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A B S T R A C T   

Routine SARS-CoV-2 surveillance in the Western Cape region of South Africa (January-August 2021) found a 
reduced RT-PCR amplification efficiency of the RdRp-gene target of the Seegene, Allplex 2019-nCoV diagnostic 
assay from June 2021 when detecting the Delta variant. We investigated whether the reduced amplification 
efficiency denoted by an increased RT-PCR cycle threshold value (RΔE) can be used as an indirect measure of 
SARS-CoV-2 Delta variant prevalence. We found a significant increase in the median RΔE for patient samples 
tested from June 2021, which coincided with the emergence of the SARS-CoV-2 Delta variant within our sample 
set. Whole genome sequencing on a subset of patient samples identified a highly conserved G15451A, non- 
synonymous mutation exclusively within the RdRp gene of Delta variants, which may cause reduced RT-PCR 
amplification efficiency. While whole genome sequencing plays an important in identifying novel SARS-CoV-2 
variants, monitoring RΔE value can serve as a useful surrogate for rapid tracking of Delta variant prevalence.   

Genomic surveillance of the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) by whole genome sequencing (WGS) has 
played a critical role in identifying and monitoring the dissemination of 
variants of concern (VOCs) (Abdool Karim and de Oliveira, 2021; WHO, 

2021). However, WGS is costly and time-consuming, and not all coun-
tries have the resources to do this at scale to get detailed VOC epide-
miological information. 

Multiplex reverse transcriptase polymerase chain reaction (RT-PCR)- 
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E-gene targets; RT-PCR, reverse transcriptase polymerase chain reaction; NGS-SA, Network for Genomic Surveillance South Africa; GISAID, Global Initiative on 
Sharing All Influenza Data; AUC, Area Under the Curve; GTF, Gene Target Failure; IQR, Interquartile range. 
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based diagnostic tests for SARS-CoV-2, which simultaneously amplify 
and detect multiple SARS-CoV-2 gene targets, such as the Spike (S)-, 
Nucleocapsid (N)-, Envelope (E)- and RNA-dependent-RNA-polymerase 
(RdRp) genes, are the primary tools used to diagnose cases and define 
epidemic waves. Current commercial tests were designed to detect 
ancestral SARS-CoV-2 sequences and have not been optimised for the 
viral genomic diversity that has subsequently emerged (WHO, 2020). 
Despite this, built-in redundancy through detecting multiple gene tar-
gets ensures that these assays continue to be effective tools for diag-
nosing infections by contemporary variants as diagnostic assays do not 
need to detect all target genes. For example, deletions of amino acids 69 
and 70 within the S-gene of SARS-CoV-2 Alpha and Omicron variants 
was associated with failure to detect this target by some commonly used 
commercial diagnostic assays (e.g. ThermoFisher TaqPath, Waltham, 
USA). Fortuitously, because the other targets are largely unaffected, this 
S-gene target failure (S-GTF) has been used as a convenient surrogate 
marker for monitoring prevalence of SARS-CoV-2 Alpha variant (Brown 
et al., 2021; Volz et al., 2021). 

As the Delta variant becomes the predominant VOC across the world, 
a similar diagnostic RT-PCR-based marker has potential to enable 
similar rapid epidemiological assessment and research. An evaluation of 
routine diagnostic results together with WGS, we show that infection 
with the Delta variant is associated with reduced RdRp target amplifi-
cation efficiency and propose that this can be used for tracking the 
prevalence of this variant. 

Routine SARS-CoV-2 diagnostic testing in the South African public 
health sector, which is used by circa 80 % of the population is performed 
by the National Health Laboratory Service (NHLS). NHLS laboratories 
also form part of the network for genomic surveillance South Africa 
(NGS-SA) where a subset of routine diagnostic samples are sequenced as 
part of the genomic surveillance activities (Msomi et al., 2020). WGS 
was performed using either GridION X5 (Oxford Nanopore Technolo-
gies, Oxford, United Kingdom) or MiSeq (Illumina, San Diego, USA) 
sequencing platforms (Tegally et al., 2021). To ensure accurate clade 
assignment, we only included sequences with less than 3000 bases 
missing, no frameshift mutations and no misplaced stop codons. All 
sequences were deposited on the Global Initiative on Sharing All Influ-
enza Data (GISAID) SARS-CoV-2 sequence repository (https://www.gi 
said.org/) (Supplementary Table 1). 

Between March 2020 and August 2021, the Seegene Allplex 2019- 
nCoV assay (Seoul, South Korea), a single-tube multiplex assay with 
three SARS-CoV-2 gene targets: E, RdRp and N, was one of the most 
commonly used RT-PCR platforms across the NHLS. From May 2021, we 
observed a consistent increase in the number of samples testing positive 
with the Seegene Allplex nCoV-19 assay that had either delayed or ab-
sent RdRp target detection (cycle threshold (Ct) value) relative to E gene 
and N gene targets. Prior to this period, the average difference between 
the Ct values for RdRp and E-gene targets (RΔE) was around 2. From 
June 2021, the RΔE in diagnostic samples increased to a median of 5 
(Fig. 1). We investigated if the efficiency of RdRp target amplification 
and detection was affected by mutations in the predominant circulating 
variant. 

The Western Cape province where the study was conducted, entered 
its third epidemic wave on 21 June 2021 (week 25), with more than 
1020 cases reported daily and >20 % week-on-week increase in the 7- 
day moving average of new cases. During the same period, genomic 
surveillance data showed a rapid increase in Delta variant infection, 
which rapidly replaced Beta as the predominant VOC in the region 
(Fig. 2). As the cases surged, the proportion of Delta variant increased 
from just over 20 % of total samples sequenced in May 2021, to >90 % in 
August 2021. 

To investigate the observed RdRp target delay which coincided with 
the emergence of Delta, RdRp gene sequences of samples tested with the 
Seegene, Allplex 2019-nCoV assay were evaluated for mutations that 
could interfere with RT-PCR probe or primer binding. We identified a 
non-synonymous G15451A mutation (codon 671S) within RdRp gene of 

Delta variants, potentially responsible for the reduced amplification 
efficiency of the assay RdRp target. This highly conserved G15451A 
mutation was present in 100 % (369/369) of Delta variant sequences 
and not observed in Alpha (n = 11), Beta (n = 749) or Eta (n = 5) 
variants sequenced between March 2020 and 19 August 2021 (Supple-
mentary Fig. 1). This specific mutation was significant as it resulted in a 
single nucleotide mismatch in the second last base of the WHO- 
recommended forward primer binding site for RdRp amplification for 
most diagnostic assays targeting RdRP, including Seegene Allplex nCoV- 
19 (Corman et al., 2020). In addition, we previously found that a syn-
onymous G15452C mutation (codon 671S) in a minority of Beta variant 
sequences (3′-end of this forward primer binding site) also affected RdRp 
gene target detection when using the Seegene, Allplex 2019-nCoV assay 
(Supplementary Fig. 1). 

To systematically assess the effect of this Delta variant G15451A 
mutation on Seegene assay RdRp target amplification efficiency relative 
to that of ancestral strain and Beta variant, we compared the median 
relative RdRp and E gene target Ct values (RΔE) among the different 
World Health Organisation SARS-CoV-2 designated variants detected in 
diagnostic samples over this time period. Of the 1455 sequences 
retrieved, 39 sequences with incomplete Ct data was removed, leaving 9, 
731, 362 and 314 were Alpha, Beta, Delta and other variants respec-
tively. Delta variant samples had a significantly increased RΔE (n = 362, 
median = 5.74, Interquartile range (IQR) 4.76–6.55) when compared to 
non-Delta variant samples (n = 1056, median = 2.54, IQR 2.13–3, p <
0.001) (Supplementary Fig. 2). The diagnostic ability of the RΔE value 
to identify the Delta variant was evaluated using a receiver operating 
characteristic (ROC) curve (Supplementary Fig. 3). Using a RΔE 
threshold of > 3.5 cycles we were able to accurately identify Delta 
variant positive samples within the sample set with 93.6 % sensitivity 
and 89.7 % specificity, correctly classifying 90 % of cases (Area under 
the curve (AUC) = 0.9663). When the threshold is increased to 4 and 4.5 
cycles, the specificity was improved to 96.5 % and 98 % respectively but 
the sensitivity was reduced to 86.7 % and 80 % respectively. 

In this article we show that reduced amplification efficiency of the 
RdRp gene target of the Seegene, Allplex 2019-nCoV assay can be used 
as an indirect measure of SARS-CoV-2 Delta variant prevalence in a 
population. Using the RΔE value could therefore serve as a reliable 
surrogate for genomic sequencing to approximate the spread of the 
SARS-CoV-2 Delta variant. While using the RΔE is only a surrogate 
marker of Delta variant identity, assay Ct values have proven useful in 
the past to identify Alpha variant prevalence as well as serving as an 

Fig. 1. Mean difference between RdRp and E-gene Ct values for samples tested 
by the Seegene Allplex 2019-nCoV assay (ΔCt). The mean ΔCt is shown for 
samples testing positive for both E and RdRp targets for each week of 2021 up 
to 31 July. Only samples tested in the Western Cape region of South Africa are 
included in the analysis. Error bars represent 1 standard deviation. 
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independent predictor of disease severity (Yu et al., 2020; Choudhuri 
et al., 2020). Limitations to our study concern the proprietary nature of 
the Seegene, Allplex 2019-nCoV assay. We are unable to confirm the 
exact genomic loci amplified by the assay primers and probes. Evidence 
including the RdRp target delay in Delta variants from this study, RdRp 
complete GTF in a minority of Beta variants and confirmation by See-
gene that the G15451A mutation in Delta variants leads to a mismatch in 
the primer binding site, suggest that these diagnostic primers overlap 
with the WHO-recommended RT-PCR primer sets stemming from Cor-
man et al., 2020 (Corman et al., 2020). This study highlights the need for 
continued monitoring of the efficacy of current commercial SARS-CoV-2 
diagnostic assays in a setting where we are observing the constant ge-
netic drift of a novel pathogen. 
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Fig. 2. Weekly frequency and distribution of SARS-CoV-2 variants circulating in the Western Cape region of South Africa between 1 January and 31 August 2021.  
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Appendix A. Supplementary data 

Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.jviromet.2022.114471. 
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