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Abstract: This work presents a wearable sensing system for high-density resistive array readout. The
system comprising readout electronics for a high-density resistive sensor array and a rechargeable
battery, was realized in a wristband. The analyzed data with the proposed system can be visualized
using a custom graphical user interface (GUI) developed in a personal computer (PC) through a
universal serial bus (USB) and using an Android app in smartphones via Bluetooth Low Energy
(BLE), respectively. The readout electronics were implemented on a printed circuit board (PCB)
and had a compact dimension of 3 cm × 3 cm. It was designed to measure the resistive sensor
with a dynamic range of 1 KΩ–1 MΩ and detect a 0.1% change of the base resistance. The system
operated at a 5 V supply voltage, and the overall system power consumption was 95 mW. The
readout circuit employed a resistance-to-voltage (R-V) conversion topology using a 16-bit analog-
to-digital converter (ADC), integrated in the Cypress Programmable System-on-Chip (PSoC®) 5LP
microcontroller. The device behaves as a universal-type sensing system that can be interfaced with
a wide variety of resistive sensors, including chemiresistors, piezoresistors, and thermoelectric
sensors, whose resistance variations fall in the target measurement range of 1 KΩ–1 MΩ. The system
performance was tested with a 60-resistor array and showed a satisfactory accuracy, with a worst-case
error rate up to 2.5%. The developed sensing system shows promising results for applications in the
field of the Internet of things (IoT), point-of-care testing (PoCT), and low-cost wearable devices.

Keywords: wearable; flexible; embedded system; high-density resistive array; Bluetooth Low Energy;
point-of-care testing; electronic nose (e-nose); electronic skin (e-skin); wireless sensor network

1. Introduction

Wearable device technologies have been widely used in various head-to-toe applica-
tions such as environmental analysis, biomedical, physical, and physiological monitoring,
primarily as accessory-type such as gloves, headsets, watches, wristbands, and textiles [1–5].
In current years, wearable systems with unique sensing materials and device structures
have proved to be highly sensitive in mimicking the human olfactory system and tracking
biophysical and biochemical signals, including skin temperatures, body movements, heart
rates, pulse oximetry, blood pressures, breathing, wound healing, as well as continuous
biofluid monitoring, for instance, sweat and interstitial fluids. In most cases, accessory-
type wearable devices fail to provide an accurate electrode-based physiological detection
capability due to unreliable body contact. Therefore, many recent research interests have
moved to attachable body devices, including patch and sticker type devices [6–10]. Flexible
sensing electrodes are required to implement these attachable devices, and modules should
be miniaturized to provide comfortable body wearing. The use of flexible sensor arrays
in point-of-care testing (PoCT) has been regarded as a promising approach to monitoring
patients out of the hospital and lessening the burden on public healthcare systems in caring
for older adults or patients with chronic diseases [11,12].

One of the most popular sensors for a wearable device is a resistive sensor, which
has a sensing element whose resistance changes as a function of the target physical or
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chemical quantity. It is utilized in industrial, scientific, and commercial applications for
sensing numerous physical parameters including, but not limited to, ambient temperature,
humidity, pressure, strain/force, light intensity, and displacement [13–15]. Recent growth
in the metal oxide (MOx) semiconductor sensor has enhanced the use of resistive sensors
for more sophisticated applications such as chemical sensing, gas sensing, and biosens-
ing [16–19]. Many resistive sensing materials, such as conductive polymers, nanomaterials
that cover single- or multi-wall carbon nanotubes, graphene, and nanoparticles, can be
deposited on flexible polyethylene terephthalate (PET) and polyimide-based substrates
using inkjet or screen-printing techniques [20–22]. An array form of the flexible resis-
tive sensor is developed and adopted in wearable electronic applications, which can help
improve the measurement accuracy, sensitivity, and selectivity while helping in multi-
analyte detection [11,23–30]. Significant evolutions are engineered in readout electronics
for sensing devices parallel to the sensor development. Nowadays, the demand for a
modern integrated sensing system is growing that can combine analog or digital sensors,
signal conditioning circuits, processing units, and communication interfaces in a single
device [31–33]. The integrated sensing systems are often equipped with wireless interfaces
using a standardized protocol such as Bluetooth Low Energy (BLE), Zigbee, Wi-Fi, LoRa,
and Sigfox, enabling them to build wireless sensor networks for the Internet of things
(IoT) applications.

Herein, we report the development of a wearable universal-type sensing system
comprising miniaturized wireless readout electronics packaged into a wristband form
factor. The readout is compatible with any custom or commercial resistive sensor array
on a flexible substrate. Based on the type of materials deposited on the sensing array, the
system can behave as a universal-type multi-functional sensing system, since it supports
different resistive sensors, including chemiresistive, piezoresistive, thermo-electric, and
their hybrid. The device can act as a resistive electronic skin (e-skin) for body temperature
and blood pressure monitoring, a portable electronic nose (e-nose) for environmental
harmful/toxic gas detection, and a comprehensive breathing analyzer. Compared with
existing wearable resistive readout devices, the proposed device demonstrated the lowest
circuit complexity on a microcontroller-based wearable platform and a high-density sensor
array capacity. Thus, it could be an ideal solution for various applications such as wearable
wireless sensor networks, PoCT, and battery-powered wireless telemetry for biomedical
applications, while presenting a reference for designing low-complexity, low-cost, low-
power wearable systems for resistive sensor arrays. The device also supports a wide range
of the resistance measurement from 1 KΩ to 1 MΩ, while providing a better tradeoff
between the measurement accuracy and the processing speed. The rest of this paper is
organized as follows. Section 2 describes the system-level specifications and the architecture
of the proposed prototype. Section 3 shows the experimental results and the case analysis
with a force-sensitive resistor as proof of concept. Finally, discussions and conclusions are
drawn in Section 4.

2. System Description and Specification

The wearable system consists of the following modules: (1) a flexible customized
or commercial resistive sensor array to detect target analytes such as biomarkers and
chemicals; (2) a readout board to collect, process and transmit sensor data to a personal
computer (PC) or a smartphone; and (3) a user-friendly graphical user interface (GUI) to
control the device and display the obtained data, as shown in Figure 1. The hardware
comprising readout electronics and a battery was housed in a wristband chassis. The
system and the sensor array specifications targeted in this work are tabulated in Table 1.
The resistance range of the piezoresistive and thermoelectric sensor varied from a few ohms
to kiloohms [2,11], whereas the chemiresistive sensor varied up to a few megaohms [23].
Thus, an input resistance range of 1 KΩ–1 MΩ was targeted in this work to cover a variety
of resistive sensors.
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Figure 1. System-level block diagram, conceptually depicting readout electronics housed in a wrist-
band chassis.

Table 1. System specifications.

Sensor Type Resistive sensor

Sensor resistance range 1 KΩ–1 MΩ

Number of sensors 60; can be expandable

Sensor sensitivity 0.1%

Target processing time ~1 s

Target applications
Electronic skin (e-skin) for blood pressure and body
temperature monitoring; electronic nose (e-nose) for

environmental harmful/toxic gas detection

2.1. Readout Board

A readout board was required to measure the resistance change of the sensor as a func-
tion of the target physical or chemical reaction. A resistance-to-voltage (R–V) conversion
was employed in the proposed readout circuit using a voltage divider concept consisting of
a target resistive sensor (Rsensor) and a reference resistor (Rre f ). The function of the readout
board involved the following: (1) collecting and multiplexing the sensor output, which was
the voltage divider output; (2) processing the collected sensor output and then convert-
ing it to the digital form using an analog-to-digital converter (ADC); and (3) sending the
converted digitalized data to a PC or smartphone using wired or wireless communication.
The subsystems of the readout board were as follows: (1) multiplexers (MUX); (2) a digital
potentiometer (DPOT); (3) a microcontroller unit (MCU); (4) a micro-universal serial bus
(USB); (5) a Bluetooth unit; and (6) a power management circuit consisting of voltage
regulators and a battery management circuit, as illustrated in Figure 2. The readout circuit
was fabricated on one top and one bottom printed circuit boards (PCBs). The top PCB
contained the MUX and the DPOT, whereas the bottom PCB consisted of the MCU, the BLE
unit, and the power management block.
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2.1.1. Top PCB Electronics

S1–S60 in Figure 2 represents the 60 two-electrode resistive sensors connected to the
readout board via a flexible PCB (FPCB) connector “FH29B-120S-0.2SHW(05)” (Hirose-
Connector, Kanagawa, Japan). One electrode of each resistive sensor was connected to
the supply voltage (VDD) provided by the power management block of the readout board,
while the other electrode of each sensor was connected to the multiplexer input. To
individually address the 60 different sensors, two 32 × 1 MUX “ADG732BSUZ” (Analog
Device, Norwood, MA, USA) were utilized. Due to the broad resistance range of the target
sensor (1 KΩ–1 MΩ), using a fixed value of Rre f in the voltage divider circuit resulted in
a voltage saturation at the ADC input, especially for the sensors that fell in the extreme
corners of the target resistance range. To avoid this problem, the Rre f value was tuned
similar to the Rsensor value using a dual-channel 8-bit DPOT “AD5242BRZ1M” (Analog
Device, Norwood, USA). The resistance value of the DPOT (Rre f ) can be varied from 60 Ω
to 1 MΩ by programming the registers. The DPOT had three terminals: A, B, and wiper.
The wiper position of the DPOT was programmed by the Inter-Integrated Circuit (I2C)
protocol and can be set to 256 distinct positions. Corresponding to the wiper position, the
Rre f of the readout system can be set and calculated using Equation (1):

Rre f= RWA(D) =
256

256 − D
×RAB +RW , (1)

where RWA is the resistance between the DPOT “A” terminal and the wiper terminal, D is
the decimal equivalent of the binary code between 0 and 255 which is loaded in the 8-bit
register, RAB is the nominal end-to-end resistance and equals to 1 MΩ, and RW is the wiper
resistance contributed by the ON-resistance of the internal switch and equals to 60 Ω.
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2.1.2. Bottom PCB Electronics

The sensor data collected from the top PCB was sent to a MCU “CY8C5888LTILP097”
(Cypress Semiconductors, San Jose, USA), also called PSoC5LP, on the bottom PCB. The
PSoC5LP family provides a combination of a 32-bit Arm® Cortex®-M3 processor with
a flexible, configurable block of an analog subsystem, digital subsystem, routing, and
general purpose input/outputs (GPIOs), which enables a high level of integration in a wide
variety of applications. The analog multiplexer output was digitalized using an internal
PSoC5LP 16-bit ADC operated in the single-ended mode with a rail-to-rail output. Once
the digitalized ADC output (ADCvoltage) was obtained, the unknown value of Rsensor can
be calculated using Equation (2):

Rsensor =
Rre f ×

(
VDD − ADCvoltage

)
ADCvoltage

. (2)

where Rsensor is the unknown sensor resistance, Rre f is the reference DPOT resistance,
VDD is the supply voltage, and ADCvoltage is the digitalized ADC output. The ADC step
corresponded to 76 µV, which could detect a 0.1% variation of the sensor output with
a resistance range between 1 KΩ and 1 MΩ (i.e., 1 Ω change for the 1 KΩ base sensor
resistance and 1 KΩ change for the 1 MΩ base sensor resistance). The readout board was
designed to operate at a VDD of 5 V. The power could be provided to the board by using a
USB cable or a rechargeable battery. A 3.7 V and 500 mAh lithium-ion polymer battery (LiPo)
was employed in the prototype, which fit the 3 cm × 3 cm wristband chassis. To provide a
constant 5 V supply, a step-up/boost converter “TPS61240IDRVRQ1” (Texas Instruments,
Dallas, USA) was adopted. A low-dropout (LDO) voltage regulator “TLV75733PDBVR”
(Texas Instruments, Dallas, USA) was selected to provide a constant voltage VCC of 3.3 V to
the BLE technology. The processed information was transferred to the user’s smartphone
via a BLE unit “SPBTLE-1S” (STMicroelectronics, Geneva, Switzerland). The BLE unit
was interfaced with the MCU through the Universal Asynchronous Receiver/Transmitter
(UART) protocol at a baud rate of 115,200 bits per second. The board also included a
type B micro-USB “UJ2-MIBH2-4-SMT-TR” (CUI device, Lake Oswego, OR, USA), which
powered the system and communicated with a PC using USB 2.0 standards. The detailed
specifications of the components considered during the design are listed in Table 2.

Table 2. Component specifications considered for the top and bottom PCBs designs.

Parameter Value Unit

ADG732BSUZ specifications

Operating supply voltage 1.8–5.5 V

Supply current 20 µA

ON-resistance 5.5 Ω

AD5242BRZ1M specifications

Operating supply voltage 2.7–5.5 V

Supply current 100 nA

Digital potentiometer (DPOT) resistance range 60–1 M Ω
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Table 2. Cont.

Parameter Value Unit

PSoC5LP specifications

Operating supply voltage 1.71–5.5 V

Supply current at 6 MHz 3.1 mA

Supply current at 24 MHz 8.9 mA

Supply current in the sleep mode 2 µA

Internal analog-to-digital converter (ADC) input range 0–5 V

Internal ADC reference voltage (Vref = VDDA/4) 1.25 V

Internal ADC conversion rate 10 KSPS

TPS61240IDRVRQ1 specifications

Output voltage 5 ± 2% V

Input voltage range 2.3–5.5 V

Supply current 30 µA

Output current 450 mA

TLV75733PDBVR specifications

Output voltage 3.3 ± 1% V

Input voltage range 1.45–5.5 V

Supply current 25 µA

Output current 1 A

SPBTLE-1S specifications

Operating supply voltage 1.7–3.6 V

Bluetooth version v4.2 NA

Radiated transmit power +4 dBm

Receiver sensitivity −84 dBm

Antenna frequency 2402–2480 MHz

Supply current while receiving 7.7 mA

Supply current while transmitting at 5 dBm 15 mA

Supply current while transmitting at 0 dBm 11 mA

Supply current while in the sleep mode 0.9 µA

The photos of the assembled top and bottom PCBs are shown in Figure 3. The small
form factor is an essential criterion to make the device suitable for wearable applications.
To obtain a small form factor, two 0.2 mm thick PCBs were designed to stack them back-to-
back, instead of designing the readout circuit on a single large PCB. Two two-layered PCBs
were preferred as a substitute for a four-layered PCB to reduce the fabrication cost. Both
the dimensions of the top and bottom PCBs were 3 cm × 3 cm, making the device suitable
for wearing as a wristband. The “Eagle 9.4.2” software (Autodesk, San Rafael, CA, USA)
was used to design the layout of the two-layer readout PCBs.
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Figure 3. (a) Assembled top printed circuit board (PCB) with labelled parts (3 cm × 3 cm × 0.2 mm);
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2.2. Firmware and Algorithm

To develop the firmware for the readout board, the following subsystems of PSoC5LP
were utilized, as shown in Figure 4:

• An I2C block to communicate with the DPOT;
• A 16-bit Delta-Sigma ADC;
• Control registers to control the selection bits of 32×1 MUX;
• 2 × 1 analog MUX to combine the two 32 × 1 MUX outputs;
• A USB block to control the USB2.0 bus;
• A UART block to communicate with the BLE unit;
• A voltage digital-to-analog converter (VDAC) block to adjust the voltage of signals for

UART transmit (TX) and receive (RX) lines.
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The source code was written in the embedded C programming language and was
compiled using a “PSoC Creator 4.2” compiler released by Cypress semiconductors. A
“CY8CKIT-002 PSoC MiniProg3 Program & Debug Kit” (Cypress Semiconductor, San
Jose, USA) was utilized to test and debug the board functionalities through Serial Wire
Debug (SWD).

The flow chart of the proposed system is presented in Figure 5. After the system
initialization was completed, a supply voltage was applied to the sensors. The finalized
Rsensor was obtained after tuning the Rre f to match the value of Rsensor. A few steps were
required in the firmware to achieve tuned Rre f . First, the value of Rre f was set to mid-range
(Rmid), and ADCvoltage was obtained. Using the ADCvoltage and Equation (2), the value of
Rsensor was calculated. During the next step, the value of Rre f was set to the computed
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value of Rsensor in the previous step. Thus, the process automatically balanced the value of
Rre f to Rsensor and avoid the voltage saturation problem caused by the fixed Rre f , which
resulted in accurate Rsensor values. The 60 sensors were measured one after the other in
series, and equating Rre f to Rsensor was performed every time before reading each sensor,
using the firmware coding. Thus, the process was repeated 60 times until all the sensor
values were calculated, and the obtained sensor data (Rsensor) were transferred to a PC via
USB or a smartphone via BLE.
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2.3. User Interface: GUI and Smartphone Application

A customized GUI was developed to connect the readout board and the PC using
a USB Communication Port (COM port). The GUI written in Python provided a real-
time display plot to visualize the captured sensor data from the device and saved the
obtained sensor data in a Comma Separated Values (CSV) format file. The “Tkinter” GUI
framework and the “matplotlib” library were utilized to build the mentioned functionalities.
Meanwhile, the USB communication was established using the “pySerial” library, and all
the libraries were compiled into a single executable file using the “pyinstaller” library.

Figure 6 illustrates the sensor setting window and the experiment window of the
customized GUI. The sensor setting window of the GUI consisted of 60 checkboxes to
individually select/unselect a sensor and a connectivity check button. If the device was
connected successfully, the button would turn green and showed “Connected”; otherwise,
it showed “Disconnected” in red. The experiment window allowed the user to set the target
experiment duration, perform sensor calibration, visualize the resistor values in a graph,
select the X-axis to linear or log scale and start/stop the experiment.
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Meantime, the user can also use a smartphone application as a user interface to receive
the data from the readout board. The “BLE Scanner” application (Bluepixel Technologies
LLP, Ahmedabad, India) was used as a prototype to display the raw resistance values of the
sensors, which were transmitted by the BLE unit in the board. The SPBTLE-1S BLE module
was compliant with Bluetooth® specifications v4.2 with an embedded ceramic antenna that
operated at 2.4 GHz. The device was recognizable with the name “BlueNRG-1” in the “BLE
Scanner” application to connect with the readout board. Once the connection was made,
communication could occur between the readout board and the smartphone through BLE.
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3. Results
3.1. Case Analysis 1: Test Setup with a Discrete Resistor Array and Electrical Testing Results

The proposed system was tested electrically for verification, and Figure 7a illustrates
the test setup. To mimic the 60-sensor array, an electrical equivalent model with a 60-resistor
array was fabricated on a PCB, as shown in Figure 7b. The 60-resistor array was realized by
0.1%-tolerance thin-film discrete resistors, where the resistance varied from 1 KΩ to 1 MΩ.
The resistor array was connected to the readout board using an FPCB jumper cable. The
USB cable connected the readout board and the customized PC GUI to power up the board.
In the GUI, the resistance values of 60 sensors were displayed (Figure 7c), which varied
with respect to time, and the results were saved in the CSV format file to record the sensor
response. Figure 7d shows the system response displayed in the smartphone.
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To validate the error rate of the proposed system, Equations (3)–(5) were utilized:

Error(avg)(%) =
Rexp − Rmeas(avg)

Rexp
×100, (3)
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Error(max)(%) =
Rexp − Rmeas(max)

Rexp
×100, (4)

Error(min)(%) =
Rexp − Rmeas(min)

Rexp
×100, (5)

where Rexp is the expected sensor resistance value measured using a digital multimeter
“Agilent 34401A” (Keysight Technologies, Santa Rosa, USA) and Rmeas is the measured
sensor resistance value obtained using the proposed readout board. In a span of 60 s (1 min),
60 sensor data were collected 51 times, resulting in 3060 sensor samples. These samples
were used to calculate the error rates as per Equations (3)–(5). The maximum, minimum,
and average values of the measured sensors resistances and the corresponding values
of error rates are listed in Table 3. The sensor response Rexp versus Rmeas(avg) showed a
linear trend over the target measurement range, as depicted in Figure 8. The worst-case
error rate reported during the experiment was under 2.5%. Since it was tedious to display
the system’s transient response for all 60 values of the sensors, the transient response is
illustrated for a span of one minute in Figure 9, with only six different sensor resistances,
which were 1 MΩ, 750 KΩ, 500 KΩ, 100 KΩ, 50 KΩ, and 10 KΩ.

Table 3. Sixty sensor readings—expected versus measured sensor resistances.

Sensor Rexp (Ω) Rmeas(avg) (Ω) Rmeas(max) (Ω) Rmeas(min) (Ω) Error(avg) (%) Error(max) (%) Error(min) (%)

R1–R5 1,000,000 1,009,537.00 1,024,401.20 997,827.65 −0.95 −2.44 0.22
R6–R10 800,000 811,997.40 818,773.68 800,976.85 −1.50 −2.35 −0.12
R11–R15 750,000 754,240.60 765,247.17 743,990.80 −0.57 −2.03 0.80
R16–R20 500,000 504,167.20 511,015.70 498,515.00 −0.83 −2.20 0.30
R21–R25 300,000 301,481.70 305,967.77 298,185.59 −0.49 −1.99 0.60
R26–R30 205,000 205,518.40 206,714.55 200,183.09 −0.25 −0.84 2.35
R31–R35 100,000 100,021.60 102,327.48 99,236.38 −0.02 −2.33 0.76
R36–R40 75,000 75,192.49 75,826.99 74,634.44 −0.26 −1.10 0.49
R41–R45 50,000 50,574.35 51,057.00 49,858.35 −1.15 −2.11 0.28
R46–R50 30,000 30,729.80 30,745.39 29,690.22 −2.43 −2.48 1.03
R51–R55 20,500 20,627.91 20,882.63 20,258.24 −0.62 −1.87 1.18
R56–R60 10,000 10,045.01 10,149.11 9971.02 −0.45 −1.49 0.29Sensors 2022, 22, x FOR PEER REVIEW 12 of 16 
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3.2. Case Analysis 2: Test Setup with a Force-Sensitive Resistor and Sensor Testing Results

As the second case analysis, the developed system was tested by interfacing with a
commercially available force-sensitive resistor “FSR-406” (Interlink Electronics®, Camarillo,
USA). The “FSR-406” varies its resistance, depending on the force applied to the sensing
area. The non-actuated sensor resistance is larger than 1 MΩ, and its resistance decreases
exponentially as per the force applied on the sensing area. The sensor had a sensing area
of 0.75” × 1.5” and can sense applied force in the range of 10 g to 10 Kg. During the
experiment, “FSR-406” was connected to the readout board, as illustrated in Figure 10a, and
the sensor response measured by the readout board (Rboard) was recorded throughout the
applied weight range from 50 g to 750 g. Simultaneously, the sensor response measured by
a digital multimeter (Rdm) was also captured using the digital multimeter “Agilent 34401A”
(Keysight Technologies, Santa Rosa, USA). Ten readings were taken and averaged to obtain
both Rboard and Rdm. The comparison results between Rboard, Rdm, and the corresponding
error rates calculated during the experiment are listed in Table 4. The response of the
designed readout board showed a close correlation with the response measured using a dig-
ital multimeter, demonstrating a satisfactory performance as illustrated in Figure 10b. Due
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to the unstable response of “FSR-406” at lower weights, the experiments were conducted
for weights of 50 g and above to avoid inaccurate results.
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Table 4. Results of the readout board with “FSR-406” for the weight range of 50–750 g.

Weight (g) Rdm (KΩ) Rboard (KΩ) Error (%)

50 6.45 6.42 0.47
70 5.15 5.06 1.75

100 3.54 3.51 0.85
200 2.60 2.54 2.31
500 2.35 2.30 2.13
700 1.57 1.57 0.00
750 1.41 1.40 0.71
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4. Discussion and Conclusions

The overall system performance is summarized in Table 5. In a span of 60 s (1 min),
60 sensor readings were collected and stored in the CSV file 51 times, resulting in a total of
3060 sensor measurements. This led to a processing speed of 51 Hz, equivalent to 19.6 ms, to
collect, process and transmit the data from a single sensor to the GUI. The processing speed
often depends on the input resistance range. Thus, the system targeting solely piezoresistive
sensors provided a somewhat faster response due to the lower target resistance. However,
typical e-nose gas detection systems, which target chemiresistive sensors of a wide range
up to 1 MΩ, offer a processing speed of 0.1 Hz to 10 Hz (10 s to 100 ms per sensor) [33].
Compared with those systems, the proposed method provides a processing speed of
51 Hz (19.6 ms per sensor), which is significantly faster. Also, an application such as
a comprehensive breathing analyzer requires a sampling frequency range of 0.1 Hz to
0.8 Hz [5], which can be easily satisfied by the proposed system. The readout system
achieved a worst-case error rate of less than 2.5%. These variations were caused by the
combination of the supply voltage fluctuation of regulators by ±2%, the DPOT error rate
of ±0.5 least significant bit (LSB), the 0.1% tolerance of thin-film discrete resistors in the
resistor array, and the ADC conversion error. The system power consumption was around
95 mW, and the majority of the power was consumed while the BLE was transmitting
the data to the user. The low-power-consumption profile makes the device suitable for
battery-powered wireless sensor networks.

Table 5. System performance summary.

Measurable resistance range 1 KΩ–1 MΩ

Error rate 0–2.5%
Number of sensors 60; can be expandable
Device dimension 3 cm × 3 cm
Supply voltage 5 V
System power consumption ~95 mW at 5 V
Processing speed/data rate 51 Hz
ADC resolution 16 bits
Approximate system cost $100

The possible limitation of the system can be its scalability to adopt a more extensive
size array. The expansion of the system to more than 60 sensors makes the system bulkier
and might not be appropriate for wearable electronics. As future work, the prototype will
be tested chemically by interfacing with chemiresistive gas sensors to detect the target
analytes of various concentrations.

To summarize, a compact universal-type resistive sensor array readout based on
the R–V conversion is presented. This work demonstrates the novelty and potential
application of an integrated wearable sensing system with the following attributes: a
low-cost system with a wireless communication capability, a facility to accommodate a
high-density resistive sensor array, and portable readout electronics with a small form
factor of 3 cm × 3 cm. The system behaves as an electrophysiological sensing interface for
wearable healthcare monitoring systems, supporting multi-functionality hybrid sensing,
and can be implemented as a readout for e-skin or e-nose. These advantages, especially
low-cost, small size, and low power consumption, allow the device to be utilized in
battery-powered wireless sensor network applications and next-generation self-sustainable
integrated wearable systems in the IoT era.
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