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A B S T R A C T

Cognitive development research shows that children use basic “child-unique” strategies for reading and
mathematics. This suggests that children’s neural processes will differ qualitatively from those of adults during
this developmental period. The goals of the current study were to 1) establish whether a within-subjects neural
dissociation between reading and mathematics exists in early childhood as it does in adulthood, and 2) use a
novel, developmental intersubject correlation method to test for “child-unique”, developing, and adult-like
patterns of neural activation within those networks. Across multiple tasks, children’s reading and mathematics
activity converged in prefrontal cortex, but dissociated in temporal and parietal cortices, showing similarities to
the adult pattern of dissociation. “Child-unique” patterns of neural activity were observed in multiple regions,
including the anterior temporal lobe and inferior frontal gyri, and showed “child-unique” profiles of functional
connectivity to prefrontal cortex. This provides a new demonstration that “children are not just little adults” –
the developing brain is not only quantitatively different from adults, it is also qualitatively different.

1. Introduction

During early childhood humans construct a variety of new concepts
that lay the foundation for complex cognition (Carey, 1985). These first
several years of life are also characterized by drastic changes in the
structure of the brain (Giedd et al., 1999; Gogtay et al., 2004;
Huttenlocher, 1990). A major focus of research over the last two dec-
ades has been to understand the relation between cognitive and neural
development (Amso and Casey, 2006; Casey et al., 2005, 2000; Saxe
et al., 2004; Shaw, 2007).

Patterns of functional brain development in children are char-
acterized by their maturity. For instance, mature patterns are observed
when children and adults rely on similar neural mechanisms or when
they recruit the same regions of the brain for a particular task (e.g.,
Ansari and Dhital, 2006; Ansari et al., 2005; Cantlon et al., 2006;
Golarai et al., 2007; Gomez et al., 2018; Hyde et al., 2010; Kersey and
Cantlon, 2017a). In contrast, immature, developing patterns are iden-
tified within adult neural substrates when children and adults show
differences in levels of amplitude, temporal pattern, location, or extent
of activity (Ansari et al., 2005; Ansari and Dhital, 2006; Cantlon et al.,

2011, 2006; Durston et al., 2006; Golarai et al., 2007). A third, un-
derexplored pattern is “child-unique” neural activity in which children
may show patterns of neural functioning that are not evident in adults.

Substantial research in cognitive development shows that during
periods of early learning, children engage in a number of child-unique
and often idiosyncratic strategies that might be supported by “child-
unique” neural processes (Cornell, 1985; Ehri and McCormick, 1998;
Fischer, 2011; Fischer and Koch, 2016; Mock et al., 2019; Portex et al.,
2018; Siegler, 1996; Siegler and Jenkins, 1989; Vellutino, 1979). For
example, as 6- to 8-year-old children are learning to add, they use a
variety of inefficient strategies, including counting on all of their fingers
and counting from one instead of from the larger addend (Siegler, 1996;
Siegler and Jenkins, 1989). Similarly, children who are learning to read
process letters, digits, and words independently of orientation, which
results in mirror writing (Cornell, 1985; Fischer, 2011; Fischer and
Koch, 2016; Portex et al., 2018), difficulties in distinguishing easily-
confusable letters and numbers (Ehri and McCormick, 1998), and
reading words backwards, such as reading “saw” as “was” (Vellutino,
1979). These spontaneous, child-unique strategies in reading and
mathematics tend to emerge around 4 years of age and resolve by 8
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years of age, coinciding with important periods of conceptual change in
those domains.

Children’s unique behaviors suggest that the neural processes that
underlie mathematics and reading acquisition in early childhood, par-
ticularly prior to important milestones of conceptual change, will differ
from those of adults not only in degree but also in kind. The process of
neural development could be one in which children gradually hone
adult neural mechanisms for reading and mathematics by showing
gradual change in the amplitude, temporal pattern, or extent of adult
neural substrates (“developing” patterns of neural activity). More
likely, however, the neural mechanisms of early mathematics and
reading are also distinct in some way from those that underlie adult
cognition and exhibit “child-unique” patterns of activity.

“Child-unique” neural activity likely takes many forms. For one,
neural activity can be thought of as “child-unique” if the amplitude of
activation during a controlled task is higher in children than in adults,
that is if there is a quantitative difference in strength of neural activity in
regions that are not recruited by adults (Ansari et al., 2005; Cantlon
et al., 2011, 2009). Other forms of “child-unique” neural activity may
represent qualitative differences in temporal patterns of neural activity
during a particular task or during rest. For one, neural activity could be
considered “child-unique” if children’s neural activity bears a temporal
pattern that is more synchronous among children than among adults,
which would suggest that children are using a particular brain region in
ways that are similar to other children, but distinct from adults
(Cantlon and Li, 2013). Finally, neural activity could qualify as “child-
unique” if it bears a unique pattern of functional connectivity between
brain regions in children compared to adults, such that children show
evidence of connectivity among regions that do not function synchro-
nously in adults (Dosenbach et al., 2010; Fair et al., 2009; Supekar
et al., 2010, 2009). In these latter two cases, the regions that show
“child-unique” patterns of neural activity may be used to the same
degree in children and adults (i.e. children and adults may show similar
amplitude of neural activity), but importantly differ qualitatively in the
timecourse of neural activity.

An unexplored issue in cognitive neuroscience is to what extent the
developing brain exhibits “child-unique” patterns of neural activity in
reading and mathematics. Previous research suggests a functional dis-
sociation between mathematics in parietal cortex and reading in tem-
poral cortex, with overlapping recruitment of frontal cortex (Ansari
et al., 2006; Bitan et al., 2007; Cantlon et al., 2009, 2006; Cantlon and
Li, 2013; Emerson and Cantlon, 2012; Holloway and Ansari, 2010;
Houdé et al., 2010; Lussier and Cantlon, 2017; Menon et al., 2000;
Menon, 2014; Price et al., 2013; Price and Ansari, 2011; Rivera et al.,
2005; Rosenberg-Lee et al., 2015, 2011; Turkeltaub et al., 2003;
Yeatman et al., 2010). Recently, it was shown that this pattern of dis-
sociation was evident within-subjects in children as young as seven
(Evans et al., 2016). However, it is unclear whether this dissociation is
present in younger children during important periods of conceptual
change and to what extent “child-unique” temporal patterns of neural
activity are evident in domain-specific regions that dissociate reading
and mathematics versus domain-general regions, such as prefrontal
cortex, that are recruited for both reading and math.

The objectives of the current study are two-fold: the first is to es-
tablish that the cortical networks related to reading and mathematics
are functionally dissociable in early childhood, and the second is to test
whether there are qualitative patterns of adult-like, developing, or
“child-unique” neural activation within those cortical networks.
Specifically, we test for systematic differences in temporal patterns
between children and adults. Establishing the functional profiles and
locations of “child-unique” vs developing vs adult-like activations in the
brain is an important first step toward studying conceptual change in
the human brain during childhood. Here we tested 4- to 8-year-old
children and adults on a combination of controlled tasks and natural
viewing tasks in the domains of reading and mathematics. Tasks were
designed to ensure that the content of the tasks was understandable by

all children and adults. Therefore, the mathematics tasks focused on
counting and the meanings of symbolic numbers, and the reading tasks
focused on word forms and grapheme-to-phoneme correspondences.
We conducted traditional general linear model (GLM) analyses on
neural amplitudes, and we conducted intersubject correlation and
functional connectivity analyses on temporal patterns of neural activity.
We tested our prediction that “child-unique” patterns of activation
would distinguish the neural profiles of children from those of adults
during reading and mathematics tasks. Then we tested whether “child-
unique” activations emerge within domain-specific regions that show
functional dissociations between reading and mathematics tasks, such
as the temporal and parietal cortices, or in regions that have domain-
general profiles, such as prefrontal cortex. Cognitive development re-
search suggests that conceptual change in childhood is driven by in-
teractions between general processes and core processes that test new
rules on pre-existing concepts (Carey et al., 2015). Our hypothesis is
that in childhood, reading and mathematics rely on interactions be-
tween children’s unique domain-general strategies (i.e., prefrontal un-
iqueness) and their core cognitive functions that are domain-specific in
reading (i.e. temporal cortex) and mathematics (i.e., parietal cortex;
Dehaene and Cohen, 2007).

2. Methods

2.1. Participants

42 children (4.11–8.77 years, mean age=6.35 years, 17 girls) and
29 adults (18.44–28.09 years, mean age= 22.0 years, 16 women) were
recruited to participate in this study. All participants had normal or
corrected-to-normal vision and no history of neurological impairments.
All participants or their parents provided written, informed consent in
accordance with the University of Rochester Research Subjects Review
Board.

2.2. Behavioral assessments

To identify relations between neural activity and cognitive devel-
opment, children were administered the TEMA-3 (Ginsburg and
Baroody, 2003) and TERA-3 (Reid et al., 2001), standardized Tests of
Early Mathematics and Reading Abilities (one child who successfully
completed the fMRI scan did not complete the TERA-3). The TEMA-3
provides one overall measure of math ability. The TERA-3 is composed
of three subtests assessing children’s knowledge of the alphabet,
reading conventions, and word meaning. We used the correlations be-
tween reading subtests scores and neural maturity to calculate an
overall measure of the relation between reading ability and neural
maturity (see Methods 2.5 for more details). Due to concerns about
ceiling effects, children who scored above the 99th percentile for their
age were excluded from the corresponding correlation analysis (TEMA-
3: n=3, TERA-3: n= 3, 0, & 3 for subtests 1, 2, & 3). Raw scores were
used for all analyses.

2.3. fMRI session

Prior to scanning, children completed a 30-minute mock scanner
session during which they practiced staying still and practiced the tasks.
During scanning, children’s heads were stabilized with headphones,
foam padding, and medical tape. Adults received verbal instructions to
remain motionless and were reminded of task instructions prior to each
run.

2.3.1. MR parameters
Neural activity was measured via whole-brain BOLD imaging on a 3-

Tesla Siemens MAGNETOM Trio scanner with a 12-channel head coil at
the Rochester Center for Brain Imaging. High-resolution structural T1
contrast images were acquired using a magnetization prepared rapid
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gradient echo pulse sequence at the start of each session [repetition
time (TR) =2530ms, echo time (TE) =3.44ms, flip angle= 7, field of
view (FOV)= 256mm, matrix= 256×256, 192 or 176 [depending
on head size] 1× 1×1mm sagittal left-to-right slices].

An echo-planar imaging (EPI) pulse sequence was used for T2*
contrast (TR =2000ms, TE =30ms, flip angle= 90 degrees,
FOV=256mm, matrix 64× 64, 30 axial oblique slices, parallel to the
AC-PC plane, voxel size= 4×4×4mm). For the children, we also
collected a second series of data with retrospective motion correction
applied to the original EPI series using built-in Siemens software for
online motion correction. Functional scans consisted of 3 paradigms
and a no-stimulation resting state scan (described below). Total scan-
ning time was approximately 1 h. Children were excluded from the
analyses based on excessive head motion as described below in sections
2.3.2 – 2.3.5 (> 3mm volume-to-volume motion and/or> 5mm dis-
placement from the start of the session, based on raw EPI data that had
not been corrected for motion).

2.3.2. Natural viewing paradigm
Children and adults watched an 11-minute 35-second montage of

educational movie clips. Individual clips ranged from 12.5 to 32.4 s and
were edited to form one continuous video. Topics included counting,
word reading, and phonics. Participants were instructed to remain
motionless and observe the movie. No instructions were given to fixate
or restrict eye movement.

All children and adults completed this scan. Children were excluded
due to excessive head motion (> 3mm volume-to-volume notion and/
or> 5mm displacement from the start of the session; n= 7 children).
6 adults who watched an alternate version of the movie were also ex-
cluded. Data from 35 children and 23 adults were included in the final
sample.

2.3.3. Word localizer controlled task
Neural responses to picture of words, scrambled words, and shape

strings were measured during a 1-back task. White stimuli (words,
scrambled words, or shapes) were presented against a black back-
ground for 500ms. Participants were instructed to press a button when
presented with the same picture twice in a row. Stimuli were presented
in 46 miniblocks per run and each miniblock consisted of 1–12 trials.
Participants were instructed to fixate on an image of a snowflake for 2 s
between consecutive same-category miniblocks and for 12 s between
consecutive different-category miniblocks. Participants viewed 260
stimuli in each of the two 4.55-minute scans.

37 children (4.11–8.77 years, mean age= 6.49 years, 14 girls) and
all 29 adults completed 1 (n= 2 children) or 2 (n= 35 children, 29
adults) runs of this task. Data were excluded from children due to ex-
cessive head motion (> 3mm volume-to-volume motion and/or> 5
mm overall motion; n=17 runs from 14 children), experimental error
(n=2 runs from 1 child), or failure to provide any responses during the
task (n= 6 runs from 3 children). Data from 28 children and 29 adults
were analyzed after exclusions.

2.3.4. Number localizer controlled task
Participants’ neural responses to pictures of numbers, faces, tools,

and words were measured during a matching task. Stimuli were pre-
sented two at a time as gray-scale (faces) or white (letters, tools, Arabic
numerals/dot arrays) images against a green background, one stimulus
on either side of the screen (Kersey et al., 2016). Participants were
instructed to compare within-category stimuli and to press a button
when the stimuli matched. Faces and tools were compared across or-
ientation: frontal shot vs oblique (faces) or upright vs rotated views
(tools). Number and word stimuli were compared across notation:
Arabic numerals vs dot arrays (numbers), or normal vs mirrored views
(words). Participants completed 36 trials during the 4-minute run.

32 children (4.11–8.77 years, mean age= 6.60 years, 11 girls) and
all 29 adults completed 2 runs of the number localizer task. Data were

excluded from children due to excessive head motion (> 3mm volume-
to-volume motion and/or> 5mm overall motion; n= 21 runs from 15
children). The final sample consisted of data from 26 children and 29
adults.

2.3.5. Resting state scan
A subset of participants (34 children, 4.11–8.77 years, mean

age= 6.41, 11 girls; and all 29 adults) completed a 5-minute resting
state scan. Resting state neural activity was measured as children and
adults lay passively with their eyes closed. Eleven children were ex-
cluded due to excessive motion (> 5mm overall motion), leaving a
final sample size of 23 children and 29 adults.

2.4. Preprocessing of fMRI data and thresholding

fMRI data were processed in BrainVoyager 2.8.1.4 (Goebel et al.,
2006) using in-house scripts. Functional data were registered to high-
resolution anatomy images for each participant in native space. Sub-
sequent processing of functional data included slice scan time correc-
tion (cubic spline interpolation), linear-trend removal in the temporal
domain (cutoff: 2 cycles within the run), motion correction with respect
to the first volume in the first run of each task, and spatial smoothing (a
Gaussian spatial filter with a 6mm full-width half-maximum was ap-
plied to each volume). Functional and anatomical volumes were then
transformed to Talairach space using piecewise affine transformation
after manually aligning stereotactic axes to anatomical loci. Analyses
were performed on processed data in Talairach space.

Primary analyses focused on functional data from the natural
viewing paradigm. Although children’s movement for this task was
fairly minimal, it was slightly higher than adults’ motion (children in-
cluded in analyses: translation=0.79mm average, sd= 0.55mm, ro-
tation=1.15 degrees average, sd=0.81 degrees; adults: transla-
tion= 0.53mm average, sd=0.37mm translation, rotation= 0.68
degrees average, sd=0.46 degrees; calculated on raw EPI series fol-
lowing Grill-Spector et al., 2008). Because removing higher-motion
data through the process of scrubbing reduces the overall power of the
primary intersubject correlation analysis and leads to varying degrees
of freedom across comparisons, we accounted for the difference in
motion in two other ways without removing any frames of data. First,
we used the online motion corrected BOLD data for the children, and
then we regressed frame-wise displacement (FD) across their brains to
control for sudden changes in volume-to-volume head motion. FD was
calculated by summing the absolute values of the derivatives of six
motion predictors. Rotational displacements were then translated to
millimeters and projected onto a sphere with a 50mm radius (Power
et al., 2012). These values were then regressed timepoint by timepoint
to reduce any effects of sudden changes in intensity due to motion.

The threshold for the following analyses was voxel-wise p < 0.01,
cluster corrected to p < 0.05. For some analyses, stricter thresholds
were used to better separate the regions that showed the strongest
differences between groups and the most similarity within each group.
All between-group comparisons of adults vs children were conducted at
voxel-wise p < 0.005, and all analyses of within-group neural simi-
larity were conducted at a strict threshold of t> 5.69 (determined
based on a threshold of p < 0.00001 for the group of 23 adults).

2.5. Intersubject correlation analyses (natural viewing & resting state data)

Natural viewing and resting state data were analyzed using an in-
tersubject correlation approach to obtain measures of “neural simi-
larity” (Cantlon and Li, 2013; Hasson et al., 2004). Intersubject corre-
lations for the natural viewing data were performed by using the
timecourse (the entire 11-minute video) of each voxel for each parti-
cipant as a predictor for activation of the corresponding voxel in every
other participant’s brain. Intersubject correlations for the resting state
data were calculated ignoring the first 6 volumes to allow the scanner
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signal to stabilize in the absence of any task-driven neural activity.
Three sets of correlations were calculated: 1) adults compared to every
other adult, 2) children compared to every other child, and 3) children
compared to every adult. The within-group comparisons of adults to
other adults and children to other children are referred to as maps of
“neural similarity.” The comparison of children to adults is a special
type of neural similarity because it represents how “adult-like” each
child’s functional timecourse appears. Therefore, we instead refer to
these maps as maps of “neural maturity.” First, each participant’s
functional data were correlated with that of every other participant to
produce paired r-maps representing the timecourse similarity to each
participant at each voxel. Then, within the three sets of intersubject
correlations, each individual’s paired r-maps were averaged to obtain
one measure of similarity that represents the mean similarity of that
participant to the rest of the comparison group. This resulted in maps
that represent the average similarity of 1) each adult to the group of
adults, 2) each child to the group of children, and 3) each child to the
group of adults. These maps were then transformed to t-maps using
Fisher transformations.

Next, we identified profiles of “child-unique”, developing, and
adult-like neural activity during natural viewing by conducting be-
tween group t-tests on the neural similarity maps within regions that
showed significant group-level similarity (t> 5.69) and did not show
group differences in Signal-to-Noise ratio (SNR). Signal-to-Noise ratio
for the natural viewing data was calculated by dividing the mean signal
intensity of each voxel by its standard deviation (Murphy et al., 2007;
Simmons et al., 2010). Between group t-tests across neural similarity
maps and SNR were conducted at the same threshold (p < 0.005).
Regions were identified as “child-unique” if the neural similarity be-
tween children was greater than the neural similarity between adults (t
(56)> 2.92, p < 0.005, corrected), and if there was significant simi-
larity among children (t-test of child-to-child similarity maps vs 0: t
(34)> 5.69, p < 0.000002). Regions that showed higher SNR in
children were excluded from the identification of “child-unique” re-
gions (excluded t(56)> 2.92, p < 0.005). Developing regions were
identified as regions that showed greater similarity among adults than
among children compared to adults, showed significant similarity
among adults, and did not show greater SNR for adults compared to
children (t-test of adult-to-adult vs child-to-adult similarity maps: t
(56)> 2.92, p < 0.005, corrected; adult-to-adult maps vs 0: t
(22)> 5.69, p < 0.000010; SNR: excluded t(56)> 2.92, p < 0.005).
Adult-like regions of the brain were regions that did not show a sig-
nificant difference between child-to-adult and adult-to-adult similarity,
showed significant similarity at both the adult-to-adult and child-to-
adult levels, and did not show differences between child and adult SNR
(adult-to-adult maps == child-to-adult maps: t(56)< 2.92,
p > 0.005, corrected; adult-to-adult maps vs 0: t(22)> 5.69,
p < 0.000010; child-to-adult maps vs 0: t(34)> 5.69, p < 0.000002;
SNR: excluded t(56)> 2.92, p < 0.005). To confirm that the patterns
of “child-unique” and developing neural activity were not artifacts of
motion, we conducted a regression analysis in each region that tested
for a difference in neural similarity over and above effects of motion.
These analyses revealed that motion could not explain the differences in
similarity between child and adults (Supplement 1).

These same steps were also applied to the resting state data.
Intersubject correlations and SNR maps were computed for the resting
data. The thresholds applied to these analyses were consistent with
those applied to the primary analyses of the natural viewing data
(“Child-Unique”: t-test of child-to-child > adult-to-adult similarity
maps: t(50)> 2.94, p < 0.005; t-test of child-to-child similarity maps
vs 0: t(22)> 5.69, p < 0.000010; excluding regions from t-test of
child > adult SNR: t(50)> 2.94, p < 0.005; Adult-like: adult-to-adult
maps == child-to-adult maps: t(50)< 2.94, p > 0.005; adult-to-adult
maps vs 0: t(28)> 5.69, p < 0.000004; child-to-adult maps vs 0: t
(22)> 5.69, p < 0.000010; excluding regions from t-test of adult vs
child SNR: t(56)> 2.92, p < 0.005; Developing: t-test of adult-to-

adult > child-to-adult similarity maps: t(50)> 2.94, p < 0.005;
adult-to-adult maps vs 0: t(28)> 5.69, p < 0.000004; excluding re-
gions from t-test of adult > child SNR: t(50)> 2.94, p < 0.005).

Finally, following (Cantlon and Li, 2013), we tested for correlations
between neural maturity of natural viewing and cognitive measures
across the brain. Correlation analyses were conducted between each
measure of cognition and neural maturity in every voxel of the brain.
We collapsed across the correlations with the reading subtests (3
measures) to provide a comprehensive view of the relation between
neural maturity and reading versus mathematics (1 measure).

2.6. GLM analyses (natural viewing & controlled localizer data)

Data from the natural viewing and localizer runs were analyzed
using three general linear models (GLMs): one for the natural viewing
movie, one for the number localizer, and one for the word localizer.
Data from adults and children were combined into a single GLM, and
experimental events were convolved with a standard dual hemody-
namic response function. The GLM for the natural viewing task in-
cluded 2 predictors of interest corresponding to math clips and reading
clips. The GLM for the word localizer included 3 predictors of interest
corresponding to the word trials, scrambled word trials, and shape
trials. The GLM for the number localizer included 4 predictors corre-
sponding to the 4 conditions of interest (number trials, face trials, tool
trials, and word trials). All GLMs also included 6 predictors of no in-
terest that corresponded to the motion parameters obtained during pre-
processing. The GLMs for the controlled, localizer tasks contained an
additional predictor of no interest that corresponded to button presses.
Random-effects analyses were used to analyze the data.

2.7. Functional connectivity analyses (natural viewing data)

Functional connectivity analyses were conducted on the natural
viewing data using the nine “child-unique” regions displayed on the
surface rendering in Fig. 1C as seed regions. Time series from all voxels
within each seed were averaged to create a single time series for each
region. This time series was then correlated with every other voxel in
each participant’s functional dataset. We used linear regression to re-
duce the influence of nuisance factors that were unrelated to neural
activity. Specifically, we regressed the global mean timecourse and 6
motion parameters for all participants (following Emerson and Cantlon,
2012). For each of the nine sets of functional connectivity (one per seed
region), we tested for regions that showed 1) strong connectivity in
children (average r across children for 348 timepoints: r(346)> 0.25),
and 2) stronger connectivity in children than adults as revealed by
whole-brain regressions that test for effects of age-group over and
above effects of motion (age-group predictor: t(54)> 2.93,
p < 0.005). Regressions were conducted in MATLAB using the “fitlm”
function with functional connectivity as the dependent variable and
with age group (children vs adults), translation, and rotation as the
independent predictor variables.

3. Results and discussion

3.1. Patterns of neural similarity between children and adults

We first measured voxel-by-voxel intersubject similarity from 23
adults and 35 children in the critical ages of 4 to 8 years during natural
viewing of educational television clips about math and reading
(Cantlon and Li, 2013; Hasson et al., 2004). To test for evidence of
profiles of developing, adult-like, and “child-unique” neural activity,
we conducted between group t-tests on the similarity maps within re-
gions that showed significant group-level similarity (see Methods 2.5
“Intersubject Correlation Analyses”). Developing regions were identi-
fied by testing for greater adult-to-adult similarity than child-to-adult
similarity. These patterns were found bilaterally in intraparietal sulcus,
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inferior frontal gyrus, middle and superior temporal gyri, inferior
temporal cortex, and occipital cortex (Fig. 1A, Supplement 2). Adult-
like regions did not show a significant difference between child-to-adult
and adult-to-adult similarity but showed significant similarity at both
the adult-to-adult and child-to-adult levels. These patterns were iden-
tified in bilateral superior temporal gyrus and in medial regions
throughout the brain (Fig. 1B). Finally, “child-unique” patterns of ac-
tivity were defined as regions that showed greater similarity among
children than among adults and included left angular gyrus, bilateral
postcentral gyrus, bilateral inferior frontal gyrus and insula, superior
and middle frontal gyri, and anterior temporal lobe (Fig. 1C, Supple-
ment 2). Regions that showed “child-unique” and developing patterns
of neural activity are reported in a table in Supplement 2.

Importantly, a comparison of these results to a “no stimulation”
resting state condition revealed that these patterns were not present at
rest. Following the same approach as taken with the natural viewing
data, we tested for patterns of “child-unique”, developing, and adult-
like neural activity during rest by conducting between-group t-tests on
resting state neural similarity and removing regions that showed dif-
ferences in SNR or did not show group-level synchrony. In contrast to
the results from the natural viewing task, there were no regions that
were identified as “child-unique”, developing, or adult-like during rest
(no regions of at least 10 contiguous voxels). This confirms that the
patterns of neural activity identified by the natural viewing data are
driven by functional processing of the task content. Because these same
patterns did not emerge for resting state data, the patterns of “child-
unique” neural activity cannot be due to general differences between
children and adults. Therefore, the regions identified as developing,
adult-like, and “child-unique” (Fig. 1, Supplement 2) represent true

patterns of neural activity and are not artifacts of baseline (resting
state) neural activity or differences in signal-to-noise ratio. Regression
analyses revealed that these patterns are not the result of differences in
motion (Supplement 1).

3.2. Cortical networks for reading and mathematics

Next, we identified cortical networks for reading and mathematics
as the union of three sets of analyses that isolated reading-related and
mathematics-related neural activity (see Supplement 3 for a table of all
regions). First, we identified regions that showed a relation between
patterns of neural activity during natural viewing and children’s cog-
nitive development. Following Cantlon and Li (2013), we tested for
correlations between neural maturity (child-to-adult similarity) and
math and reading abilities. Relations between neural maturity and
math scores were identified in bilateral parietal and occipital cortices
(Fig. 2A, light blue; r(30)> 0.45, p < 0.01, corrected). In contrast,
correlations between neural maturity and reading were observed in
bilateral middle temporal gyrus, occipital cortex, and the left ventral
temporal cortex (Fig. 2B, pink; TERA 1: r(29)> 0.46; TERA 2: r
(32)> 0.44; TERA 3: r(29)> 0.46; all p < 0.01, corrected, the pink
represents the union of the results for the three subtests). One region of
the right middle temporal gyrus (MTG) showed correlations with both
reading and math ability, indicating that neural maturity of the right
MTG relates to the development of both reading and mathematics.

Then, we identified regions that were involved in processing each
type of clip (reading vs math) by conducting a traditional random ef-
fects GLM analysis on the natural viewing data from children and
adults. A contrast of reading clips vs math clips revealed that large

Fig. 1. Functional similarity between adults and children during natural viewing. Regions identified as having Developing (A), Adult-like (B), or “Child-
Unique” (C) patterns of neural activity based on the results of the between-group t-tests of neural similarity. Regions that showed developmental differences in signal-
to-noise ratio (t(56)> 2.92, p < 0.005) or did not show significant within-group neural similarity (t(22) or t(34)< 5.69) were masked from the analysis (see
methods, 2.5 Intersubject Correlations for more detail and see Supplement 2 for a table of Developing and “Child-Unique” regions). Results are displayed with an
arbitrary cluster threshold of 50 mm2.

A.J. Kersey, et al. Developmental Cognitive Neuroscience 39 (2019) 100684

5



regions of frontal and temporal cortices were involved in processing the
reading clips (Fig. 2B, red), whereas regions of parietal cortex and
angular gyrus were recruited during the math clips (Fig. 2A, navy; t
(57)> 2.66, p < 0.01, corrected).

Finally, two traditional functional localizer fMRI tasks were used to
identify regions that showed preferences for the foundational systems
associated with math and reading: numbers and words. Number-pre-
ferring regions were identified as those that showed greater activation
for matching cross-notation number stimuli (an Arabic numeral and an
array of dots) than for matching face, word, or tool stimuli (Kersey
et al., 2016). Children and adults showed number-preferring activation
in bilateral intraparietal sulcus and bilateral inferior frontal gyrus
(Fig. 2A, green; t(54)> 3.48,p < 0.01, corrected). Word-preferring
regions were identified as those that showed greater activation to word
stimuli than scrambled word stimuli during a 1-back task and were
evident bilaterally in the superior temporal cortex and in left ventral
temporal cortices (Fig. 2B, yellow; t(56)> 3.47, p < 0.01, corrected).

Across these three independent analyses on data from both the
natural viewing and controlled tasks, we found a dissociation between
math and reading in parietal vs temporal regions of cortex (Fig. 2C).
Consistent with previous work, we saw that parietal cortex, namely the
IPS and the angular gyrus, and the inferior frontal gyrus were involved
in processing math content (Ansari et al., 2006; Cantlon et al., 2009,
2006; Cantlon and Li, 2013; Emerson and Cantlon, 2012; Holloway and
Ansari, 2010; Lussier and Cantlon, 2017; Menon, 2014; Menon et al.,
2000; Price et al., 2013; Price and Ansari, 2011; Rivera et al., 2005;
Rosenberg-Lee et al., 2015, 2011). In contrast, reading primarily re-
cruited regions in temporal and frontal cortices (Bitan et al., 2007;

Evans et al., 2016; Turkeltaub et al., 2003; Yeatman et al., 2010). A
post-hoc analysis of beta values from peaks in parietal and temporal
cortices confirmed that this dissociation was evident even when looking
at data from just the children (Fig. 3 and Supplement 3). This shows
that the domains of reading and math are functionally dissociable in an
adult-like manner as early as 4 years of age.

One exception to this dissociation was the overlap between math
and reading in the right middle temporal gyrus (Fig. 2A). Although the
right middle temporal cortex (MTG) has been implicated in phonolo-
gical processing (Boets et al., 2013) and linked to reading ability
(Conant et al., 2014), this is not a region that is typically recruited for
math and numerical processing (Arsalidou et al., 2017; Kersey and
Cantlon, 2017b; Peters and Smedt, 2018). In fact, a direct contrast of
neural activation related to reading vs math during natural viewing
indicated that this region was more strongly recruited for reading.
However, our results also demonstrate that the individual differences in
neural maturity of right MTG that are related to math acquisition are
also related to reading acquisition, which suggests that maturation of
this region may relate to broader conceptual change. Thus, while ac-
tivation in MTG might be higher for reading than math, neural maturity
of MTG activation is related to both reading and math.

3.2.1. Conjunction of patterns of neural similarity and functional networks
Next, we investigated the functions of the developing, adult-like,

and “child-unique” patterns of neural activity by testing for conjunc-
tions between those profiles of neural similarity (Fig. 1) and the math
and reading networks (Fig. 2C). “Child-unique” patterns of neural ac-
tivity converged with the reading network in bilateral anterior temporal

Fig. 2. Functional networks for mathematics and reading. Analyses that identify math-related neural activity (A) and reading-related neural activity (B). Analyses
in panels A and B draw on data from the natural viewing tasks (correlations between neural maturity and cognitive skills in light blue and pink, GLM analysis of
mathematics video clips vs reading video clips in navy and red) and on data from the controlled localizer tasks (number task in green, word task in yellow).
Supplement 3 presents a complete list of regions in these panels. Panel C shows the union of the analyses from Panel A in blue (the “mathematics network”) and the
union of analyses from Panel B in red (the “reading network”). All results were significant at a voxel-wise p < 0.01, cluster corrected to p < 0.05. Maps are
displayed with an arbitrary cluster threshold of 25mm2. IPS= intraparietal sulcus, IFG= inferior frontal gyrus, STG/MTG= superior/middle temporal gyrus,
DLPFC=dorsolateral prefrontal cortex, VWFA=visual word form area (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.).
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Fig. 3. Region of Interest analyses for the localizer (A) and the natural viewing (B) GLMs. Sphere ROIs were created using the peaks from the GLM analyses in
left (L) and right (R) intraparietal sulcus (IPS), middle and superior temporal gyri (MTG/STG), fusiform gyrus (VWFA, visual word form area), and inferior frontal
gyrus (IFG). T-tests of beta values versus 0 for adults and for children show that the dissociation between mathematics in parietal cortex and reading in temporal
cortex is evident in children alone. ** p < 0.01, * p < 0.05, † p < 0.10 Sphere ROIs were projected from volume space to surface space for consistency with other
figures.

Fig. 4. Conjunction of the functional networks for reading vs math from Fig. 2C and the 3 patterns of neural similarity from Fig. 1. All regions classified as
Developing, Adult-like, or “Child-Unique” are outlined. The conjunction is shown by the colors within the outlined regions. The full mathematics (blue) and reading
(red) networks from Fig. 2C are overlaid for visualization purposes (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.).
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lobe and with both the math and reading networks in bilateral inferior
frontal gyrus (IFG; Fig. 4C). Previous work has found greater recruit-
ment of the IFG for number and mathematical processing in children
compared to adults (Ansari et al., 2005; Ansari and Dhital, 2006;
Battista et al., 2018; Cantlon et al., 2009; Holloway and Ansari, 2010;
Kersey and Cantlon, 2017b; Lussier and Cantlon, 2017; Rivera et al.,
2005). The current finding suggests that this region not only shows
differences between children and adults in the strength of math-related
neural activity during controlled tasks as reported by previous research,
but it also shows different temporal patterns during naturalistic pro-
cessing of mathematical content. The reading and math networks also
converged with profiles of developing neural activity (Fig. 4A) and
adult-like neural activity (Fig. 4B). Taken together this indicates that
within the math and reading networks, there are patterns of neural
activity that fit all three profiles of neural simliarity.

Several of the regions that displayed “child-unique” patterns of
neural activity did not show differential neural activity in favor of ei-
ther reading or math. One possibility is that these regions are integral to
many domains and show consistent levels of neural activity across
many stimulus types. In this case, we may see evidence of commu-
nication with regions of the math and reading networks. Another pos-
sibility is that these regions of the developing brain show strong func-
tional connectivity with each other at a level that is over and above
what is observed in the adult brain.

3.3. Functional connectivity analyses

To better understand how “child-unique” regions function in the
developing brain, we calculated whole-brain functional connectivity
during natural viewing using each of the nine “child-unique” regions in
Fig. 1C as seeds. Broadly, we found that “child-unique” regions showed
strong functional connectivity to most of the brain, including regions
within the mathematics and reading networks (average r-value across
children: r(346)> 0.25, p < 0.0001). “Child-unique” regions showed
particularly strong connectivity with their opposite hemisphere coun-
terparts (functional homotopy), suggesting possible cross-talk between
corresponding “child-unique” regions. Strong functional homotopy in
childhood has been observed in previous studies of resting state func-
tional connectivity (Anderson et al., 2011; Zuo et al., 2010) and is
consistent with task-based studies that find stronger bilateral recruit-
ment of regions in childhood, which is often thought to reflect im-
maturity of networks that will become lateralized with age or experi-
ence (Bunge et al., 2002; Smyser et al., 2010; Wood et al., 2004). One
intriguing possibility is that functional homotopy is an important
characteristic of regions that show consistency across children. In other
words, these regions not only have similar timecourses across children,
but also more similar timecourses to their contralateral counterpart in
early childhood.

To determine whether these functional connectivity patterns were
“child-unique”, we compared maps of children’s and adults’ functional
connectivity to “child-unique” regions by using linear regression to
control for motion (see Methods for details). Within regions that
showed strong functional connectivity in children (r> 0.25), children
showed stronger connectivity than adults throughout the prefrontal
cortex (t(54)> 2.93, p < 0.005; Fig. 5, yellow, see Supplement 4 for a
table of results). This effect was primarily driven by functional con-
nectivity with the left and right inferior frontal gyri, which showed
stronger functional homotopy and stronger connectivity to nearby re-
gions within the ipisilateral hemisphere. As described in Methods, we
controlled for differences between children and adults in head motion.
We also compared the regression results to results obtained using the
conventional approach of censoring or "scrubbing" the data (Power
et al., 2012; Satterthwaite et al., 2019, 2012; van Dijk et al., 2012).
Results were similar across the two analyses (Supplement 5). This in-
dicates that differences in head motion are unlikely to be the cause.
Instead, this finding is theoretically interesting for three reasons.

First, the left and the right inferior frontal gyri were the only two
regions that displayed patterns of “child-unique” neural activity that
overlapped with both the reading and math networks, indicating that
they support cognitive processing in both domains. Second, prefrontal
cortex is broadly implicated in executive functions such working
memory and cognitive control (Bunge and Zelazo, 2006; Casey et al.,
1997, 1995; Cohen et al., 1994; Perone et al., 2018; Shallice and
Burgess, 1991; Zelazo, 2015), which are thought to be important for
transitioning to more complex conceptual representations (Carey et al.,
2015). Finally, structural and functional maturity of prefrontal cortex
are considerably protracted compared with sensory cortices and pos-
terior functional networks (Bunge et al., 2002; Casey et al., 2005, 2000;
Gogtay et al., 2004; Huttenlocher, 1990). Taken together, one potential
implication is that the inferior frontal gyrus acts as a hub between
domain-general executive processes and core knowledge systems. This
interaction between domain-general executive processes and core
knowledge systems has been described as the catylst for conceptual
change in early childhood (Carey et al., 2015). If this is the case, then
the “child-unique” patterns of neural activity that were evident during
natural viewing might reflect child-unique strategies that are important
precursors to conceptual development in mathematics and reading.

4. Summary and conclusions

Here, we have identified developing, adult-like, and “child-unique”
patterns of neural activity during a naturalistic task. We also identified
an adult-like dissociation between networks for mathematics in parietal
cortex and for reading in temporal cortex across multiple measures in
early childhood. This is the first demonstration of a functional dis-
sociation between mathematics and reading identified within-subjects
in children as young as 4 years of age. That we see this dissociation
across both active and passive tasks with naturalistic and controlled
stimuli suggests that differences between reading and math are unlikely
to be due to domain general factors such as differences in attention and
working memory during reading and mathematics processing. Within
this adult-like dissociation we found that some regions of the brain
showed neural timecourses that were developing or adult-like and
others that were “child-unique”. This shows that the subcomponents of
these networks develop at different rates, likely reflecting the

Fig. 5. “Child-unique” functional connectivity. Reading network (red), math
network (blue), and the conjunction of regions where 1) children showed strong
functional connectivity to any “child-unique” seed region and 2) functional
connectivity in children was greater than functional connectivity in adults
(yellow). Outlined regions show the seed regions (the “child-unique” regions
from Fig. 1C). Notes: the conjunction maps were calculated separately for each
seed and results are displayed with an arbitrary cluster-threshold of 50mm2

(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.).
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acquisition of new skills and the abandonment of child-unique strate-
gies that underlie reading and mathematics.

“Child-unique” neural activation has not been studied in depth but
is expected based on cognitive development research in which children
rely on cognitive strategies that adults do not (e.g., Cornell, 1985; Ehri
and McCormick, 1998; Fischer, 2011; Fischer and Koch, 2016; Portex
et al., 2018; Siegler, 1996; Siegler and Jenkins, 1989; Vellutino, 1979).
To identify “child-unique” neural activity, we applied a novel approach
of comparing the synchrony of neural activity across children and
across adults using intersubject correlations. We found that in some
regions, neural activity associated with spontaneous naturalistic pro-
cessing of reading and math content was more systematically syn-
chronous across children than across adults, meaning that the patterns
of neural activity in those regions are “child-unique”. This type of
“child-unique” neural activity is likely to be a distinct form of devel-
opment that is different from maturation and learning. Whereas ma-
turation and learning are typically associated with a gradual strength-
ening of adult networks, the patterns of “child-unique” neural activity
identified here show a degree of synchrony in childhood that is not seen
in adulthood. Instead, this pattern represents a discontinuity across
development.

Maturation of some of these “child-unique” regions may be linked to
structural maturation of either gray matter or white matter. For in-
stance, we know that cortical thickness is much higher in children in
the “child-unique” regions in frontal and temporal cortices (Gogtay
et al., 2004; Sowell et al., 2004). We also know that functional ma-
turation of ventrolateral and dorsolateral prefrontal cortex for main-
tenance of information in working memory coincides with rates of
structural maturation (Crone et al., 2006; see also Bunge and Wright,
2007; Bunge and Zelazo, 2006). This shows that there are both func-
tional and structural differences in the “child-unique” regions of the
brain. We compared signal-to-noise ratio in children and adults to rule
out general effects of structural differences on BOLD estimation, but it
remains a possibility that increased similarity among children is driven
by structural differences that underscore measures of neural activity. It
is likely that some of the similarities and differences in brain function
during early childhood vs adulthood are constrained by structural
changes across development.

Currently the possibility of capturing the strategic changes that
children experience in early childhood might seem out of reach, but by
looking at child-to-child and child-to-adult correlations in neural ac-
tivity during naturalistic reading and mathematics tasks, we can begin
to gain traction on studying this important developmental phenom-
enon. For instance, here we have identified regions of the inferior
frontal gyrus that show greater neural similarity between children than
between adults. These regions are located within both the reading and
math networks and also showed “child-unique” patterns of functional
connectivity with regions of prefrontal cortex. Because conceptual
change requires cooperation between domain-general executive func-
tions in prefrontal cortex and domain-specific systems of core knowl-
edge, one exciting possibility is that the bilateral inferior frontal gyri
play a central role in conceptual development underlying mathematics
and reading. Examining changes in cognitive strategies alongside
changes in neural activity across development will be important for
testing this prediction. Longitudinal paradigms that focus on the ac-
quisition of specific concepts in reading, mathematics, or other areas of
cognitive development will be especially informative for understanding
the functions of “child-unique” neural synchrony and functional con-
nectivity in conceptual development.

The discovery of “child-unique” neural functions offers a new de-
monstration of the developmental science axiom “children are not just
little adults” (Jean Piaget; Ginsburg and Opper, 1988) and provides an
entry point for deciphering the neural basis of conceptual change in
early childhood.
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