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ABSTRACT Akkermansia muciniphila is a mucin-degrading bacterium found in the
human gut and is often associated with positive human health. However, despite being
detected by as early as 1 month of age, little is known about the role of Akkermansia in
the infant gut. Human milk oligosaccharides (HMOs) are abundant components of human
milk and are structurally similar to the oligosaccharides that comprise mucin, the preferred
growth substrate of human-associated Akkermansia. A limited subset of intestinal bacteria
has been shown to grow well on HMOs and mucin. We therefore examined the ability of
genomically diverse strains of Akkermansia to grow on HMOs. First, we screened 85
genomes representing the four known Akkermansia phylogroups to examine their meta-
bolic potential to degrade HMOs. Furthermore, we examined the ability of representative
isolates to grow on individual HMOs in a mucin background and analyzed the resulting
metabolites. All Akkermansia genomes were equipped with an array of glycoside hydro-
lases associated with HMO deconstruction. Representative strains were all able to grow on
HMOs with various efficiencies and growth yields. Strain CSUN-19, belonging to the AmIV
phylogroup, grew to the highest level in the presence of fucosylated and sialylated HMOs.
This activity may be partially related to the increased copy numbers and/or the enzyme
activities of the a-fucosidases, a-sialidases, and b-galactosidases. This study examines the
utilization of individual purified HMOs by Akkermansia strains representing all known phy-
logroups. Further studies are required to examine how HMO ingestion influences gut mi-
crobial ecology in infants harboring different Akkermansia phylogroups.

IMPORTANCE Human milk oligosaccharides (HMOs) are the third most abundant compo-
nent of breast milk and provide several benefits to developing infants, including the
recruitment of beneficial bacteria to the human gut. Akkermansia strains are largely con-
sidered beneficial bacteria and have been detected in colostrum, breast milk, and young
infants. A. muciniphila MucT, belonging to the AmI phylogroup, contributes to the HMO
deconstruction capacity of the infant. Here, using phylogenomics, we examined the
genomic capacities of four Akkermansia phylogroups to deconstruct HMOs. Indeed, each
phylogroup contained differences in their genomic capacities to deconstruct HMOs, and
representative strains of each phylogroup were able to grow using HMOs. These
Akkermansia-HMO interactions potentially influence gut microbial ecology in early life, a
critical time for the development of the gut microbiome and infant health.

KEYWORDS Akkermansia muciniphila, human milk oligosaccharides, fucosylated HMO,
sialylated HMO, HMO utilization, Akkermansia phylogroups, glycoside hydrolase (GH),
GH29, GH95
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A kkermansia muciniphila is a mucin-degrading specialist that colonizes the mucus
layer of the human gastrointestinal tract (1). Paradoxically, Akkermansia also pro-

motes mucus production by enhancing the differentiation of gut epithelial cells,
thereby influencing mucosal homeostasis (2). Numerous positive associations have
been observed between this bacterial lineage and human health. In adults, a decreased
abundance of Akkermansia is associated with metabolic impairments (3), ulcerative co-
litis (4), and inflammatory bowel disease (5). In infants, a decrease in mucosal residents
such as Akkermansia is associated with a compromised immune system and the devel-
opment of atopic dermatitis (6).

The mechanisms by which A. muciniphila benefits human health appear to be
directly linked to its ecological niche along the human gastrointestinal tract.
Specifically, A. muciniphila bacteria colonize the oxic-anoxic interface of the mucus
layers adjacent to host epithelial cells where they degrade host-produced mucins (7).
Mucins are the main structural components of mucus and are composed of polypep-
tide chains rich in serine, threonine, and proline residues that are O-linked to a variety
of oligosaccharides (8). These oligosaccharide side chains are comprised of N-acetylga-
lactosamine (GalNAc), N-acetylglucosamine (GlcNAc), and galactose and are capped
with N-acetylneuraminic acid (Neu5Ac) (sialic acid), fucose, or sulfate. Akkermansia can
utilize mucins as its sole carbon and nitrogen source, generating metabolites such as
acetate, succinate, and propionate in the presence of vitamin B12 (9, 10). Co-occurring
members of the gut microbiome convert some of the acetate produced to butyrate
(11). Together, these organic acids fuel colonocytes and act as signaling molecules
helping to maintain an overall anti-inflammatory tone in the gut (12). In addition to
producing anti-inflammatory metabolites, A. muciniphila produces an extracellular sur-
face protein, encoded by Amuc_1100, that interacts directly with Toll-like receptors on
host epithelial cells (13, 14). This interaction results in the production of specific anti-
inflammatory cytokines, including interleukin-10 (IL-10), which leads to an improve-
ment in overall gut barrier function (13).

Building upon previous work by Guo and colleagues (15), we recently performed a
comparative genomic analysis of 75 Akkermansia genomes to define the genomic and
functional landscape of this lineage. This analysis identified at least four distinct phy-
logroups, AmI to AmIV, with A. muciniphila MucT belonging to the AmI phylogroup.
Additionally, this work showed that the Akkermansia phylogroups had differing func-
tional potentials, including de novo biosynthesis of vitamin B12 by members of the AmII
and AmIII phylogroups (10).

Continuing to explore the genomic and metabolic diversity of human-associated
Akkermansia, we next wanted to determine if host-produced glycans, other than those
in mucin, could support the growth of various Akkermansia phylogroups. Because of
the compositional and structural similarities between the oligosaccharides found in
mucin and human milk, we focused on human milk oligosaccharides (HMOs) (8, 16,
17). Human milk contains 5 to 15 g/L HMOs, of which 50 to 80% are fucosylated and
10 to 20% are sialylated (16). Although HMOs are present in milk as a pool of over 200
diverse structures, they are composed of only five monosaccharides: glucose, galac-
tose, fucose, GlcNAc, and sialic acid (16). These oligosaccharides contain a lactose core
at the reducing end that is extended with building block monosaccharides via glyco-
sidic linkages. In human milk, fucose can be attached via a1-2, a1-3, and a1-4 linkages,
and sialic acid can be attached via a2-3 and a2-6 linkages. Simple, abundant, and rou-
tinely studied HMO structures include lacto-N-tetraose (LNT), lacto-N-neotetraose
(LNnT), 29-fucosyllactose (29-FL), 3-fucosyllactose (3-FL), 69-sialyllactose (69-SL), and 39-
sialyllactose (39-SL) (18).

The oligosaccharides found in human milk are not digestible by the developing
infant and reach the intestine intact (19). Once there, HMOs have a variety of functions,
including providing protection from pathogens, playing a role in the modulation of
gut epithelial cells, and enriching for a beneficial microbiota (20–22). Several studies
have screened HMO consumption by various intestinal commensals and have
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identified a limited group of bacteria, primarily Bifidobacterium and select Bacteroides
species, with this ability (23–25). One Akkermansia strain, belonging to phylogroup
AmI (i.e., A. muciniphila MucT), has recently been shown to grow on human milk and
select HMOs using a repertoire of glycoside hydrolase (GH) enzymes (26). In this study,
we expand our understanding of this HMO-degrading capacity of human-associated
Akkermansia beyond the one phylogroup. We hypothesized that Akkermansia strains
from different phylogroups will differ in their abilities to metabolize HMOs, and these
differences are related to their genomic composition. To investigate the ability of
Akkermansia to grow on select HMOs, we first took a comparative genomics approach
focusing on the presence and abundance of genes coding for glycoside hydrolase
enzymes known to be involved in HMO catabolism. We then performed comparative
growth experiments and demonstrated the robust growth of one representative strain
from each of the four phylogroups in a basal medium supplemented with five individ-
ual pure HMOs, in a background of mucin, thus simulating the carbon sources available
in the infant gut environment. These findings expand the known metabolic capabilities
of human-associated Akkermansia and point to further functional differences among
the genomically distinct phylogroups.

RESULTS
Newly isolated Akkermansia strains differ in their phylogenomic characteristics. In

total, 17 human-associated Akkermansia strains were isolated from healthy adults, 10
from males and 7 from females (see Table S2 in the supplemental material).
Phylogenetic analyses of the nearly complete 16S rRNA gene sequences from each iso-
late revealed three well-supported clades, with the AmIII phylogroup nested within the
AmII phylogroup (Fig. 1a). At least one isolate was obtained from the four known
human-associated phylogroups (10). Ten of the 17 isolates treed within the AmI phy-
logroup, followed by 4 in AmII, 2 in AmIV, and 1 in AmIII.

Using the 16S rRNA tree as a guide, we selected 11 of the isolates spanning each
phylogroup for genomic sequencing. The characteristics of these draft genomes are
presented in Table 1. Of the new isolates, draft genome sizes ranged from 2.86 Mb
(CSUN-56 [AmIII]) to 3.15 Mb (CSUN-19 [AmIV]), with 2,658 to 3,111 coding sequences
(CDs), respectively, compared with a 2.67-Mb genome size and 2,576 CDs in A. mucini-
phila MucT. Across phylogroups, approximately 52% of CDs could be assigned a

FIG 1 Phylogenetic relationship of Akkermansia isolates based on nearly full-length 16S rRNA gene sequences (a) and concatenation of 49 ribosomal
protein-coding genes obtained from draft genomes (b). Both trees are rooted using the only other named species of the genus, Akkermansia glycaniphila
PyT. Isolates with triangles were used in HMO growth experiments. GP22 and GP24 in the AmIII phylogroup are from Guo and colleagues (15) and are
included because only one AmIII representative is available in our culture collection. Both trees were generated in MEGA7 (68) using the maximum
likelihood method, and numbers at the nodes indicate bootstrap values for 100 replicates. The tree in panel a was generated considering only
unambiguously aligned nucleotide positions (n = 1,305). For panel b, a total of 7,327 amino acid positions across 49 protein-coding genes were used. Both
trees are drawn to scale, with branch lengths measured in the number of substitutions per site. GenBank accession numbers are in parentheses.
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function, on average. The resolution of the AmIII phylogroup was improved by phylo-
genomic analysis that included 49 protein-coding genes (Fig. 1b).

To investigate the carbohydrate-degrading potential of the Akkermansia strains, 85
genomes, including the 11 isolates from this study, were annotated against the CAZy
database (27) using dbCAN (28, 29). We first took a global look at all annotated GH
families and found significantly fewer GH annotations in genomes from the AmI phy-
logroup than in those from the other phylogroups (x 2 = 55.128; P , 0.0001 [by a
Kruskal-Wallis test]) (Fig. S2). Furthermore, we identified consistent similarities and dif-
ferences in the complements of GH annotations within and between each phylogroup
(Fig. 2). With a few minor exceptions, these similarities and differences in GH counts
resulted in the clustering of genomes into their respective phylogroups as evidenced
by the dendrogram along the y axis in Fig. 2.

Next, since we were interested in the ability of Akkermansia to degrade HMOs, we
focused on HMO-associated GH families previously identified in other organisms (26,
30–33). With this approach, we identified differences in the copy numbers of several
GH families that are associated with the degradation of HMO glycans: a-fucosidases,
a-sialidases, b-galactosidases, and N-acetyl b-hexosaminidases (Table 2). Most of these
genes were also found to possess a signal peptide (Data Set S1), which is indicative of
encoding extracellular enzymes (34, 35). Of note was the high number of GH20 genes
compared with any other GH gene in all the genomes. The numbers of putative
a-fucosidases (GH29, GH95, and GH141) and N-acetyl b-hexosaminidases (GH18,
GH20, GH84, and GH109) also varied across phylogroups (lowest for AmI, including the
strain tested here, A. muciniphila MucT). Of the four strains investigated for HMO cata-
bolic capacity in this study, the CSUN-19 (AmIV phylogroup) and CSUN-56 (AmIII)
strains showed 9 fucosidase annotations, compared with 8 for CSUN-17 (AmII) and 7
for A. muciniphila MucT (AmI) (Table 2).

The four Akkermansia strains show strain-dependent growth and utilization of
HMOs. One representative of each of the four phylogroups was tested for its ability to
grow on HMO in the presence of mucin. After 48 h of incubation, all strains tested
grew to higher optical densities (ODs) in HMO (or lactose)-supplemented mucin me-
dium than in medium lacking HMOs (Fig. 3). Growth yields varied across strains on
media with 29-FL, 3-FL, LNnT, and 69-SL but not LNT or lactose (P , 0.05 by analysis of
variance [ANOVA]). Post hoc comparisons revealed that strain CSUN-19, representing
the AmIV phylogroup, showed the greatest growth in comparison to the other strains,
with significant increases compared with A. muciniphila MucT in 29-FL, 3-FL, and 69-SL
and with CSUN-56 in 29-FL, 3-FL, and LNnT (Fig. 3).

To confirm HMO utilization, we measured the concentrations of HMOs (29-FL, LNT,
and 69-SL) and their sugar constituents (except GlcNAc for LNT) before and after 48 h
of incubation (Fig. 4a and b). In addition to the differences in growth yields, the differ-
ences in the percentages of HMO utilized also varied across strains (P , 0.05). For 29-
FL, strains representing the AmI, AmII, and AmIII phylogroups utilized .93% of the
available HMO, while CSUN-19 (AmIV) utilized just over 64% despite having the highest
growth yield as measured by the change in the OD at 600 nm (OD600). Nearly all of the
fucose liberated from 29-FL was removed from the medium within 48 h by all the
strains, while the lactose backbone accumulated in the culture medium of all strains
except CSUN-19 (AmIV) (Fig. 4c). The degradation of LNT ranged from 25.4 to 78.6%
across the tested strains, with CSUN-17 (AmII) utilizing the least and A. muciniphila
MucT (AmI) utilizing the most. In contrast to growth on 29-FL, most of the lactose from
LNT was consumed across strains (Fig. 4d). Similar to LNT, there was a wide range of
69-SL utilizations across strains (P , 0.001), ranging from 29.3% (CSUN-17 [AmII]) to
89.2% (CSUN-19 [AmIV]). In the case of 69-SL, CSUN-19 showed the greatest growth,
while A. muciniphila MucT showed the least growth, and yet the percentage of the sub-
strate utilized (80%) showed no significant difference and was significantly higher than
the ;50% and ;30% utilizations seen with CSUN-56 and CSUN-17, respectively. In all
strains, sialic acid accumulated in the culture media and was not consumed when liber-
ated from 69-SL (Fig. 4e).
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FIG 2 Human-associated Akkermansia strains possess different complements of glycoside hydrolase (GH) genes potentially
impacting their carbohydrate-degrading capabilities. The heat map shows the counts of different GH families present in the draft

(Continued on next page)
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DISCUSSION

Akkermansia strains are largely considered beneficial members of the human gut
microbiome and are currently of significant interest for their therapeutic potential (36).
Until recently, however, all research involving these promising bacteria focused on a
single species, A. muciniphila MucT, belonging to the AmI phylogroup. Here, we con-
tinue to build upon recent work by us and others describing the genomic and func-
tional diversity within this lineage (10, 37). Specifically, we show that genomically
diverse strains possess different complements of glycoside hydrolase (GH) genes that
encode enzymes catalyzing the deconstruction of HMOs into constituent mono- and
disaccharides. Furthermore, this study demonstrates that four different Akkermansia
strains representing the four known phylogroups can deconstruct all the major types
of HMOs, with this biological activity varying across strains. These differences in
genomic and functional traits of human-associated Akkermansia strains, along with the
diversity in the substrates that are presented to the gut bacteria in the form of breast
milk or supplemented infant milk formula, potentially impact how and when
Akkermansia strains colonize the human gastrointestinal tract. Thus, since HMO-
Akkermansia interactions are strain specific, the corresponding pattern of early coloni-
zation with human-associated Akkermansia and the ensuing competitive advantage
could also be strain specific in infants ingesting HMOs. Akkermansia bacteria are key
contributors to the infants’ glycan-metabolizing capacity by as early as 4 months of
age (33) and may therefore play a critical role in establishing a foundation of metabolic
fitness in the naive microbiome. Taken together, these findings expand the known
metabolic niche and interaction network of Akkermansia in the human gut early in life.

Bacterial growth studies have demonstrated that relatively few gut bacteria grow
well on HMOs, the exceptions being bifidobacteria and select Bacteroides strains, both
of which are dominant members of the infant gut (24, 25). Both bifidobacteria and
Bacteroides employ an array of glycoside hydrolases, including fucosidases (GH29 and
GH95), sialidases (GH33), galactosidases (GH2 and GH16), lacto-N-biosidases (GH20),
and hexosaminidases (GH20), to deconstruct HMO linkages (38–44). Our phylogenomic
characterization of the Akkermansia genomes shows that the various strains from the
four Akkermansia phylogroups possess a wealth of these same gene annotations, albeit
in differing abundances, that could be used for the deconstruction of either HMO or
mucin. Genomes of the AmII, AmIII, and AmIV phylogroups were found to contain a
higher number of genes encoding GH18, GH29, and GH95 than the genomes of the
AmI phylogroup. This is consistent with findings by Becken and colleagues for AmII
and AmIV (AmIII was not studied there) (37). They also found that the AmI phylogroup
may be phylogenetically divided into two subclades, AmIa and AmIb, with A. mucini-
phila MucT belonging to subclade AmIa. Using this framework, they found differences
in the complements of GH genes between AmIa and AmIb. Specifically, the AmIb sub-
clade had few GH29-encoding genes and no GH18 genes compared to the AmIa sub-
clade. This explains the lower average number of GH18 and GH29 genes in the AmI
phylogroup that we observed and suggests that differences in carbohydrate catabo-
lism likely exist within Akkermansia phylogroups.

Bifidobacteria employ two major strategies to hydrolyze HMOs (31, 42). Infant-asso-
ciated Bifidobacterium infantis, Bifidobacterium breve, and Bifidobacterium longum pri-
marily consume HMOs by employing intracellular glycoside hydrolases to deconstruct
the HMO structures (41, 42, 45–47). Using an alternative strategy, Bifidobacterium bifi-
dum extracellularly processes HMO via an array of membrane-associated glycoside hy-
drolases (31, 48). Bacteroides spp. harbor polysaccharide utilization loci (PULs) that

FIG 2 Legend (Continued)
genomes of 85 total Akkermansia genomes. Genomes labeled with “CSUN” prefixes are isolates from this work, while the “CDI”
genomes are from metagenome-assembled genomes (10), and the “GP” or “BSM” genomes are from isolates from Guo and
colleagues (15). Each genome is colored by phylogroup affiliation. Green, AmI; blue, AmII; orange, AmIII; red, AmIV. Only three
genomes (CDI-148A-8, BSH05, and BSH01) tree outside their phylogroup affiliation based on the GH content. Genomes with
asterisks were used in the HMO growth experiments.
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encode a diverse array of glycosidases capable of breaking down host-produced and
plant-derived polysaccharides (44, 49). Bacteroides bacteria are hypothesized to bind
HMOs on the cell surface followed by the hydrolysis of the HMOs and the import of
the resultant oligosaccharides for further breakdown. They co-opt their mucin utiliza-
tion PULs to deconstruct and utilize HMOs with various efficiencies depending on the
strain. Bacteroides fragilis is the most efficient in preferring HMOs with a high degree of po-
lymerization and nonfucosylated HMOs over fucosylated HMOs (24) and even utilizes the
sialic acid generated after the deconstruction of sialylated HMOs (44). Akkermansia does
not have the typical PUL genomic organization seen in Bacteroides but it appears to har-
ness extracellular GHs either in the periplasmic space or outside the cell altogether to
cleave monosaccharides or disaccharides from mucin or HMOs (9, 26). In agreement, the
majority of our GH annotations included signal peptide sequences indicative of export out-
side the cytoplasmic membrane. The extracellular cleavage of HMO (and mucin) results in
the liberation of monosaccharides and disaccharides, which enables cross-feeding by other
members of the gut microbiome (11). In the context of the infant gut, this cross-feeding
could help facilitate colonization by new members of the gut community that are encoun-
tered as infants grow and consume new foods, aiding in the maturation of the gut micro-
biome in the early years of life (50).

In addition to cross-feeding on sugars liberated from host substrates, members of
the gut microbiome feed off fermentation waste products produced by Akkermansia
(26, 51, 52). In the case of fucosylated substrates such as 29-FL, a distinct metabolite of

FIG 3 A representative strain from each of the four Akkermansia phylogroups was incubated in mucin-
containing medium alone or supplemented with 20 mM individual human milk oligosaccharides or lactose. The
experiment was conducted in triplicate and repeated at least two times. The difference in the OD600 from the
growth in mucin-containing medium alone was used to plot the bacterial growth for each strain. Values are
expressed as averages 6 standard deviations. ANOVAs reveal significant effects (**, P , 0.01; *, P , 0.05) with
the substrates 29-fucosyllactose (29-FL), 3-fucosyllactose (3-FL), lacto-N-neotetraose (LNnT), and 69-sialyllactose
(6’-SL) but not with lacto-N-tetraose (LNT) and lactose. Pairwise comparisons within each substrate using
Tukey’s honestly significant difference test reveal significant differences between the phylogroups (P , 0.05);
means showing letters in common are not significantly different.
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fucose fermentation is 1,2-propanediol (26). Several bacteria, including both beneficial
(Lactobacillus spp. and Eubacterium hallii) and pathogenic (Salmonella) bacteria, can
grow on 1,2-propanediol in a vitamin B12-dependent manner (51, 52). Given our recent
work showing that the AmII and AmIII phylogroups synthesize vitamin B12 (10), these
findings indicate the possibility of Akkermansia-driven syntrophic interactions that are
likely phylogroup specific. This is particularly relevant as the gut microbiome of exclu-
sively breastfed infants has a decreased capacity for the de novo synthesis of vitamin
B12 compared with formula-fed infants (53). Therefore, an understanding of which
Akkermansia strain is already present in a host may influence the outcome of any
microbiome or dietary intervention.

Several studies have detected Akkermansia in the stool of infants as early as 1
month after birth, in most 1-year-olds (54), and even in human colostrum and milk (55,
56), demonstrating that it colonizes the gut early in life and providing a possible route
of inoculation. Two separate studies found direct associations between the abundan-
ces of Akkermansia and fucosylated HMO in human milk, suggesting that fucosylated
HMO may help enrich for Akkermansia in the gut of the infant (57, 58). Here, we show
that fucosylated HMOs support robust growth across all strains of Akkermansia.
However, growth varied by strain, suggesting potential differences in growth and met-
abolic efficiencies across strains. When grown on 29-FL, the liberated fucose was rapidly
depleted from the culture medium, while the lactose component accumulated in the
culture medium (except for CSUN-19), suggesting a general preference for fucose over

FIG 4 A representative strain from each of the four Akkermansia phylogroups was incubated in mucin-containing medium alone or supplemented with 4
mM individual human milk oligosaccharides (HMOs) or lactose. The experiment was conducted in triplicate and repeated three times. (a) The difference in
growth in HMO-supplemented medium from the growth in mucin-containing medium alone was used to plot the bacterial growth for each strain. (b) The
concentrations of the original substrate analyzed were used to calculate the percentage of the HMO utilized. (c to e) Concentrations of the metabolites
obtained after the deconstruction of 29-fucosyllactose (29-FL) (c), lacto-N-tetraose (LNT) (d), and 69-sialyllactose (69-SL) (e) expressed as averages 6 standard
deviations. Statistical analysis revealed significant effects between the substrates (a and b) and strains (b to d) (***, P , 0.001; **, P , 0.01; *, P , 0.05).
Pairwise comparisons using Tukey’s honestly significant difference test were also performed, with a P value of ,0.05, and means showing letters in
common are not significantly different.
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lactose in Akkermansia. Cleavage of fucose from HMOs (and mucin) is mediated by
fucosidases belonging to the GH29 and GH95 families (31, 38, 49), both of which were
found in all four Akkermansia strains. GH141, a putative fucosidase or xylanase, was
also observed in some of our AmI and AmIII genomes in this study. Kostopoulos et al.
recently demonstrated that a GH29 gene product (encoded by Amuc_0010) in A. muci-
niphila MucT had relatively poor catalytic activity against 29-FL, suggesting that 29-FL
was not the preferred substrate for this enzyme (26). It should be cautioned that A.
muciniphila MucT belongs to subclade AmIa within the AmI phylogroup (37), hence the
HMO utilization characteristics of this strain may not represent the capabilities of the
whole AmI phylogroup. Overall, A. muciniphila MucT has four GH29 gene annotations,
two of GH95, and one of GH141, and all these GH families could potentially encode
enzymes that are involved in the degradation of fucosylated HMOs containing the a1-
2 linkage. The numbers of these same GH families also varied across phylogroups,
potentially leading to the differences in growth efficiencies that we observed. Given
the prominent role of fucosylated HMOs in modulating the microbiome and enhancing
health, and given that the concentrations of 29-FL along with lacto-N-fucopentaose
were highest during early lactation (59), the diversity of fucosidases available in each
strain makes Akkermansia a potential candidate for further investigation in the field of
infant-associated probiotics.

Sialyl oligosaccharides are associated with many benefits to neonates and infants
(60, 61). For example, Charbonneau and colleagues demonstrated that the concentra-
tion of sialylated HMOs in breast milk correlated with growth in healthy Malawian
infants (61). Furthermore, gnotobiotic mammals receiving fecal microbiota from infants
with stunted growth and supplementation with sialylated bovine milk oligosaccharides
showed improved growth (measured as weight gain and bone mass), with their gut
microbiota developing metabolic fitness evidenced by an increase in genes related to
energy metabolism (61). Sialic acid is an essential component of brain gangliosides
and plays important roles in neuronal development, memory formation, and cognition
(60). Three weeks of dietary supplementation with 39-SL or 69-SL administered to day-
old piglets increased the ganglioside-bound sialic acid in the brains of the piglets, thus
providing essential nutrients for brain growth and neurodevelopment (62). With regard
to Akkermansia and sialylated HMOs, all four Akkermansia strains showed enhanced
growth on 69-SL and were able to deconstruct this sialylated oligosaccharide, but the
growth yield and the percentage of the substrate degraded varied significantly across
strains. These differences in yield and degradation did not align with the sialidase
(GH33) gene copy number. For example, strain CSUN-56 representing AmIII has 5 siali-
dase annotations and exhibited relatively poor growth, with little degradation of 69-SL.
This incongruence between the bacterial gene number of a GH metabolizing a sub-
strate and the physiological response to that substrate indicates the need to exa-
mine the transcription of the GHs and the enzyme kinetics of the associated GHs
involved in the complete deconstruction of substrates and their transport into the cell.
However, the accumulation of sialic acid in spent medium after growth on 69-SL in all
strains agrees with previous reports of Akkermansia lacking the nan operon for the
import and consumption of sialic acid (26). The sialic acid released from the nonreduc-
ing end of the sugars enables access to the remaining oligosaccharides while also
potentially encouraging the outgrowth of sialic acid-metabolizing, abundantly present
commensal species such as B. fragilis, Faecalibacterium prausnitzii, Ruminococcus gna-
vus, and members of the Lactobacillus and Bifidobacterium genera (17, 63, 64). Several
species of Enterobacteriaceae such as Escherichia coli and Salmonella enterica also thrive
in a sialic acid-rich gut environment, with their fitness and virulence being directly pro-
portional to their ability to metabolize sialic acid (63). Interestingly, though, studies in
piglets demonstrated that supplementation with 69-SL enhanced colonic bacteria such
as Collinsella aerofaciens, Ruminococcus, Faecalibacterium, and Prevotella spp. while
suppressing Enterobacteriaceae, Enterococcaceae, Lachnospiraceae, and Lactobacillales
(62). Given the vulnerability of the infant population and the immaturity of the gut
microbiome in early life, identifying the metabolic fate of sialic acid and the interaction
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between Akkermansia and sialic acid-metabolizing commensals and potential patho-
gens warrants further investigation.

Akkermansia strains are adapted to robust growth on mucin due to their habitation
in the gut epithelial mucosa (65). Furthermore, HMOs, which are resistant to host di-
gestive enzymes, are presented to the colonic microbiota in a mucin-rich background
of the infant gut (66). We therefore included mucin in our HMO utilization experiments,
and growth in the non-HMO mucin control served as a reference point to quantify
HMO utilization. However, it is recognized that Akkermansia can grow in a mucin-defi-
cient medium supplemented with GlcNAc, threonine, and tryptone (9). GlcNAc is a
requirement for growth as Akkermansia does not express the enzyme required for the
conversion of fructose-6-phosphate to glucosamine-6-phosphate, an essential compo-
nent of the cell wall peptidoglycan (65). GlcNAc was thus added to the basal growth
medium by Kostopoulos and colleagues while investigating HMO utilization by
Akkermansia muciniphila MucT (26). We speculate that Akkermansia may grow exclu-
sively using GlcNAc-containing HMOs such as LNT or LNnT, provided that the amino
acid sources are added to the growth medium. However, since our current technique
precluded analysis of GlcNAc, further growth experiments and chemical analyses are
required to confirm this prediction.

In conclusion, human-associated Akkermansia strains can utilize a variety of host-
derived HMOs for growth in vitro in a strain-dependent manner. This implies that the
prebiotic effects of HMOs will depend on the resident strain of Akkermansia present in
an individual. When grown on HMO, Akkermansia liberates sugars and produces fer-
mentation products that can fuel other members of the gut microbiome. Together,
these findings lay the foundation for future work examining the molecular mechanisms
of HMO deconstruction by diverse strains of Akkermansia and how these activities
influence interactions with the human host and other members of the gut microbiome
in a strain-dependent manner.

MATERIALS ANDMETHODS
Recruitment and sampling. Fecal samples used for Akkermansia isolations were obtained from 17

consenting healthy adults as previously described by Kirmiz et al. (10) under protocol number 1516-146,
with approval from the Institutional Review Board at California State University, Northridge. Samples
were refrigerated (4°C) and inoculated into culture medium (see below) within 24 h of collection.

Bacterial isolation and identification. Akkermansia isolation and identification were conducted as
previously described (10). Briefly, 5 mL of anaerobic basal mucin medium (BMM) containing 0.5% (vol/
vol) mucin (see Table S1 in the supplemental material) was inoculated with fecal swabs in serum tubes,
and a 10-fold serial dilution of up to 1026 or 1027 was performed for each sample. Cultures were incu-
bated at 37°C for up to 5 days, and those with oval cells in pairs were further diluted in broth medium
and/or transferred to BMM agar until purity could be verified microscopically using a Zeiss Axioskop
instrument or as single colonies on BMM agar. For identification, genomic DNA was extracted using the
DNeasy UltraClean microbial isolation kit (Qiagen Inc., MD, USA), and the nearly full-length 16S rRNA
gene was amplified using primers 8F (59-AGAGTTTGATCCTGGCTCAG-39) and 1492R (59-TACGGTT
ACCTTGTTACGA-39) with the GoTaq Hot Start colorless master mix (Promega Corp., Madison, WI, USA).
PCR was performed using an Eppendorf Vapo Protect Mastercycler Pro S 6325 system (Hamburg,
Germany) and included an activation/denaturation step at 95°C for 3 min; 30 cycles of 95°C for 45 s,
45°C for 1 min, and 72°C for 1 min 45 s; and a final extension step at 72°C for 7 min, followed by a hold
at 4°C. PCR products were purified (QIAquick PCR purification kit; Qiagen Inc.) and sequenced using ei-
ther the 8F or 1492R primer on an ABI Prism 3730 DNA sequencer (Laragen Sequencing and
Genotyping, Culver City, CA). If sequences were pure and positively matched to A. muciniphila in
GenBank by BLAST analysis, the nearly full-length 16S rRNA gene was sequenced with additional primers
(515F [GTGCCAGCMGCCGCGGTAA], 806R [GGACTACHVGGGTWTCTAAT], and 8F or 1492R). Sequences
associated with each isolate were then assembled in Geneious 7.1.3 and imported into ARB (67). In ARB,
sequences were manually aligned with secondary structure constraints against the 16S rRNA gene
sequence of A. muciniphila MucT. To determine phylogroup affiliation based on 16S rRNA gene sequen-
ces, each isolate was added to our in-house database of Akkermansia 16S rRNA gene sequences as previ-
ously described (10, 15). Masked alignments were exported from ARB and imported into Kumar and col-
leagues’ (68) MEGA7, where phylogenetic reconstruction was performed using the maximum likelihood
approach.

Genome sequencing, assembly, annotation, and phylogenomics. Eleven Akkermansia isolates
were selected for genome sequencing across three different sequencing efforts. DNAs from strains
CSUN-7 and CSUN-12 were sequenced according to the Illumina sequencing protocol described previ-
ously by Oliver and colleagues (69). To obtain enough DNA for this sequencing protocol, four 5-mL
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cultures grown overnight in BMM were extracted as described above, and extracts were pooled and con-
centrated using ethanol precipitation with 3 M sodium acetate. Illumina sequencing libraries were then
prepared as described previously by Oliver and colleagues. DNA from strains CSUN-17, CSUN-19, CSUN-
33, and CSUN-34 were sequenced according to methods described previously by Parker and colleagues
(70). For both this and the following sequencing efforts, enough quality genomic DNA was obtained
from a single 5-mL culture of each isolate grown in BMM and extracted as described above. The DNAs
from the remaining isolates (CSUN-37, CSUN-50, CSUN-56, CSUN-58, and CSUN-59) were sequenced on
an Illumina NextSeq 550 platform (2 by 150 bp) by the Microbial Genome Sequencing Center
(Pittsburgh, PA, USA).

For assembly and annotation, paired fastq files for each isolate were submitted to PATRIC (v 3.6.3)
(71) for their comprehensive genome analysis workflow that uses Unicycler (72) to assemble genomes
and RASTtk (73) for annotation. For comparison, the nucleotide sequence file for A. muciniphila MucT

ATCC BAA-835 (BioSample accession number SAMN00138213) was downloaded from GenBank and
annotated identically to the novel isolate genomes, also using tools in PATRIC. To investigate the carbo-
hydrate-degrading potential of each Akkermansia phylogroup, the assembled contigs of the new isolates
(n = 11) were combined with 74 publicly available Akkermansia genomes (10, 15, 74) and submitted to
the dbCAN meta server for CAZyme annotation (27–29). dbCAN uses three tools, HMMER (75),
DIAMOND (76), and Hotpep (77), for automated carbohydrate-active enzyme (CAZyme) annotation.
Annotations were considered only if they matched with at least two of the three tools. Individual count
files were tabulated and compiled using a custom python script to generate a frequency table for all
genomes (n = 85). The resulting table was sorted and trimmed to include only glycoside hydrolase (GH)
annotations, and a heat map was constructed in R (78) using the heatmap.2 function in the gplots library
(79). Cluster dendrograms in the heat map were calculated using average linkage hierarchical clustering
based on Bray-Curtis dissimilarity matrices calculated using the vegan package, also in R (80). To deter-
mine if there were differences in the numbers of GH predictions between phylogroups, a Kruskal-Wallis
test (kruskal.test) followed by Dunn’s test (dunn.test, method=‘bonferroni’) were performed in R.

For phylogenomic analysis, amino acid sequences of 49 ribosomal protein-coding genes (81)
were extracted and concatenated from assembled genomes using the phylogenomics workflow in
anvi’o (82). The concatenated fasta file was then imported into MEGA7 (68) and aligned using
MUSCLE (83), and a phylogenetic tree was made using the maximum likelihood method (84) with
100 bootstraps.

HMO growth experiments. To determine if Akkermansia strains could grow using HMOs, we per-
formed a series of growth experiments in a customized medium prepared by increasing the concentra-
tions of threonine and tryptone (TT) in BMM (9). This medium, referred to here as BMM-TT (Table S1),
was supplemented with individual HMOs before inoculation with the chosen Akkermansia strains. Five
HMOs were tested, namely, 29-FL, 3-FL, LNT, LNnT, and 69-SL (Glycom, Hørsholm, Denmark). Lactose was
also included in these growth experiments since it is the backbone of HMOs. Initially, one representative
isolate of each phylogroup (AmI, A. muciniphila MucT; AmII, Akkermansia sp. strain CSUN-17; AmIII,
Akkermansia CSUN-56; AmIV, Akkermansia CSUN-19) (Table S2) was grown overnight (18 to 24 h) in
BMM at 37°C under an atmosphere of N2-CO2 (70:30, vol/vol). Cultures were then standardized to an
OD600 of 0.5 in fresh BMM and used to inoculate (10%) 200 mL of BMM-TT or BMM-TT supplemented
with 20 mM each HMO (or lactose) in 96-well microtiter plates (Falcon; Corning Incorporated, Corning,
NY, USA) in triplicate. Wells were overlaid with 30mL of filter-sterilized mineral oil to prevent evaporation
over the 48-h incubation period. After 48 h of anaerobic (N2-CO2-H2 [80:15:5, vol/vol]) incubation at 37°C
in a Bactron IV anaerobic chamber (Sheldon Manufacturing Inc., Cornelius, OR), plates were shaken for
10 s, and the OD600 was determined using a Spectramax microplate reader (Molecular Devices, San Jose,
CA, USA). Growth was determined as the DOD600, i.e., the change in the OD600 of growth in BMM-TT sup-
plemented with the HMOs relative to the growth in HMO-unsupplemented BMM-TT (i.e., BMM-TT 1
HMO OD600 2 BMM-TT OD600). If the OD600 was .1.0, samples were diluted in half with fresh medium
and reread. Each experiment was conducted in triplicate and repeated at least two times. To test for dif-
ferences in growth across strains, we used repeated-measures analysis of variance (ANOVA) followed by
Tukey’s honestly significant difference (HSD) test as appropriate. Uninoculated controls were included in
each experiment and remained negative for growth.

To verify the degradation of three HMOs (29-FL, LNT, and 69-SL), the above-described experi-
ments were repeated in 1.5 mL of BMM-TT supplemented with 4 mM HMO. These experiments were
conducted in 24-well microtiter plates (Costar; Corning Incorporated, Corning, NY, USA) sealed with
Microseal A film (Bio-Rad Laboratories Inc., Hercules, CA, USA) instead of mineral oil. Plates were
incubated, and the OD600 and DOD600 were measured after 48 h as described above. For glycoana-
lytics, 0.5-mL aliquots were taken at time zero and 48 h after incubation, transferred to Eppendorf
tubes, and centrifuged at 10,000 � g for 3 min at 4°C. The cell-free supernatants were stored at
220°C for glycoanalytics as described below. To compare growth, statistical analysis was conducted
as described above.

HMO quantification. Culture supernatants were collected at time zero and after 48 h of incuba-
tion to measure the degradation of 29-FL, LNT, and 69-SL. In addition to each parent HMO, individual
sugars (with the exception of GlcNAc from LNT) of the three HMOs were also quantitatively meas-
ured using high-performance anion-exchange chromatography with pulsed amperometric detec-
tion (HPAEC-PAD) (85, 86). Frozen, cell-free spent culture media were thawed in a water bath, vor-
texed thoroughly to make a uniform mixture, and centrifuged at 7,000 � g for 5 min at 10°C, and 1
ml of the spent culture medium was injected into the HPAEC-PAD instrument for the detection of
the above-mentioned sugars.
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Carbohydrate analysis was done on a Dionex-ICS3000 system (Thermo Scientific, Sunnyvale, CA,
USA) using a CarboPac PA-1 column (4 mm by 250 mm) attached to a Carbo PA1-guard column (4 mm
by 50 mm). The detection of monosaccharides and oligosaccharides was done using standard Quad
potential for carbohydrate analysis as supplied by the manufacturer. A gradient mixture of two solvents
along with high-performance liquid chromatography (HPLC)-grade water was used for the optimum
separation of monosaccharides and oligosaccharides present in the sample. Solvent A (water), solvent B
(100 mM NaOH plus 7 mM sodium acetate [NaOAc]), and solvent C (100 mM NaOH plus 250 mM NaOAc)
were used as elution solvents at a flow rate of 1.0 mL/min. Gradient mixture details are given in Table S4
in the supplemental material. Sugars were quantified by comparison with the area under the peaks from
a standard mixture of fucose, galactose, glucose, 3-FL, lactose, 29-FL, LNnT, LNT, sialic acid (Neu5Ac), 69-
SL, and 3-SL. Representative chromatograms are presented in Fig. S1. To determine the percentage of
HMOs utilized, the amount remaining after 48 h of incubation was divided by the amount at time zero
and multiplied by 100 [(HMO 48 h/HMO 0 h) � 100].

Data availability. The data that support the findings of this study are openly available in the NCBI
BioProject database under accession number PRJNA609771.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.6 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.5 MB.
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