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ABSTRACT: The CETSA and Thermal Proteome Profiling (TPP) analytical methods are
invaluable for the study of protein—ligand interactions and protein stability in a cellular
context. These tools have increasingly been leveraged in work ranging from understanding
signaling paradigms to drug discovery. Consequently, there is an important need to optimize
the data analysis pipeline that is used to calculate protein melt temperatures (T,,) and relative
melt shifts from proteomics abundance data. Here, we report a user-friendly analysis of the
melt shift calculation workflow where we describe the impact of each individual calculation
step on the final output list of stabilized and destabilized proteins. This report also includes a
description of how key steps in the analysis workflow quantitatively impact the list of
stabilized/destabilized proteins from an experiment. We applied our findings to develop a
more optimized analysis workflow that illustrates the dramatic sensitivity of chosen calculation
steps on the final list of reported proteins of interest in a study and have made the R based
program Inflect available for research community use through the CRAN repository
[McCracken, N. Inflect: Melt Curve Fitting and Melt Shift Analysis. R package version 1.0.3, 2021]. The Inflect outputs include melt
curves for each protein which passes filtering criteria in addition to a data matrix which is directly compatible with downstream
packages such as UpsetR for replicate comparisons and identification of biologically relevant changes. Overall, this work provides an
essential resource for scientists as they analyze data from TPP and CETSA experiments and implement their own analysis pipelines
geared toward specific applications.
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B INTRODUCTION centrifuged to pellet aggregated protein. The supernatant
containing the soluble fraction is decanted once again,
proteolytically digested, cleaned up, and labeled with isobaric
chemical tags such as tandem mass tag (TMT) reagents for
multiplexed analysis by LC-MS/MS. Relative peptide fragment
abundance values from a LC-MS/MS experiment are analyzed
using a proteomics search program, and the list of reported
protein melt curves is further processed manually or by an
analysis program to yield a list of proteins affected in the
experiment and across replicates. Each step in this described
computational process, while having an essential role in the
execution of the assay, also has its own potential for adding
variability to the final output and conclusions from the study.
Challenges with accounting for variability were addressed in
part by R- and Python-based pipelines that calculate the melt
shift curves from a search algorithm data set.”® The pipeline
that accompanied the TPP method, hereafter described as

Within the complex cellular milieu, there has long been an
inability to screen for untargeted changes in protein
stabilization or destabilization. The advent of Cellular Thermal
Shift Analysis (CETSA)” and thermal proteome profiling
(TPP)** has rapidly increased our ability to measure changes
in protein stability within the context of the intact proteome.
The CETSA/TPP workflow begins with cultures of cells
exposed to different conditions such as those treated with a
small molecule vs vehicle or that have different genetic
backgrounds.”® After culture, the cells are lysed in a
nondenaturing extraction buffer, and the cellular debris is
pelleted and discarded. The supernatant is decanted, aliquoted,
and subsequently exposed to a thermal gradient (typically
using a PCR machine) ranging from ambient temperature to
90 °C. Alternatively, intact cells can be exposed to a thermal
gradient.* During this heat treatment, the bulk of the proteins
in the solution unfold at a temperature range based on their

inherent biophysical properties such as individual structure and Special Issue: Software Tools and Resources 2021
their interactions with other partners (including proteins, small Received: October 31, 2020
molecules, metabolites, etc.). As they unfold, proteins have a Published: March 4, 2021

greater propensity for aggregation with nearby unfolded
proteins and may also precipitate postaggregation. After the
short thermal treatment, the heat-treated samples are
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“TPP-TR,” uses raw abundance values from a proteomics
program and processes the data through several steps prior to
calculating melt temperatures (T,,) and by comparison melt
shift values. The operations used in these steps include data
filtering, normalization, meltome quantification by curve fitting
with correction, and individual protein melt fitting, along with
melt temperature and shift calculations.

Despite the availability of resources like TPP-TR that do the
heavy lifting in melt shift analysis, there has been no report to
date that describes how the chosen analysis steps can impact
the final study conclusions. Along with this void, additional
challenges remain related to the computational analysis. In
order to address these deficiencies related to the downstream
computational data analysis, we investigated the existing TPP-
TR workflow with aims to better describe and optimize the
output of a TPP experiment. Herein, we describe the relative
impact of each melt shift analysis step on the total number of
proteins and melt shift standard deviations. Our analysis shows
that the impact of the data analysis workflow on the results
reported from a TPP experiment is significant and rivals the
impact of the aforementioned technical issues on the output.
We used our findings to develop an analysis workflow that acts
as a complementary pipeline to the existing TPP-TR. Our R
based analysis pipeline, named “Inflect,” is publicly available to
the research community so that it can be utilized to aid in the
ease and accuracy of CETSA/TPP analysis and for comparison
to results that can already be obtained with other analysis
programs; furthermore, Inflect will be updated as we continue
to update the data analysis workflow. Our findings summarized
below will allow researchers to not only better leverage the
results from the costly and time-consuming TPP experiments
but also act as a resource for those who develop their own
algorithms for analysis.

B MATERIALS AND METHODS

Data Sets

The Peck Justice Data set—the first data set used in our
analysis—is one where the investigators illustrated a novel
approach for utilizing the TPP-TR workflow to understand the
impact of genetic mutations on the melt of the proteome.’
Their data set was generated from S. cerevisiae strains, with
mutations in the ORFs encoding proteasome subunits Pup2
and RpnS. The first and third data sets (pl and p3) generated
from a wild type (WT) strain and mutant pup2 and rpn$ cells
were used in our pipeline analysis with the resulting data
matrix allowing for comparison between replicates. Raw
abundance values reported from a search in Proteome
Discoverer were used in our analysis, and the raw data files
are available from PRIDE Project ID PXD017222. The Perrin
data set—the second data set used in the analysis—was
reported by Perrin and co-workers using CETSA to identify
targets of Panobinostat in organs and blood of rodents and
humans, respectively.” The raw data files were analyzed in
Proteome Discoverer Version 2.4. Files for the rat kidney and
liver were obtained from PRIDE Project ID PXD015427
(sample IDs 02290 F1 _R1_P0189540B,
02293_F1_R1_P0189550B, 02066 _F1_RI_P0177049B, and
02065_F1_R2_P0177039B), while files for the human PBMC
and whole blood data sets were obtained from PRIDE Project
ID PXDO015373 (files 02032 _F1 R1 P0175529B and
02604 _F1 R1 P0204098E). Proteome Discover searches for
the rat data set were searched against Rattus norvegicus NCBI
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062312, using the trypsin enzyme setting, a precursor mass
tolerance of 20 ppm, and a fragment mass tolerance of 0.5 Da.
Regression settings for the search used nonlinear regression
with coarse parameter tuning. The same search settings were
used for the human blood data sets, except the Homo sapiens
(092919) database from Uniprot was used.

Search results from human whole blood raw data sets were
used as the “WT” data sets in the pipelines, while the
peripheral blood mononuclear cell (PBMC) data sets were
designated as the “mutant” data sets. Melt shifts (DT,) were
calculated by subtracting the “mutant” melt temperature from
the “WT” melt temperature, and destabilized proteins were
those with positive shifts while stabilized proteins were those
with negative shifts. After searching against the Rattus
norvegicus proteome, the raw abundance values for each
protein were also analyzed using both the TPP-TR and our
pipeline in R. The kidney data sets were set as the “mutant”
strains, while the liver data sets were designated as “WT” in
order that each of these two organs could be compared against
the liver data sets. The analysis workflows were the same as
those that were previously described for the Peck-Justice data

6
set.

JMP Analysis

The statistical analysis software JMP Pro 14 and Pro 15 were
used to randomly vary five of the factors used in the custom
TPP analysis workflow along with their respective two-level
ranges to generate a full factorial design of experiments (DoE).
A total of 32 experiment conditions were created, and each of
the 12 data sets discussed in this report were used to evaluate
the performance of each combination of steps (288 total
experiments). The outputs of the workflow analyses were both
the total number of reported significant proteins along with the
standard deviation of the observed melt temperatures. These
outputs not only allowed for an understanding of the “signal”
that came out of each workflow combination but also gave an
appreciation of the level of uncertainty from the overall data.
Desirable conditions were those where there were high levels
of proteins reported with low levels of standard deviation. A
definition of significance was used to find melt curves with a
calculated R* greater than or equal to 0.95 and melt shifts with
values greater than 2 standard deviations from the mean melt

shift.
R Analysis

Code development and execution were done in RStudio
version 1.3.1056. R programs were used first for the
development of the TPP analysis pipeline that we describe.
The optimized workflow “Inflect” was also coded in R and
RStudio.'” The current version of Inflect contains several
functions including readxl,'’ writexl," optimr,”’ data.table,"*
plotrix,"* tidyr,"® and ggplot2.'” Inflect currently analyzes
biological replicate data sets separately from each other but
summarizes the results from all replicates in several files that
describe not only the melt temperatures but which proteins
had significant melt shifts across the replicates. The data matrix
output can be used directly as an input for UpsetR.'"® R
programs were also coded for the multivariate analyses used to
determine the relative impact of analysis steps on the final TPP
pipeline outputs. Various diagrams shown in the figures were
also generated within RStudio. GraphPad Prism 8 was also
used for the generation of plots.

https://dx.doi.org/10.1021/acs.jproteome.0c00872
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Figure 1. Pictorial representation of the general data analysis workflow from a TPP experiment. Step 1 in the pipeline excludes protein abundance
data that do not meet certain criteria, while step 2 normalizes the abundance values for each protein. Step 3 quantifies the total protein meltome
(i.e., statistical functions like median abundance in the case of the current TPP-TR package), and the curve fit routine in step 4 uses nonlinear
equations to describe the meltome shape. Step 5 calculates correction values. Curve fitting occurs for individual proteins in step 6, while exclusion is
used again in step 7 to remove more proteins that do not meet fit quality criteria. The calculation of the melt temperature for each protein occurs in
step 8 after which the melt shift is calculated in step 9. The final step 10 involves the summary of the proteins with significant stabilization or

destabilization.

Inflect Accessibility

The Inflect code is available through the CRAN repository.'
The function processes data for each set of replicates that are
specified by the user (“Control” and “Condition”). The
outputs of this program are as follows: The Results.xlsx file
lists the calculated melt shifts and related data for each protein
regardless of the criteria (R* and standard deviations). The
SignificantResults.xIsx file lists the calculated melt shifts and
related data for each protein that was considered significant by
the criteria above. The Curves folder contains the melt curves
(in pdf format) for each protein regardless of the significance
of the curve. The Significant Curves folder contains the melt
curves (in pdf format) for significant proteins only. The
Normalized Condition and Control result files contain the
normalized abundance values for each protein and at each
temperature. The Waterfall plot shows the calculated melt
shifts across the proteome in the study. The melt shifts are
plotted in order of value (from highest to lowest). A PDF
version of this plot is created in the Curves folder. Outputs also
include summary data matrix files that list melt shifts for each
significant protein calculated across the replicates (if
applicable); these files are amenable to further analysis as
desired (i.e, Venn diagramming applications and UpsetR'®).
Example files for Inflect analysis have been included as
Supporting Table 1 and Supporting Table 2 for Control 1.xlsx
and Condition 1.xlsx from a biological replicate from the pup2-
ts studies from prior work.

B RESULTS AND DISCUSSION

Protein melt shift calculation of TPP experimental data can be
delineated into 10 steps, which are summarized pictorially in
Figure 1. Step 1 excludes data that do not meet predefined
quality control criteria, followed by step 2 that normalizes the
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abundance values for each protein to the lowest temperature
abundance. Step 3 uses statistics to quantify the total protein
meltome, and the curve fit routine in step 4 uses nonlinear
equations to describe the meltome shape. Step 5 calculates
correction values based on the actual and predicted curve fit
values, after which constants are then used to correct
normalized abundance values for each protein. Curve fitting
again occurs in step 6 but on each individual protein
abundance that has been corrected. The computationally
laborious step 6 fits nonlinear equations to each of the
thousands of individual protein melt curves followed by
another exclusion in step 7 to remove proteins that do not
meet another set of quality control criterion. The calculation of
the melt temperature for each protein occurs in step 8, after
which the melt shift is calculated in step 9. The final step 10
involves the summary of the proteins with significant
stabilization or destabilization based on the shift of all
calculated proteins. We utilized two published CETSA/TPP
studies”'” with a total of 12 separate replicate data sets to
define and quantify the relative impact of each data analysis
step on the output from an experiment. The Peck-Justice
experiments investigated the impact of genetic mutations in
proteasome subunits Pup2 and RpnS on protein interactions in
S. cerevisiae on protein thermal stability and protein—protein
interactions. The Perrin experiments focused on the use of
CETSA to find Panobinostat targets in human blood and rat
organs while also using a 10-temperature gradient (without
drug) to probe for interactions in crude cell and tissues. These
data sets were chosen because they represent more recent
executions of the CETSA/TPP workflows, have publicly
available raw data that have not been previously normalized,
and also feature the use of TMT label sets. The analysis was

https://dx.doi.org/10.1021/acs.jproteome.0c00872
J. Proteome Res. 2021, 20, 1874—1888
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Figure 2. Dot plots of normalized abundance at each temperature relative to the abundance at the lowest temperature. The values are from the R2
data sets for PBMC (A) and human whole blood (B) Perrin data sets. The values are from the R1 and R2 data sets for rat kidney (C) and rat liver
(D) Perrin data sets. Median and interquartile ranges are shown as box and whiskers with the maximum axis value at 2 for easier viewing.

demarcated into 10 steps with some key parameters discussed
in more detail below.

Data Exclusion, Normalization, and Quantification

Raw abundance values reported by a proteomics search
algorithm consist of the relative number of ions detected
from a peptide homologous with an associated protein. Prior to
beginning the analysis with the TPP-TR pipeline, proteins can
be excluded or filtered based on predetermined quality control
criteria. The purpose of the filtering is to address the technical
variability that is present from the sample harvesting to LC-
MS/MS analysis. One criterion used is whether a protein of
interest is present in both data sets used to calculate the melt
shift. In the event that a protein is observed in only one of the
two conditions, the protein will be filtered from the analysis
and will not be included in downstream analysis. It is also
possible for proteins that are not present in all biological
replicates to be excluded from further analysis so as to
eliminate low abundance proteins. This step is not unlike data
preprocessing done for other types of quantitative proteomics
studies to deal with the challenges of missing values from
multiple MS-acquired data sets.

The raw untreated data from the proteomic analyses for
each of the 12 data sets were analyzed to determine the total
number of proteins that were present in each condition so that
the level of exclusion could be quantified. We calculated the
number of proteins that were present in each condition (i.e.,
mutant, WT), along with the number of proteins that were not
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present in the compared group. In the case of the Peck-Justice
data sets, this analysis involved comparing the WT and rpnS-ts
and pup2-ts mutant data sets from two biological replicates.
The analysis done on the Perrin data sets compared the melt
shift between the proteins in the PBMC and the whole blood
data sets. The rodent organ data sets from Perrin were used by
comparing the melt shift between the kidney and the liver data.
While between tissue melt shifts were not specifically reported
by Perrin et al., other studies have recently reported similar
types of analyses.”’

Between 7 and 32% of the total number of proteins would
not be used in further analysis if an exclusion step were to be
used in the pipeline (Supporting Figure 1). Upon further
examination, it was confirmed that the reason for proteins
being exclusive to only one of the two data sets (i.e,, mutant or
WT) was due to a generally low abundance for the protein of
interest in the systems studied such that it was not detected
across the MS runs that were being compared. These low
abundance values have the impact of lowering the statistical
values used to describe the total proteome or meltome
(downstream analysis). The impact to the quantified meltome
would be even more noticeable with the use of the mean
function, which is more sensitive to data skew. It is important
to note as well that the use of newly reported mass
spectrometry techniques like the use of a isobaric carrier
channel*"** would impact this step in the analysis pipeline and
whether proteins have sufficient abundance to be included in

https://dx.doi.org/10.1021/acs.jproteome.0c00872
J. Proteome Res. 2021, 20, 1874—1888
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Figure 3. Comparison of 3PL fit and 4PL fit using normalized abundance at each temperature relative to the abundance at the lowest temperature.
Data presented are from the Pup2-pl data set. The 3PL and 4PL equations were used to fit the normalized abundance vs temperature for each
protein reported. (A) Q12233 has an R* of 0.93 for the 3PL and 0.96 for the 4PL fit. (B) P53962 has an R* of 0.93 for the 3PL and 0.96 for the 4PL

fit.

further analysis. Additionally, this clearly shows that efforts to
increase the overall protein depth of coverage across samples is
an important metric for this TPP/CETSA analysis, as it is for
global proteomics studies.

After low abundance proteins are excluded, all protein
abundance values at each temperature in the heat treatment are
divided by the abundance observed at the lowest temperature
in the heat treatment. This normalization step not only sets a
reference of abundance to the lowest heat treatment
temperature (or the theoretical max protein abundance) but
it also converts protein abundance values to an equivalent scale
so that they can be compared between different conditions.
Results from abundance normalization for the Perrin and Peck-
Justice data sets are shown in Figure 2 and Supporting Figure
2, respectively. Not only do the data in these sets of dot plots
show the spread of abundance values that has been observed to
occur at each temperature but the median bars in the plots
demonstrate examples of the general departure from ideal
sigmoidal shape that can occur. The sources of variability in a
multiplexed workflow like this have previously been described
to be due to a host of challenges ranging from technical
differences to TMT label variation.”*~*

Post normalization, abundance values across all proteins
under each condition are then quantified statistically by use of
mean or median functions. The calculated statistic and the
corresponding proteome melt curves numerically describe the
total abundance of proteins for a particular treatment or
mutation. Curve fitting methodologies (described in the next
section) are afterward utilized to describe and predict the total
protein abundance as a function of heat treatment temperature.
Differences between actual and predicted protein abundance
are used to calculate correction constants for each heat
treatment temperature. The correction process adjusts the
abundance of each protein at each temperature for any
departures of the global meltome from expected melt behavior.
The statistic chosen to describe and create the global melt
curve will have an impact on the correction constants
calculated for each condition and will consequently have a
downstream impact. For example, if the global protein
abundance distribution is skewed to lower levels and the
mean statistic is used to describe the global protein abundance,
the correction constant may end up being a higher value than if
the median is used. Curve fitting, used a second time (per the
next section), is then used to describe the normalized and
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corrected abundance of each individual protein as a function of
heat treatment temperature.

Curve Fitting

A melt curve with its sigmoidal shape can be described
mathematically by a logistic expression. Two nonlinear
equations were used in our evaluation to determine which is
optimal for TPP/CETSA studies: a three-parameter log fit
(3PL) and a four-parameter log fit (4PL). The 3PL equation,
which is solely used in TPP-TR, uses three calculated constants
a, b, and Pl to describe the abundance as a function of
temperature, T, whereas 4PL uses an extra constant to describe
the variability. The 4PL constants a, b, ¢, and d are equal to the
slope at the inflection point, the inflection point, lower plateau,
and maximum plateau, respectively. The normalized abun-
dance vs temperature for two proteins in the Peck-Justice data
set are shown in Figure 3, and these two curves provide insight
into the impact of fit equation on the melt curve. First, the
curve fits for the two selected proteins are just below and
above our commonly used cutoff criteria of R* (0.95)
depending on which equation was used. In the case where
the 3PL is used, the goodness of fit is below these criteria,
whereas the 4PL fit results in a better fit that would be
quantified as significant by the workflow (Figure 3A). Another
point from this analysis is that the fitting equation can also
contribute to the curvature of the melt plot. In the case of
Figure 3B, the curvature of the melt is much steeper for the
4PL than for the 3PL fit. The steeper 4PL curve has a more
clearly defined inflection (point on the line where curvature
changes direction) than the 3PL fit and would have a more
defined melt temperature if the inflection point definition were
to be used. The 3PL fit, however, has a higher top plateau
(crosses the y axis at 1 instead of 0.9) and has a shallower curve
down the heat treatment. The impact of the more “stretched
out” melt curve could affect the defined melt temperature
depending on where the lower plateau of the 3PL curve levels
off (greater than 75 °C in Figure 3B).

The overall ability for a mathematical expression to describe
the observed variability in a series of data points is commonly
done using the coefficient of determination, R”. This coefficient
used in linear systems equals the percentage of variability that
is described by the independent variable. The sum of the
residual squared error and regression squared error in a
nonlinear or logistic system, on the other hand, does not
necessarily equal the sum of squared total error, and therefore

https://dx.doi.org/10.1021/acs.jproteome.0c00872
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Figure S. Global normalized abundance at each temperature relative to the abundance at the lowest temperature for both p1 data sets for (A) WT
and (B) mutant RpnS. Individual purple or yellow data points are for the individual proteins in each data set. In the case of panel A, the black and
green dots are the Rpn$ protein normalized abundance values in the WT-p1 data set, before and after data correction, respectively. In the case of
panel B, the red and blue dots are the RpnS protein normalized abundance values in the RpnS-pl data set, before and after data correction,
respectively. The green line in panel A is the best fit line for RpnS protein in the WT-p1 data set, while the blue line in panel B shows the best fit
line for the Rpn$ protein the RpnS-pl data set.

the R? can lie outside of the range of 0 to 1. The limitation comparing results between different curve fitting methods and
makes the determination coefficient a poor measurement of fit if specific protein melt properties are better captured by a
for a nonlinear model.”*** One measurement of fit that was specific combination of analysis procedures.
proposed” and evaluated®” as a more suitable comparator for After the melt curves are described by their respective
nonlinear fit than R* is the Bayesian information criterion equations in step 4 in the analysis workflow, a single melt curve
(BIC). The BIC is a quantitative evaluation of fit where more from one of the two conditions is used to calculate the
negative values indicate a more optimal regression between correction factor for all conditions (Figure 1, step S). The
conditions. The WT-pl data set from the Peck-Justice curve and corresponding condition with the best fit, as
experiments was fit using both of the previously described measured by the R?, is the condition that is used to calculate
3PL and 4PL equations, and the quality of fit was quantified the correction constant for both conditions. An example of a
using both the BIC and R* (Figure 4). While results shown in result from this TPP normalization is shown in Figure S for the
this figure indicate that the BIC has a smaller fit distribution RpnS protein (Uniprot accession: Q12250) using the RpnS-p1
for 3PL, the median BIC value was lower for the 4PL, data set. These plots show how the melt curve changes as a
suggesting improved fit with 4PL on average (Figure 4A). The result of the correction step. The purple (Figure SA) and
results show that the 4PL fit provides models with a yellow (Figure SB) data points for each of the two plots show
comparatively higher R* than the 3PL fit, again suggesting the normalized abundance for each protein at each temper-
better modeling of the experimental curves with 4PL (Figure ature in the WT and mutant data sets, respectively. The green
4B). More detailed investigation needs to be done to (Figure SA) and red (Figure SB) data points are the
understand the meaning of the BIC especially as it relates to normalized abundance values for the RpnS protein prior to
1879 https://dx.doi.org/10.1021/acs.jproteome.0c00872
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Figure 6. Examples of melt curves from TPP-TR method using Perrin data sets where calculated melt temperature is limited by definition of melt
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the blood data sets. The curves generated using this method either did not generate melt temperatures for all of the conditions due to curves not
crossing 0.5 (A) or had a calculated melt shift significantly impacted by the definition of the melt temperature (B).

correction, while the black (Figure SA) and orange (Figure
SB) points are the values post correction. The three parameter
fits to the corrected points in A and B are shown in green and
blue, respectively, and show no significant correction in the
case of the WT data set. The curve shift for the three-
parameter fit that resulted from the correction to the mutant
data set, on the other hand, was larger than the one observed
for the WT data set. These data are informative in a couple
ways. First, it is important to note that correction can help to
abrogate overall differences in curve shape that likely result
from technical variation between samples, making it key for
direct sample comparison and for reproducibility analysis
across replicates. Second, the data sets included together in the
analysis pipeline should be limited to data that are directly
being compared, as direct comparison in the correction steps
can impact the downstream calculation protein melt temper-
atures.

Melt Temperature Calculation and Exclusion

The melting point, T, of any protein is defined as the
temperature at which a protein unfolds from its native state.
Due to the fact that all proteins in solution do not unfold en
bloc, the melt point is often defined as a transition point in one
of two ways. While some sources have defined the melt as the
point at which 50% of the protein remains folded,™ others
consider this transition to be the inflection point in a melt
2132 In order to study the impact of melt definition on
the analysis output, the normalized abundance values for the
proteins at the highest treatment temperature across all
experiments were plotted (Supporting Figure 3). Each of the
values at the highest temperature in these plots correspond to
the bottom plateau of each melt curve and should ideally cross
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at the value of 0 if all protein is denatured and is separated
from the liquid. These plots show that despite the median
abundance being near zero, there are a large number of
proteins in each data set with normalized abundance values
which remain above 0.5 at the highest temperature. In the case
of the data sets evaluated in this report, up to 22% of proteins
were in a replicate data set (control and condition) where the
highest temperature abundance was greater than 0.5. The
conclusion from these findings is that there are a large number
of proteins in our evaluated data sets that departed from
expected behavior and could result in a lack of T, calculation
simply because less than half of the starting protein abundance
value is lost as a consequence of heat treatment. To ensure that
proteins with a variety of biophysical properties are considered
within CETSA/TPP workflows, these data suggest that a
reconsideration of the chosen melt shift definition is
appropriate. It is important to note that this conclusion is
supported by others that have even considered use of variables
other than melt point in TPP experiments to characterize
changes in protein stability.® However, melt point calculation
has value for the analysis of protein biophysical state across
studies and cellular systems including but not limited to
comparisons across species (or other systems) or when
considering a biophysical state change as a consequence of
genetic encoded protein sequence changes.””’

Two of the melt curves from the TPP-TR pipeline analysis
are plotted in Figure 6, and the example data in Figure 6A
reinforce why some of the proteins do not have calculated melt
temperatures as a consequence of the melting point definition
alone. The melt curve for protein PRA1 (Uniprot accession:
Q9ES40) in the “mutant” condition has a curve with a low

https://dx.doi.org/10.1021/acs.jproteome.0c00872
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plateau higher than 0.5 and consequently does not have a
defined melt temperature with a loss of 50% of protein
abundance definition. A lack of melt temperature from one of
the two conditions being compared (“WT” or “mutant”

results in no melt shift calculation, which reduces the overall
number of comparative values being reported. In the case of
Figure 6B, the definition of the melt being equal to 0.5 can also
have a more subtle impact on the calculated shift. The
“mutant” curve for RNF170 (Uniprot accession: Q96K19)
crosses the 50% loss of protein abundance point at 53 °C,
while the inflection point of this same curve is closer to 51%.
The melt shift based on a definition of where the curves equal
0.5 can result in a different shift than if the definition is based
on the inflection point of the curves. These data clearly show
that inflection point is favorable to a 0.5 loss in summed
protein signal and may have significant impact on protein
inclusion in the downstream data set as well as melt
temperature values in final data sets. The definition of T,
could have impactful consequences in data sets in which small
molecule/drug treatment or protein sequence changes lead to
stabilization or improved solubility of specific proteins as
shown in Figure 6A. As a consequence, we strongly
recommend that inflection point be considered as advanta-
geous for many CETSA/TPP studies.

Melt Shift Calculation and Stability Summary

Each of the data sets collected by Peck-Justice and Perrin were
analyzed using both the Childs et al. TPP-TR workflow and
our Inflect workflow in order to understand the relative
quantity of significantly stabilized and destabilized proteins,
and a comparison of our findings is shown in Figure 7. Our
assessment used the same goodness of fit criteria (melt curve
R* of 0.95) and melt shift significance cutoff (2 standard
deviations from mean, a 95% confidence interval) for both
pipelines. In the case of the Pup2 and RpnS data sets, each
curve was compared with its corresponding WT data set in
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order to calculate melt shifts. In the case of the Perrin human
blood data set, PBMC values were used as the experimental
condition while whole blood results were used as the control
data set. This analysis was not carried out in the original
published report but was used in our analysis for comparison
to illustrate potential shifts in melt between a specific fraction
of blood and the bulk of human blood matrix. Additionally, the
rodent organ data analysis was done by comparing each of the
kidney with the liver data sets with the goal of showing
comparative protein stabilization/destabilization between each
organ and the liver. Once each data set was evaluated using the
two workflows, the number of proteins with significant melt
shift results were compared. The first comparison (Figure 7A)
illustrates the amount of overlap in significant proteins
between the two outputs regardless of whether they were
stabilized or destabilized. The replicates for the data sets (i.e.,
Pup2 pl and Pup2 p3) were also combined in these
respective diagrams. These diagrams show that while 54
protein T, changes were shared between the two methods,
there were an even greater number of proteins in each case that
were not observed as significant by the other corresponding
analysis pipeline. Similar observations were obtained for the
other data sets under investigation (Figure 7B—D). These
results reflect the strong sensitivity of the analysis output to the
selection of data processing steps as described above.

To illustrate the overall positive relationship between
calculated melt shift temperatures (between —20 °C and +20
°C) calculated using TPP-TR vs Inflect, we have plotted the
correlation between the T, values from both methods (Figure
8). We would expect most of the findings to be similar between
TPP-TR and Inflect for analysis of the same data set, which is
what is observed. While there are numerous melt shift
temperatures that are clearly similar between the two methods,
there are also a significant number of proteins with drastically
different values calculated between TPP-TR and Inflect. The
Pearson correlation coefficients for the Pup2 and Rpn$ data
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between —20 °C and +20 °C are 0.31 and 0.37, respectively
(Figure 8A), while those for the blood and kidney data
between —20 °C and +20 °C are 0.76 and 0.60, respectively
(Figure 8B).

Not only were there were a large number of proteins that
were found to be uniquely significant in the Inflect workflow
but we also found that many of these proteins were relevant to
the question being asked in the original data set. In the case of
the Pup2 data set, Prel, a component of the 26S proteasome,
was reported as destabilized in our data set but was not found
to be significant using the same criteria for significance in the
TPP-TR workflow. The TPP-TR workflow neglected to find
this shift as significant due to the fact that the melt shift for the
wild type condition was just below the fit quality criteria of
0.95. As we have shown in Figure 2, the fit quality as
determined by R is greatly improved using Inflect as a
consequence of 4PL fitting. This protein is of interest due to
the fact that the strain used in the reported experiment
leveraged a mutation to the Pup2 gene, another component of
the 26S proteasome and thereby a potential protein—protein
interaction partner.’ The negative shift in the melt temperature
indicates that the PUP2 mutation resulted in a destabilization
of the Prel protein with other proteins, potentially those in the
26S proteasome. Other proteasome or ubiquitin-related
proteins that were observed as significant in our workflow
are shown in Table 1, and the associated melt curves for some
of these proteins are displayed in Supporting Figure 4. A
similar trend was observed using our workflow to analyze the
RpnS data sets where a significant number of proteasome
subunits were observed with significant melt shifts, which was
not uncovered in the initial published study. The proteins of
interest are shown in Table 2, with some of the melt shifts
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Table 1. Summary of Proteasome Related Proteins (Based
on Information from Uniprot) That Had Significant
Temperature Shifts from the Pup2 Datasets Using Our
Workflow but Were Not Observed to Be Significant in the
TPP-TR Workflow

entry protein names gene names

P22141  proteasome subunit beta type-4 PRE1 YERO12W
P53044  ubiquitin fusion degradation protein 1 ~ UFD1 PIP3
YGRO48W

QI2229 UBX domain-containing protein 3 UBX3 YDL091C
P28263  Ubiquitin-conjugating enzyme E2— UBCS8 GID3
24 kDa YELO12W

Table 2. Summary of Proteasome Related Proteins (Based
on Information from Uniprot) That Had Significant
Temperature Shifts from the RpnS Datasets Using Our
Workflow but Were Not Observed to Be Significant in the
TPP-TR Workflow

entry protein names gene names

P40087 DNA damage-inducible DDI1 VSM1 YER143W
protein 1

P53044  ubiquitin fusion degradation UFDI PIP3 YGRO48W
protein 1

P22141  proteasome subunit beta type-4 PRE1 YER012W

P38624  proteasome subunit beta type-1 PRE3 YJLOOIW J1407

P30657  proteasome subunit beta type-7 PRE4 YFRO50C

P30656  proteasome subunit beta type-S PRE2 DOA3 PRG1 YPR103W

P8283.10

P21243  proteasome subunit alpha SCL1 PRC2 PRS2 YGLO11C
type-1

P21242  probable proteasome subunit PRE10 PRC1 PRS1 YOR362C
alpha type-7 06650

P23638  proteasome subunit alpha PRE9 PRSS YGR13SW
type-3

P23724  proteasome subunit beta type-6 PRE7 PRS3 PTS1 YBLO41W

YBL0407

P32379  proteasome subunit alpha PUP2 DOAS YGR253C
type-5 G9155

P25043  proteasome subunit beta type-2 PUP1 YOR157C

from these RpnS proteins shown in Figure 9. We observed that
in the case of more than one of the “WT” data sets, the melt
curves had a higher than average inflection point, which
suggests that these proteins have higher than average thermal
stability in WT cells. It has already been shown by others that
the proteasome and ubiquitin have higher melt temperatures
than the average protein and therefore would have implied
greater than average thermal stability.>>** It is possible that
proteins with higher than average intrinsic thermal stability
may represent data set outliers; however, to facilitate the
development of TPP analysis methods that facilitate biological
discovery, it is important that optimized analysis pipelines
consider proteins with a wide array of biophysical properties.

PBMCs, or peripheral blood mononuclear cells, are by
definition the fraction of blood that play a significant role in
the immune response and are enriched in T-cells, B-cells, NK
cells, and monocytes.”> Proteins from the PBMC vs whole
blood data that were observed as significant in our workflow
but not significant in the TPP-TR workflow while also being
relevant to a hematological or immunological function are
highlighted in Table 3. The melt curves for three of these
proteins with their corresponding comparisons between the
two data analysis pipelines are shown in Figure 10. Rattus
norvegicus TPP experiments that were executed by Perrin et al.
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from the proteasome subunit beta type-S, Pre2, using (C) TPP-TR and (D) our workflow.

were also examined for relevance to the organ being studied. In
the case of the kidney data that were compared with the liver
data set, there were several proteins that were unique to our
workflow output. Many of these proteins (Table 4) have
reported specificity for the kidney based on their functional
annotations found within the Uniprot database®® and thus
suggest biological relevance for proteins found by our
workflow. Examples of compared melt curves are shown in
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Supplemental Figure S, and each of these curves emphasize
unique causes for results not being observed as significant in
the TPP-TR workflow as we have discussed throughout this
work.

Biological and/or Technical Replicate Analysis

TPP experiments should always include biological replicates to
facilitate discovery of reproducible changes that occur across
experiments. Our analysis in this article treats replicate

https://dx.doi.org/10.1021/acs.jproteome.0c00872
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Table 3. Summary of Proteins Related to Blood or
Leukocytes or Expressed in Blood Cells (Based on
Information from Uniprot) That Had Significant

Temperature Shifts from the Perrin PBMC vs Whole Blood
Datasets Using Our Workflow but Were Not Observed to

Be Significant in the TPP-TR Workflow

entry protein names gene names
Q96EKS  KIF-binding protein KIFBP KBP
KIAA1279
KIF1BP
014672 disintegrin and metalloproteinase ADAMI10 KUZ
domain-containing protein 10 MADM
P05556 integrin beta-1 ITGB1 FNRB
MDF2MSK12
P78325 disintegrin and metalloproteinase ADAMSMS2
domain-containing protein 8
Q96LC7  sialic acid-binding Ig-like lectin 10 SIGLEC10 SLG2
UNQ477/
PRO940
Q8WU39  marginal zone B- and B1-cell-specific MZBIMEDA7
protein PACAP
HSPC190
QINR28  diablo homologue, mitochondrial DIABLO SMAC
QINP99  triggering receptor expressed on myeloid TREMI1
cells 1
Q15631 translin TSN
076031 ATP-dependent Clp protease ATP- CLPX
binding subunit clpX-like,
mitochondrial
095232 Luc7-like protein 3 LUC7L3 CREAP1
CROP 048
Q68CP4  heparan-alpha-glucosaminide N- HGSNAT
acetyltransferase TMEM76

experiments individually and does not use mathematical
operations to group replicates prior to the aforementioned
TPP analysis workflow, which is also allowed in TPP-TR. One
of the reasons for individual analysis of replicates is that
proteins may not always be detected across biological
replicates and thereby not pass filtering criteria as a
consequence of a lack of detection in separate mass
spectrometry experiments rather than a lack of change in
thermal stability. We are working to address this challenge in
other work using isobaric trigger channels to increase protein
detection across biological replicates; however, that work is
outside the scope of this current study.”"”* In this
implementation, the Inflect workflow processes each replicate
data set separately (i.e,, control and condition) through the
analysis pipeline. Results from the function are saved to data
matrix files that can be opened in programs such as Excel that
summarize the melt shifts for each protein across each of the
replicate experiments. The reporting of melt shifts by our
function allows for the user to understand the reproducibility
of the resulting melt shifts for each protein and allows user
defined cutoffs for downstream significance reporting. Proteins
with common stabilized or destabilized proteins between
replicates provide further evidence that the change in stability
is less transient in nature and potentially more significant. An
example of the comparison of significant proteins between
replicates is shown in the UpsetR generated plot'® in Figure
11, which is used in our typical workflows to identify overlap of
significant changes identified by TPP experiments. As shown,
there were 15 destabilized proteins that were common
between the two Pup2 replicates and only one protein
commonly stabilized between the two replicate sets. The
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data matrix output is formatted for direct use in the UpsetR
function from the Inflect workflow.

Multivariate Analysis to Assess the Impact of Each Step on
End Result

The melt shift analysis pipeline involves a series of steps that
are used to prepare the raw abundance data for analysis,
describe the prepared data using fitting routines, and calculate
melt temperature shifts from each protein. In order to ascertain
the relative influence of each step on the output of the analysis
pipeline, a program was written in R which allowed for a
multivariate analysis to be executed using various combinations
of each step to be run in series with the goal of quantifying the
respective output. All 12 data sets described in this article were
used in the evaluation. The results from the analysis of the
conditions were analyzed using the Fit Model routine in JMP.
Fit Model (using a factorial to second degree) was used to
describe the observed variability in the outputs as a function of
the five factors (step 1, exclusion; step 3, total quantitation;
step 4, curve fit; step 6, curve fit; step 8, melt definition) also
using the experiment as a specific factor. The relative impact of
each pipeline factor along with the experiment being evaluated
on the two outputs was quantified by comparing the scaled
estimates of each factor in the model. The fit of each of the
four models was good (>90% of the variability was described in
our model) and the order of the effects with respect to
importance to the models is summarized in Table S.

Results from our evaluation show that along with the
standard deviation of the melt shift, the second curve fitting
routine in step 6 is the most important of the variables studied
in affecting the number of observed proteins and the standard
deviation of the melt shift values. The initial curve fit equation
had the next level of importance in the results from our
experiment. Interestingly, the use of the 3PL fit for the initial
curve fit of the meltome was more beneficial for increasing the
number of proteins with significant melt shifts, while in the
case of the second curve fit, the 4PL was more beneficial for
detecting proteins. This finding of a step-specific benefit for
different curve fitting routines indicates a need for a better
understanding of how curve fitting equations affect the T, and
melt shift calculations. The definition of the melt temperature
(50% reduction in protein abundance vs inflection point) and
the statistical quantitation of the proteome (specifically, the
use of mean or median to describe the total abundance) had
less of an impact on these parameters but were still statistically
significant. It should be noted that while the statistics indicate
that there is a slight benefit to using the 0.5 definition over the
inflection point in the number of proteins observed, we
determined that the use of the inflection point over the 50%
value allows for analysis of proteins that have nontraditional
melt curves (where the lower plateau is not equal to 0). The
exclusion step used in our in silico experiments did not have a
statistically significant impact on the number of proteins or the
standard deviation of the melt shifts.

B CONCLUSIONS

Our group investigated the TPP melt shift analysis workflow
and the evaluation found that it is beneficial to use the 4PL
curve fit over the 3PL fit in order to define proteins with
significant melt shifts. To facilitate comparison of our workflow
with other data processing pipelines for TPP/CETSA, we have
developed the R-based program Inflect. We also show that the
number of equation parameters used in curve fitting can
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Figure 10. Example human PBMC vs whole blood melt shifts from Perrin data sets that were reported significant in our workflow but not
significant in the TPP-TR workflow. Melt curves generated from the Translin, TSN, using (A) TPP-TR and (B) our workflow. Melt curves
generated from the Heparan-alpha-glucosaminide N-acetyltransferase, HGSNAT, using (C) TPP-TR and (D) our workflow.

dramatically affect the number of proteins observed in the melt
shift analysis.

Results from our optimized workflow show that the second
curve fitting routine in step 6 is the most important of the
variables studied in affecting the output of the analysis pipeline
(number of observed proteins and the standard deviation of
the melt shifts). The initial curve fit equation had the next level
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of importance in the results from our experiment. These
findings reflect on how critical the choice of fitting algorithm
and melt curve equation are to the results of a TPP study. It is
also important to note that it is possible that four parameter
log fit equations are preferable to three parameter log fits in
multiple cases including the first curve fitting step. Chosen
optimization criteria (R* vs BIC) may also be important for
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Table 4. Summary of Proteins Related to Kidney Function
(Based on Information from Uniprot) That Had Significant
Temperature Shifts from the Perrin Rat Kidney vs Liver
Datasets Using Our Workflow but Were Not Observed to
Be Significant in the TPP-TR Workflow

gene
GI number entry protein names names
74229032 QIWTNS  two pore calcium channel Tpenl
protein 1 Tpcl
19705453 P08011 microsomal glutathione Mgstl
S-transferase 1 Gstl2

117647218  P38718 mitochondrial pyruvate carrier 2 Mpc2

Brp44

158534075 088370 phosphatidylinositol S-phosphate  Pip4k2c
4-kinase type-2 gamma PipSk2c
31543514 Q9R0OJ8 legumain Lgmn
Prscl
40786432 Q10758 keratin, type II cytoskeletal 8 Krt8
Krt2—8
40018562 Q6P756 adaptin ear-binding coat- Necap2
associated protein 2
164519066  P14270 cAMP-specific 3',5'-cyclic Pde4d
phosphodiesterase 4D
32189350 Q09073 ADP/ATP translocase 2 Slc25as
Ant2
29789307 088658 kinesin-like protein KIF1B Kiflb
21489985 Q8VHE9  all-trans-retinol 13,14-reductase ~ Retsat
Ppsig
Rmt7
50
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Figure 11. Upset plot generated using UpsetR function in R.'®
Significant proteins from Pup2 pl and p3 (melt curve R* > 0.95 and
melt shift greater than 2 standard deviations from mean melt shift).
Number of proteins common to the replicates or stabilization/
destabilization state are highlighted in the Upset plot using dots and
lines between the rows.

future development of analysis algorithms as current
significance criteria leverage linear system-based functions
like the coefficient of determination. The definition of the melt
temperature and total quantitation statistics had lessof an

Table 5. Summary of Factors in Order of Their Relative
Importance in Describing the Varijability in Number of
Significant Proteins and Standard Deviation of Melt
Temperatures

relative  impacting total number of  impacting standard deviation of
importance significant proteins observed melt temperatures

1 (higher) step 6, protein curve fit step 6, protein curve fit

2 step 4, protein curve fit step 4, protein curve fit

3 step 3, statistical step 8, melt definition
quantitation of
proteome

4 (lower)  step 8, melt definition step 3, statistical quantitation of

proteome

impact on the number of proteins observed; however, these
parameters have been shown to have a strong impact on
specific proteins (Figure 6).

While our work provides extensive insight into the data
analysis from TPP experiments, there is still ample opportunity
for improvement. As more TPP experiments are executed, the
experimental procedure will improve along with the method-
ology for isobaric labeling. As technical improvements occur,
the data analysis pipeline should also be evaluated to
determine whether the steps used are most appropriate and
beneficial for maximizing the number of biologically relevant
results.
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