clarifying the role of CSTB in
OSCC. However, the relevant pathways/genes lacked targeted
validation, so they should be interpreted with caution. Fourth,
the sample size of OSCC tissue for IHC was relatively small,
which was why we used Fisher’s exact test. In the subgroup
analysis, the subgroup satisfying both high CSTB expression and
moderate/poor differentiation included only one sample, which
may be partly due to our relatively small overall sample size.
Given the relationship of CSTB and differentiation in our study
on OSCC, samples that meet both the phenotypes of high CSTB
expression and low differentiation were relatively rare, which
may be another reason for the small sample size of this subgroup.
However, this state [i.e., high CSTB expression and poor tissue
differentiation) is not uncommon in some other tumor types
(e.g., HCC (27) and bladder cancer (34)], where the degree of
tumor differentiation and CSTB expression show a negative
correlation. This finding may further indicate that, compared
with other tumor types, CSTB has a special additional role in the
Frontiers in Oncology | www.frontiersin.org 14
differentiation process of OSCC, but it is not the only factor
determining the degree of tumor differentiation.

In conclusion, our study identified the modulatory role of
CSTB in the malignant characteristics of OSCC for the first time
and proposed some new relevant mechanisms, namely, CSTB
may participate in OSCC by promoting the differentiation
process of squamous epithelium. Our research provides a new
perspective for interpreting the role of CSTB in tumors,
especially in SCC. The specific role of CSTB in OSCC and its
fine regulation of the squamous epithelial differentiation
program still need to be explored in-depth by functional
experiments and mechanistic research.
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