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Abstract For most complex traits, only a small propor-

tion of heritability is explained by statistically significant

associations from genome-wide association studies

(GWAS). In order to determine how much heritability can

potentially be explained through larger GWAS, several

different approaches for estimating total narrow-sense

heritability from GWAS data have recently been proposed.

These methods include variance components with related-

ness estimates from allele-sharing, variance components

with relatedness estimates from identity-by-descent (IBD)

segments, and regression of phenotypic correlation on

relatedness estimates from IBD segments. These methods

have not previously been compared on real or simulated

data. We analyze the narrow-sense heritability of nine

metabolic traits in the Northern Finland Birth Cohort

(NFBC) using these methods. We find substantial esti-

mated heritability for several traits, including LDL cho-

lesterol (54 % heritability), HDL cholesterol (46 %

heritability), and fasting glucose levels (39 % heritability).

Estimates of heritability from the regression-based

approach are much lower than variance component esti-

mates in these data, which may be due to the presence of

strong population structure. We also investigate the accu-

racy of the competing approaches using simulated

phenotypes based on genotype data from the NFBC. The

simulation results substantiate the downward bias of the

regression-based approach in the presence of population

structure.

Introduction

Genome-wide association studies (GWAS) have been suc-

cessful in finding a large number of variants associated with

common diseases. Over 1,000 such associations have been

documented to date (http://www.genome.gov/gwastudies/)

(Hindorff et al. 2009). However, the associated variants have

mostly been of small effect, and the cumulative proportion of

heritability explained for each disease remains small for

most diseases (Manolio et al. 2009). Several explanations

have been proposed for this missing heritability, including

the effects of rare variants and other variants not well-tagged

by SNP arrays, the existence of large numbers of causal loci

of very small effect, the contribution of gene–gene and gene–

environment interactions, and insufficient adjustment for

shared environment between related individuals (Manolio

et al. 2009).

Heritability can be measured in a broad-sense, which

measures the full contribution of all genes, or it can be

measured in a narrow-sense, which measures only additive

effects (Visscher et al. 2008). Studies of missing herita-

bility focus on narrow-sense heritability because it is much

easier to measure. Effect sizes of individual causal variants

can be estimated from genetic association studies, and

these effects can be summed over all of the known causal

variants to obtain an estimate of the narrow-sense herita-

bility that has been explained by these variants. However,

one cannot determine how much the set of known variants

contributes to broad-sense heritability because there may
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be many complex interactions between causal variants in

different genes that have effects that are too small to be

detected (Zuk et al. 2012). Estimates of heritability are

usually derived from twin studies and other studies of close

relatives, and such estimates include not only the additive

portion of heritability, but also some effects of gene–gene

and gene–environment interactions (Zuk et al. 2012; Fal-

coner and Mackay 1996). Zuk et al. (2012) have shown that

narrow-sense heritability could be substantially smaller

than estimates of heritability from studies of related indi-

viduals, and consequently GWAS may explain a higher

proportion of narrow-sense heritability than previously

thought. Our focus in this study is on estimating narrow-

sense heritability.

Zuk et al. (2012) propose a method for obtaining an

unbiased estimate of narrow-sense heritability. Their

approach is to use a population sample, and regress phe-

notypic similarity on estimates of relatedness derived from

detected segments of identity by descent (IBD). The use of

a population sample rather than close relatives is key

because this greatly reduces the incorporation of genetic

interaction effects and shared environment effects into the

heritability estimates (Zuk et al. 2012). The use of IBD

segments in the estimation of relatedness is also very

important, because IBD segments can incorporate the

effects of any rare variants lying within the IBD segments

(Zuk et al. 2012). In contrast, Yang et al. (2010) estimate

relatedness using a method of moments estimator based on

allele-sharing. Yang et al.’s (2010) estimate incorporates

effects of the genotyped SNPs and other variants in strong

linkage disequilibrium (LD) with those SNPs, but does not

include the effects of most rare variants, which are in low

LD with SNPs on genotyping arrays.

Heritability estimation using IBD segments works best

in founder populations, because the more IBD that is

present in the sample, the more precise is the estimate of

heritability (i.e., the lower the standard error). In this arti-

cle, we conduct genome-wide heritability analyses of the

Northern Finland Birth Cohort (NFBC) 1966 GWAS data.

Standard GWAS analyses of these data have been pub-

lished previously, and multiple genome-wide significant

associations were found (Sabatti et al. 2009). We compare

several different approaches to estimating the heritability

from the GWAS data.

First, we use the method of Zuk et al. (2012) in which

products of normalized trait values are regressed against

relatedness values obtained from detected IBD segments.

The estimated heritability is obtained from the slope of the

regression line (Zuk et al. 2012).

Second, we use the method of Yang et al. (2010) as

implemented in the Genome-wide Complex Trait Analysis

(GCTA) software (Yang et al. 2011). For this method,

relatedness is estimated using allele-sharing. Heritability is

estimated by fitting the variance component model.

y ¼ Xbþ gþ e with Var gð Þ ¼ Ar2
g and Var eð Þ ¼ Ir2

e

ð1Þ

where y is the vector of trait values, X is a matrix of

covariates with effects given by the vector b, g is the sum

of genetic effects from all autosomal loci, and e is a vector

of residual error, including environmental effects, A is the

matrix of relatedness values which has correlations

between allele dosage for pairs of individuals and esti-

mated inbreeding coefficients on the diagonal, r2
g is the

genetic variance of the trait, I is the identity matrix, and r2
e

is the residual or environmental variance. The heritability

is r2
g

.
r2

g þ r2
e

� �
.

Third, we estimate relatedness using detected IBD seg-

ments and incorporate this estimate in the variance com-

ponent model of Yang et al. (2010). Our IBD-segment-

based analyses with GCTA are similar to the work of Price

et al. (2011) which used IBD-segment-based estimates of

relatedness in a variance component approach to estimating

heritability, although Price et al. focused on closely related

pairs of individuals.

Subjects and methods

North Finland Birth Cohort

The NFBC GWAS data consist of 5,402 individuals from

Northern Finland, born in 1966, with metabolic trait mea-

surements and genotypes on 320,981 autosomal SNPs and

9,581 X chromosome SNPs from an Illumina Infinium SNP

array. All individuals were of the same age (31-years old)

at the time of the measurements. Covariate information

includes sex, whether the individuals were taking medi-

cation for diabetes, whether they were taking oral contra-

ceptives, whether they were pregnant, their fasting status,

and whether their weight was self-measured. We excluded

individuals who were pregnant (199 individuals) or taking

diabetes medication (27 individuals). We estimated heri-

tability for the nine metabolic traits measured in these data:

body mass index (BMI), high-density lipoprotein (HDL)

cholesterol, low-density lipoprotein (LDL) cholesterol,

systolic blood pressure, diastolic blood pressure, glucose,

insulin, triglycerides, and C-reactive protein (CRP). For

analysis of BMI we excluded individuals who had self-

measured weight (170 individuals). For triglycerides,

insulin, glucose, HDL, and LDL, we excluded individuals

who were not fasting at the time of measurement (228

individuals). As in Sabatti et al. (2009), CRP values were
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log-transformed after changing values of 0 to 0.002 (half

the detection threshold), and BMI, triglyceride, insulin and

glucose values were also log-transformed, because of the

skewness of these phenotypic distributions. We used linear

regression to adjust all traits for sex and oral contraceptive

status. After this adjustment, we truncated all trait values

that were more than 4 standard deviations from the mean to

4 standard deviations from the mean to reduce the impact

of outliers.

Estimation of relatedness using IBD segments

We detected IBD segments between pairs of individuals

using a pre-release version of BEAGLE Refined IBD. This

IBD detection method will be described elsewhere. In

brief, it has similar computational performance to BEA-

GLE fastIBD (Browning and Browning 2011a), while

having improved power and error rates. BEAGLE Refined

IBD outputs IBD tracts for pairs of individuals; IBD is

assumed to have 0–1 status (i.e., the possibility of bilineal

relatedness, as in full-siblings, is not considered). The

choice of parameter values for this method is described in

Section 2 of the Appendix (Electronic supplementary

material). For each pair of individuals we calculated the

proportion of the genome shared IBD. 570 pairs of indi-

viduals shared IBD segments totaling over 750 cM in

length. In an outbred population, we would expect to see

this amount of IBD sharing in first-cousins or closer rela-

tives; however, in an inbred population such as this one,

individuals are related through many common ancestors,

each of which can contribute some IBD. We identified one

individual from each pair sharing over 750 cM of detected

IBD segments, for a total 503 individuals (some of these

individuals have more than one close relative in the data

set). These 503 individuals were removed from all further

analyses. The purpose of removing close relatives is to

avoid confounding with shared environment and to reduce

the influence of interactive effects (Visscher and Yang

2010; Zuk et al. 2012).

We turn now to the use of detected IBD segments to

estimated relatedness. The relatedness value for a pair of

individuals is twice their realized kinship coefficient. That

is, the relatedness value is twice the probability that a

random allele taken from each individual at a random

location in the genome will be identical by descent. There

are different ways to estimate this quantity. GCTA esti-

mates the relatedness value based on normalized rates of

allele-sharing (see below), while for the IBD-segment-

based approaches we estimate it based on the quantity of

IBD detected for the pair of individuals.

One factor to consider in developing an IBD-segment-

based estimator of relatedness is that the rate of IBD seg-

ment detection can vary from one point in the genome to

another. These differing rates can be due to, for example,

differing densities of genetic markers or differing strength of

LD. If variants of large effect fall in regions of particularly

high or low IBD segment detection, the estimates of heri-

tability from IBD-segment-based methods can be biased

[see Section 1.3 of the Appendix (Electonic supplementary

material)]. At each point in the genome we calculated the

proportion of pairs of individuals sharing an IBD segment

covering the point (the IBD rate). Figure 1 shows that the

IBD rate across the genome is quite variable. Therefore, in

order to avoid the potential bias in heritability estimates, we

down-weighted the IBD detected in regions with a high IBD

rate and up-weighted the IBD detected in regions with a low

IBD rate, so that each part of the genome contributes equally

to relatedness estimates. We did, however, exclude regions

with a very low IBD rate (IBD rate\ T, where T ¼ 0:0013,

which is the 0.1th percentile of IBD rate in the NFBC data)

because regions with extremely low rates of IBD detection

would receive extremely high weights which would increase

the variance of relatedness estimates. We also tried other

values of the threshold T: the 2nd percentile (T ¼ 0:0031)

and the 5th percentile (T ¼ 0:0043). There was very little

difference in standard errors of the heritability estimates, so

we chose to cover as much of the genome as reasonably

possible using the 0.0013 threshold.

To calculate the weighted relatedness for a pair of

individuals, we compute the following ratio:

where IR(i, i?1) is the IBD rate across the interval

between SNPs i and i?1, 1 IR i; iþ 1ð Þ[ Tf g is 1 if the

IBD rate is greater than the threshold T in this interval and

0 otherwise, IBD j; k; i; iþ 1ð Þ is 1 if individuals j and

k have a detected IBD segment that spans the interval

between SNPs i and i ? 1, and 0 otherwise. Length

(i, i ? 1) is the genetic length of the interval between SNPs

i and i ? 1, and the sums are over SNPs i, excluding the

RelatednessIBDðj; kÞ ¼

P
i

1 IRði; iþ 1Þ[ Tf g � IBD j; k; i; iþ 1ð Þ � Length i; iþ 1ð Þ=IR i; iþ 1ð Þ
P

i
2� 1 IRði; iþ 1Þ[ Tf g � Length i; iþ 1ð Þ=IR i; iþ 1ð Þ ð2Þ
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final SNP on each chromosome. The factor of two in the

denominator is part of the definition of relatedness.

Relatedness is twice the probability that a random allele

taken from each of two individuals is IBD, or equiva-

lently, ignoring the possibility of inbreeding, relatedness

is half the probability that the two individuals are IBD

through any pair of their alleles.

We also calculated an unweighted relatedness which

was obtained by summing the genetic lengths of detected

IBD segments for the pair and dividing by twice the genetic

length of the genome (or equivalently, by replacing the

IBD rate with a constant in the above equation). The

weighted version was used except where otherwise noted.

Relatedness values for chromosome X are slightly dif-

ferent. We followed the approach of Yang et al. (2011) and

used a full-dosage compensation model. For this model,

IBD-segment-based relatedness values on chromosome X

are the same as above for female–female pairs, multiplied

by 2 for male–female pairs, and multiplied by 4 for male–

male pairs. There is less IBD detected between male–male

and male–female pairs because males have only one

haplotype.

In the variance component approach, the diagonal val-

ues for the relatedness matrix (A in Eq. 1) are 1 ? f, where

f is the inbreeding coefficient for the individual. For the

IBD-segment-based relatedness matrix, we estimate f by

detecting segments of homozygosity by descent (HBD)

using Beagle (Browning and Browning 2010) and, for each

individual, dividing the sum of HBD lengths by the length

of the genome.

Principal components adjustment

We used GCTA version 0.93.9 (Yang et al. 2011) to cal-

culate principal components to be used in adjustment for

confounding of traits by population structure. First, we

removed one individual from each pair of individuals

identified as cousins or closer relationship from their IBD

segments (see above). We calculated principal components

and then identified outlying individuals for which the value

in one of the first 20 eigenvectors was more than three

times the interquartile range away from the median. 194

outliers were identified and removed. We then re-calcu-

lated principal components on the reduced set of individ-

uals (without close relatives or outlying individuals). The

first 20 principal components were used in subsequent

estimation of heritability.

Heritability analysis

We also used GCTA version 0.93.9 (Yang et al. 2011) to

perform variance component-based estimation of herita-

bility. Default settings were used except as otherwise

noted. GCTA uses the SNP data to calculate a relatedness

value for each pair of individuals based on allele-sharing

(Yang et al. 2011). The estimated relatedness between

individuals j and k is

RelatednessGCTA j; kð Þ ¼ 1

N

XN

i¼1

xij � 2pi

� �
xik � 2pið Þ

2pi 1� pið Þ ð3Þ

where xij is the number of copies of the reference allele at

SNP i in individual j, pi is the reference allele frequency for

SNP i and N is the number of SNPs (Yang et al. 2011).

Restricted maximum likelihood is used to fit the model of

Eq. 1 to the data. p values for a test of whether the heri-

tability is greater than zero are obtained via a likelihood

ratio test in which the model with genetic effects is com-

pared to a model without genetic effects.

The GCTA software documentation recommends not

including the X chromosome in genome-wide analyses. We

therefore performed autosome-wide analyses and separate

X chromosome analyses.

We used the GCTA software to calculate the relatedness

estimates given in Eq. 3 and to estimate heritability

(GCTA method). We also calculated the weighted IBD-

segment-based estimates of relatedness given in Eq. 2 and

input these to GCTA for estimation of heritability (IBD-

based variance component method). In these analyses,

close relatives and principal components outliers were

removed (see above) and we adjusted for 20 principal

components.

Before applying the method of Zuk et al. (2012), we

adjusted for covariates and for principal components

Fig. 1 Rate of IBD segment detection across the autosomes in the

NFBC data. Chromosomes are ordered left to right from 1 to 22. The

IBD rate at a SNP is the number of pairs of individuals with an IBD

segment covering the SNP, divided by the number of pairs of

individuals in the data set. The upper horizontal line is the 95th

percentile and is the cut-off for determining high IBD rate regions for

the simulation study in Section 1.3 of the Appendix (Electronic

supplementary material). The lower horizontal line is the 0.1th

percentile and is the cut-off for weighting; regions with IBD rate below

this threshold are excluded from the weighted estimates of relatedness.

These low rates occur at positions with large gaps in the SNPs and/or

poorer quality genotypes, such as telomeres and centromeres
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eigenvectors by regressing the trait on the covariates and

eigenvectors, and we standardized the residuals to have

mean 0 and variance 1. In the method of Zuk et al. (2012)

products of normalized trait values are regressed against

relatedness values. The regression includes only pairs for

which the relatedness value is not too far from the average

relatedness value, to remove potential interactive effects.

The estimated narrow-sense heritability equals the slope of

the regression line at the average relatedness value multi-

plied by 1- the average kinship value, where the average

kinship value is half the average relatedness value. In

Section 1.2 of the Appendix (Electronic supplementary

material), we present a proof of this equality for a purely

additive genetic effect. Zuk et al. (2012) present an alter-

native proof of this equality for the general case where the

genetic model includes interactions between variants and

with environment. In all analyses, we excluded close rel-

atives and individuals who were principal component

outliers as for the GCTA analyses. We estimated the slope

using pairs of individuals with relatedness values between

0 and twice the average relatedness value, as suggested by

Zuk et al., except where otherwise noted. Heritability

values must lie between zero and one, but the regression

procedure can result in values outside this range. We set to

zero any heritability estimates less than zero, and to one

any heritability estimates greater than one. p values are

obtained from testing whether the slope is significantly

different from zero. Our analyses with the Zuk et al.

method were performed in R (Ihaka and Gentleman 1996),

using the lm() regression function to compute the slope, its

standard error, and the p value. The estimated standard

error of the slope and the p value from the lm() procedure

assume independent observations which is not completely

appropriate in this setting where observations are based on

pairs of individuals, so that observations involving the

same individual are not independent. A more rigorous

approach would be to use a jackknife estimate of standard

error (by repeating the analysis while leaving out entire

individuals), but we do not use this approach here.

Simulation study

We simulated phenotypes using the genotypes of the

NFBC data. The simulation follows the additive model

yj ¼
Pn

i¼1 ai xij � 2pi

� �
þ ej, where yj is the simulated trait

value for individual j, i indexes the n causal SNPs, ai is the

effect of causal SNP i, xij is the number of copies of the

reference allele at SNP i in individual j, pi is the reference

allele frequency for SNP i, and ej is the environmental

effect for individual j. We simulated a trait with n = 100

causal loci each contributing equally to the trait variance,

and with total heritability 50 % for the trait. For each

simulation replicate, 100 SNPs were randomly selected

from the autosomal SNPs. We assigned 0.005 genetic

variance to each of these 100 SNPs, which corresponds to

ai ¼ 400pi 1� pið Þð Þ�1=2
. The effects of all the causal

SNPs were added together, and a normally distributed

environmental effect with mean zero and variance 0.5 was

added. This results in total heritability of 50 %. A total of

400 replicate data sets were simulated. The 100 causal

SNPs were chosen independently in each replicate.

Results

Heritability of metabolic traits in the North Finland

Birth Cohort

We applied the Zuk et al. method (2012), the GCTA

method (Yang et al. 2011), and the IBD-based variance

component method to the NFBC data (5,402 individuals

from Northern Finland). We estimated heritability for the

metabolic traits measured in these data: BMI, HDL cho-

lesterol, LDL cholesterol, systolic blood pressure, diastolic

blood pressure, glucose, insulin, triglycerides and CRP. For

each method, trait values were adjusted using 20 principal

components to reduce confounding of environment with

population structure.

Results for the autosome-wide analyses are shown in

Table 1. Significant levels of heritability are seen for four

of the traits: glucose (39 % heritability with IBD-based

variance components), HDL cholesterol (46 %), LDL

cholesterol (54 %), and BMI (16 % heritability with

GCTA). For comparison the table also shows estimates of

heritability based on twin studies for these traits. These

twin-based results may be biased estimates of narrow-sense

heritability due to a number of factors (Falconer and

Mackay 1996) including the incorporation into the esti-

mates of some interactive and dominance effects, and

differences in environmental sharing between dizygotic

and monozygotic twins. On the whole, these biases are

expected to inflate the twin-based estimates, so it is not

surprising that the twin-based estimates are larger than the

narrow-sense heritability estimates we obtain from the

data. Further factors could induce differences between

the NFBC and twin-study estimates: the twin-based results

are not from Northern Finland and heritability differs by

population due to differing environmental factors and

genetic variant frequencies; and the transformations of the

traits to achieve approximate normality and the adjustment

for covariates differ somewhat between the studies.

Estimates using variance component IBD-segment-

based relatedness values are approximately 100 % higher

than estimates using the GCTA method for a number of the
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traits including glucose, HDL cholesterol and LDL cho-

lesterol, although 95 % confidence intervals for the esti-

mates overlap. If reflecting true underlying differences, one

plausible explanation for the difference is that rare variants

contribute substantially to the heritability of these traits.

Effects of rare variants may be included in the IBD-seg-

ment-based estimates of heritability whereas they are not

well captured by the standard GCTA estimates.

The estimates from the method of Zuk et al. are sig-

nificantly lower than those using IBD-segment based var-

iance components for several of the traits (glucose is the

one exception). Zuk et al. (2012) have shown that their

method for estimating additive heritability is unbiased;

however, the proof presented in Zuk et al. implicitly

assumes that the population is homogenous. We hypothe-

sized that the apparent bias observed when applying the

Zuk et al. method to the NFBC is due to the effects of

population structure. The use of principal components can

largely correct for different mean trait values in different

geographic regions due to environmental confounders.

However, even without environmental confounding,

regression-based methods for estimating heritability can be

affected by population structure. Although the slope of the

regression line in each sub-population may equal the her-

itability, if the sub-populations have different average

levels of relatedness, the slope of a regression line applied

to the full data set can be much less than the heritability, as

illustrated in Fig. 2. In the simulation results presented

later in this section we investigate this issue further, and

demonstrate that the Zuk et al. estimator can be highly

biased in the presence of population structure, even if there

is no confounding with environmental factors. The NFBC

Table 1 Heritability estimates

Traita GCTAb VC IBDc Zuk et al.d Twin studiese Associated SNPsf

CRP 0.02 (0.06)g 0.08 (0.16) 0.00 (0.21) 0.56 (0.07) [W] 0.17

Glucose 0.18 (0.07)**h 0.39 (0.16)** 0.51 (0.22)* 0.67 (0.06) [S] 0.12

Insulin 0.07 (0.07) 0.04 (0.17) 0.03 (0.22) 0.49 (0.05) [S] 0.02

Triglycerides 0.08 (0.07) 0.00 (0.17) 0.00 (0.22) 0.65 (0.05) [W] 0.14

HDL 0.19 (0.07)** 0.46 (0.17)** 0.27 (0.22) 0.76 (0.06) [S] 0.21

LDL 0.29 (0.07)*** 0.54 (0.17)*** 0.10 (0.22) 0.78 (0.05) [S] 0.33

BMI 0.16 (0.07)** 0.00 (0.16) 0.00 (0.21) 0.80 (0.03) [W] 0.21

Diastolic 0.08 (0.07) 0.21 (0.16) 0.09 (0.21) 0.51 (0.06) [W] 0.00

Systolic 0.06 (0.06) 0.06 (0.16) 0.06 (0.21) 0.47 (0.06) [W] 0.00

a Traits have been transformed to adjust for covariates and achieve approximate normality, as described in ‘‘Subjects and methods’’. Results

from the twin studies have not necessarily had the same transformations/adjustments
b Estimates from the GCTA software using autosomal NFBC data
c Variance components approach using IBD-based estimates of relatedness from the autosomal NFBC data
d Regression approach of Zuk et al. using autosomal NFBC data
e Indicative estimates of heritability from twin studies taken from previous literature. Source is denoted by [W] (Wessel et al. 2007) or

[S] (Souren et al. 2007). These estimates can differ from the true narrow-sense autosomal heritability of these traits in Northern Finland due to

differences in environmental variances, differences in genetic make-up, incorporation of interaction effects or shared environment into family-

based estimates, and contribution of the X chromosome
f Estimates of the proportion of trait variation in the NFBC data explained by SNPs significantly associated in the NFBC study or from previous

studies are taken from Supplementary Table 1 of Sabatti et al. (2009). These estimates include effects from the X chromosome
g Estimates of heritability are given with standard errors in parentheses
h Statistical significance of estimates from this study are indicated by single asterisk (0.01 \ p \ 0.05), double asterisks (0.001 \ p \ 0.01),

and triple asterisks (p \ 0.001)

Fig. 2 The potential effect of extreme population structure on

regression-based heritability estimation. This figure illustrates an

extreme scenario in which the heritability estimates of the method of

Zuk et al. can be biased. In this scenario there are two sub-populations

that have equal heritability. One sub-population has a higher rate of

relatedness than the other. Pairs of individuals across populations

have zero relatedness. Products of normalized trait values for pairs of

individuals are shown on the y-axis, while relatedness values for the

pairs are shown on the x-axis. It can be seen that, depending on the

range of relatedness values used, the overall fitted slope will tend to

be less than the heritability
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data show strong population structure, with geographical

regions largely separating on a multidimensional scaling

(MDS) plot based on allele-sharing (Figure 1 of Sabatti

et al. 2009).

We applied GCTA and IBD-segment-based variance

components to the X chromosome. The only results that

were significant at a 0.05-level were systolic blood pressure

with a p value of 0.028 for the IBD-based analysis and

0.043 for the GCTA analysis, with estimated heritability

2.8 % (se 1.5 %) from the IBD-based analysis and 1.7 %

(SE 1.1 %) from the GCTA analysis.

Effects of population structure

To investigate further the performance of estimates of

heritability in the NFBC data we performed simulations.

We used the genotypes from the NFBC and created new

traits based on additive genetic and random environmental

effects, as described in ‘‘Subjects and methods’’. As shown

in Table 2, estimates from the Zuk et al. method are sig-

nificantly lower than the true heritability on average. The

GCTA estimates are slightly inflated, perhaps due to pop-

ulation structure biasing the estimation of relatedness

(Manichaikul et al. 2010), while the IBD-based variance

component estimates are approximately unbiased.

Estimates from the Zuk et al. method differ depending on

the range of relatedness values included in the regression.

The results in Table 2 are for the standard range of 0 to twice

average relatedness. Here average relatedness is 0.0033. We

also calculated the estimates for different relatedness ranges,

excluding relatives closer than cousins and individuals who

are principal component outliers in all cases. When using all

pairs remaining after these exclusions, the estimates become

more biased, with mean 0.221 (SE 0.005). When using a

more restricted range of relatedness values, estimates

become less biased, however a high proportion of estimates

are either 0 or 1, so that the estimates are not useful. For

example, with relatedness restricted to 0.0016–0.0048

(0.5–1.5 times average relatedness), 30 % of estimates are 0

or 1, and the bias is not noticeably less (mean 0.336, SE

0.016), while with relatedness restricted to 0.0029–0.0035

(0.9–1.1 times average relatedness), 90 % of estimates are 0

or 1, and the mean estimated heritability is 0.460 (SE 0.024).

Thus, if the sample size was much larger, one could use a

very restricted range on relatedness and perhaps obtain an

approximately unbiased estimate of heritability.

If population structure is the primary cause of the

downward bias in the Zuk et al. estimate, we would expect

to find less bias in a population with less structure. We

simulated phenotypes using the WTCCC2 control data

(5,200 individuals from the UK genotyped on a custom

Illumina array with approximately one million SNPs),

using the same phenotype simulation model as for the

NFBC data. These data exhibit some population structure,

but it is much less than that in Northern Finland. For

example, the principal components values overlap signifi-

cantly for different regions of the UK, whereas there is

little overlap in the multi-dimensional scaling values for

different regions in Northern Finland (Sabatti et al. 2009;

The Wellcome Trust Case Control Consortium 2007). All

three methods were approximately unbiased in these data

(data not shown). However, due to the low level of IBD

segments detected in these data, the standard errors of the

IBD-segment-based estimates were extremely large, with

most estimates taking values close to 0 or 1, so that these

methods would not be useful in such data. In contrast,

allele-sharing-based estimates have reasonable standard

errors and have been applied successfully to data from the

UK population (Lee et al. 2011).

Discussion

We estimated the narrow-sense heritability of metabolic

traits in the NFBC GWAS data. Several traits had high

levels of estimated heritability, including LDL cholesterol,

HDL cholesterol, glucose and BMI.

We contrasted IBD-segment-based estimates of relat-

edness with allele-sharing-based estimates of relatedness

for the purpose of estimating heritability, and we compared

variance-component-based estimates of heritability with

regression-based estimates, using the NFBC data and

simulated data. We found that IBD-segment-based esti-

mates are significantly less precise (have higher standard

errors) than allele-sharing-based estimates in the variance

component approach. In the NFBC data, the reported

standard errors of the heritability estimates were more than

twice as large with IBD segments as with allele-sharing.

We think that this is likely due to the effects of very distant

relatedness. Very small segments of IBD (smaller than

1 cM) due to very distant relatedness (more than 50 gen-

erations) are usually not detectable and thus do not

Table 2 Analysis of simulated polygenic phenotypes with NFBC

genotypes

Mean estimatea SDb Reported s.e.c

GCTA 0.517 (0.003) 0.061 0.059

VC IBD 0.500 (0.007) 0.146 0.151

Zuk et al. 0.296 (0.008) 0.164 0.195

Phenotypes are simulated to have 50 % heritability. Genotypic vari-

ance is equally distributed between 100 randomly selected, causal

SNPs. Results are from 400 simulated replicates
a Mean estimated heritability with standard error in parentheses
b Standard deviation of estimates of heritability
c Average reported standard error of estimated heritability
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contribute to the IBD-segment-based estimates of related-

ness; however, these segments will tend to contribute to

allele-sharing-based estimates, albeit in a noisy fashion. In

data from larger (more outbred) populations this effect is

magnified because there is less recent relatedness. In the

WTCCC2 data, the reported standard errors of variance

component heritability estimates were approximately 14

times as large using IBD segments as using allele-sharing.

This makes the use of IBD-segment-based methods for

estimating heritability impractical in population data from

a population with large effective size.

For several metabolic traits, we found that the IBD-

segment-based estimates of heritability from variance

components are substantially higher than allele-sharing-

based estimates. While these differences were not statisti-

cally significant, this suggests that the IBD-segment-based

estimates are incorporating genetic signals not captured by

the allele-sharing-based estimates. A plausible explanation

for this phenomenon is that the difference is due to the

effects of rare variants which are not well captured by

allele-sharing-based estimates. A substantial role of rare

variants for metabolic traits is consistent with results from

sequencing studies showing important contributions of rare

variants to variation in several metabolic traits including

HDL cholesterol (Cohen et al. 2004), LDL cholesterol

(Cohen et al. 2006) and blood pressure (Ji et al. 2008).

IBD-based methods for estimating heritability depend

on estimated IBD segments. A number of methods for IBD

segment detection have been proposed (Purcell et al. 2007;

Thomas et al. 2008; Kong et al. 2008; Gusev et al. 2009;

Browning and Browning 2010, 2011a; Glazner and

Thompson 2012), and typically are based on a length

threshold or frequency threshold for matching haplotypes

or genotypes. Here, we used a recently developed IBD

segment detection method that will be included in the

upcoming Beagle version 4 release.

Detected IBD segments are estimates, and are therefore

subject to error. There will be some level of completely

false-positive IBD segments. Using simulated and real data

we have ascertained that this type of error is very rare with

our method (unpublished data). Further, there will be some

IBD segments that should fulfill our criteria (sufficiently

long, or sufficiently rare) but that are not detected due to

genotype errors or haplotype phasing errors, for example.

Such errors add to noise but do not induce bias, provided

that the rates of such errors are evenly distributed across the

genome. However, we showed that the rate of detected IBD

varies considerably over the genome in our results, and we

showed [in Section 1.3 of the Appendix (Electronic sup-

plementary material)] that reweighting in the relatedness

estimation was necessary to avoid biases when variants of

large effect fall in regions of high or low IBD detection. A

third type of error is mis-determination of the IBD segment

endpoints. Determination of endpoints of IBD segments is

difficult, because a small number of genotyped markers

may be consistent with IBD beyond the true end of the IBD

segment, leading to false extension of the detected IBD

segment. On the other hand, errors in genotypes or in

haplotype phase may lead to premature truncation of the

detected IBD segment. In simulated data, we have found

that such effects balance each other out in the IBD detection

method used here (unpublished data). Unbiased estimation

of IBD segment length for detected IBD segments is

important. If IBD segment length is overestimated, herita-

bility will be underestimated, and vice versa.

We found that the regression-based method gave strongly

downwardly biased estimates of heritability for simulated

phenotypes in the NFBC data. Since this method implicitly

assumes a homogenous population, we believe that the

downward bias is due to the strong population structure in

these data. In contrast, a variance component approach was

fairly robust to population structure in the absence of envi-

ronmental confounding in our analyses. It is possible that the

variance-component-based heritability estimates in the real

data could be upwardly biased due to environmental con-

founding with population structure, although previous

studies suggest that most such environmental confounding

effects are corrected by the use of principal components

(Browning and Browning 2011b; Goddard et al. 2011).

The results reported here provide a salutary reminder

that real data do not always conform to the assumptions

underlying statistical methods. Methods which produced

unbiased estimates in a homogenous population can pro-

duce biased estimates in a structured population. Incorpo-

ration of principal components into the analysis

ameliorates bias due to environmental confounding but not

other types of bias, such as bias due to population structure

when estimating heritability when using the regression-

based estimator of Zuk et al.

Finally, the differences between heritability estimates

obtained in this study and heritability estimates from previous

twin studies deserve further comment. For all nine metabolic

traits examined, the twin-based estimates are higher than any

of the GWAS-based estimates, although since the standard

errors on the estimates are large, many of these differences are

not individually statistically significant. The most extreme

instance is BMI, with a twin-based estimate of 0.8, and

GWAS-based estimates of up to 0.16. Taking estimates ±2

standard errors gives twin-based results implying heritability

over 0.74 while the GWAS results imply heritability less than

0.42. Three factors potentially contribute to these differences.

First, heritability can differ between populations. A twin-

based study in Finland estimated heritability of BMI to be 0.69

in 30–39-year olds, which is little less than the 0.8 estimate but

still significantly higher than the GWAS estimates (Scho-

usboe et al. 2003); however, Northern Finland may differ from
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Finland as a whole. Second, twin-based estimates are known

to partially incorporate non-additive genetic effects (interac-

tive and dominance effects) and to be susceptible to other

biases. Thus, our results could indicate a high contribution of

interactive and dominance effects to the total genetic variance

of these traits. Third, the GWAS heritability estimates may be

downwardly biased. We showed that the regression-based

(Zuk et al.) estimates are downwardly biased in the presence of

population structure. The allele-sharing-based (GCTA) esti-

mates primarily capture the effects of common variants, and

thus are downwardly biased if rare variants contribute sig-

nificantly to additive genetic variation. The IBD-segment-

based variance component estimates should in principle

incorporate effects of rare as well as common variation.

However, the IBD-segment-based variance component esti-

mates will miss some types of genetic variation. Variants in

regions of the genome that are not well covered by SNPs on

the GWAS array will not be incorporated in the estimates,

although the proportion of the genome that is not well covered

is small, so unlikely to greatly affect the estimates. Structural

variants spanning multiple SNPs may significantly reduce the

genotyping accuracy of the spanned SNPs, which will lead to

loss of IBD segment detection and hence non-incorporation of

the effects of these variants in the estimates. Thus, if the

contribution of structural variants to the traits is large, the

IBD-segment-based estimates will be downwardly biased.
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