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a b s t r a c t

For many diseases, the basic reproduction number (R0) is a threshold parameter for disease extinction
or survival in isolated populations. However no human population is fully isolated from other human
or animal populations. We use compartmental models to derive simple rules for the basic reproduction
number in populations where an endemic disease is sustained by a combination of local transmission
within the population and exposure from some other source: either a reservoir exposure or imported
cases. We introduce the idea of a reservoir-driven or importation-driven disease: diseases that would
become extinct in the population of interest without reservoir exposure or imported cases (since
R0 < 1), but nevertheless may be sufficiently transmissible that many or most infections are acquired
from humans in that population. We show that in the simplest case, R0 < 1 if and only if the
proportion of infections acquired from the external source exceeds the disease prevalence and explore
how population heterogeneity and the interactions of multiple strains affect this rule. We apply these
rules in two case studies of Clostridium difficile infection and colonisation: C. difficile in the hospital
setting accounting for imported cases, and C. difficile in the general human population accounting for
exposure to animal reservoirs. We demonstrate that even the hospital-adapted, highly-transmissible
NAP1/RT027 strain of C. difficile had a reproduction number <1 in a landmark study of hospitalised
patients and therefore was sustained by colonised and infected admissions to the study hospital. We
argue that C. difficile should be considered reservoir-driven if as little as 13.0% of transmission can be
attributed to animal reservoirs.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Many pathogens affecting humans circulate between humans
and animals through contact, food or indirectly through common
disease vectors in the environment. Other pathogens move across
population boundaries due to the movement of people. The basic
reproduction number – the average number of secondary cases
arising from each primary case in a susceptible population –
determines whether or not the introduction of a small number
of infectives will lead to an epidemic or establishment of en-
demicity in the population. Effective interventions can interrupt
transmission by reducing the basic reproduction number below
one, preventing the disease from causing an epidemic or es-
tablishing endemicity. Moreover, with the notable exception of
disease systems exhibiting ‘backward bifurcations’ (Brauer, 2004),
reducing the basic reproduction number below one for an iso-
lated population will cause disease extinction even if endemicity
has previously be established. However, continual exposure to a
disease reservoir or continual importation of cases from another
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population will continue to replenish the infected population,
and so a disease may establish and persist in a population even
if the basic reproduction number is less than one. There is a
rich literature in meta-population models that capture the inter-
actions of populations that introduce or reintroduce pathogens
to one another (e.g. Balcan et al., 2009; Ball and Neal, 2002;
Becker and Dietz, 1995; Hufnagel et al., 2004)). However, one
often only has data or interest in a single population but needs
to account for external sources of infections. It is in this context
that we wish to generate some simple principles or rules for
estimating the reproduction number. There is also a rich liter-
ature studying vector-borne diseases (e.g. Reiner et al., 2013),
where individual transmission events occur primarily or exclu-
sively between different species of host (e.g. mosquito to human
or human to mosquito but not human to human or mosquito
to mosquito). In these diseases the dynamics of the infection in
each host are inseparable. Rather we are interested in studying
disease systems where the rate of exposure to a reservoir or
the rate of importation of infected individuals can be assumed
to be at least approximately constant and independent of the
transmission dynamics within the population of interest.
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Methods have been developed to estimate the human repro-
duction numbers of emerging zoonoses with limited person-to-
person spread (Cauchemez et al., 2013; Kucharski et al., 2014).
Others have developed methods to account for the often large
proportion of imported cases at the beginning of new epidemics,
which if excluded or treated as if locally acquired would overesti-
mate the reproduction number (Mercer et al., 2011). Though the
term ‘elimination’ has been defined in many different ways (Co-
hen et al., 2010), reducing the local reproduction number below
one is one measure of this progress (Churcher et al., 2014), and is
a necessary step towards global eradication. Methods have been
developed to estimate the reproduction number that account for
the potentially large proportion of imported cases in settings
where progress is being made towards elimination (Churcher
et al., 2014). However none of these methods account for sus-
ceptible depletion and so are restricted to diseases with very
low prevalence (Cauchemez et al., 2013; Churcher et al., 2014;
Kucharski et al., 2014) or calculate the effective reproduction
number (Mercer et al., 2011), which is not a threshold param-
eter for disease persistence. Starting with simple models and
incorporating heterogeneity or multiple strains, we have derived
simple rules for estimating the basic reproduction number in a
population where the disease is at endemic equilibrium due to
a combination of local transmission within the population and
reservoir exposure or imported cases. Many of these rules only
require knowledge of disease prevalence and the proportion of
infections attributable to the external source. We have applied
these rules in two case studies of C. difficile infections.

2. The SIS model

We begin by adapting the simplest possible compartmental
model: the standard SIS model with a homogenous, well-mixed
population without demographics. We include two sources of
infection: (1) transmission within the population which is pro-
portional to the number of people infected (rate: βi) and (2)
constant transmission from some reservoir that does not depend
on the number of people infected (rate: f ). Transmission within
the population could be through direct contact, or mediated via
fomites, airborne droplets, water or food provided this transmis-
sion scales with the infectious population. For our purposes a
reservoir is anywhere where the pathogen persists apart from
the human population, for instance a population of wild animals
or livestock animals that carry the disease. The disease in the
human population can be described by a system of ODEs for the
proportion of the population that is susceptible (s) and infected
(i)):

s′
= −λ(t)s + γi

i′ = λ(t)s − γi , (1)

where λ(t) = βi + f is the force of infection and γ is the rate at
which infected individuals recover.

Diseases that are acquired entirely from food or animals and
diseases that are spread entirely by person-to-person transmis-
sion, are extreme cases of this model with β = 0 and f =

0 respectively. Many diseases lie between these two extremes.
Almost all human cases of H7N9 avian influenza have been ac-
quired from birds, but there has been some person-to-person
transmission which is not enough to maintain endemic disease
(Zhou et al., 2018). Meanwhile human-adapted seasonal influenza
(H1N1, H3N2) are mainly transmitted to humans by other hu-
mans, though there are low frequency transmission events from
animal reservoirs (e.g. Novel Swine-Origin Influenza A (H1N1)
Virus Investigation Team et al., 2009). Middle-eastern respira-
tory syndrome coronavirus may sit somewhere in the middle of
the spectrum with significant human-to-human and animal-to-
human transmission (Zumla et al., 2015).

The reproduction number for this simple model in the next-
generation sense (Diekmann et al., 2010) is the same as for
the standard SIS model (β/γ ) but is a threshold parameter for
extinction of the disease only when there is no transmission from
the reservoir (f = 0), i.e. when the model reduces to the standard
SIS model. Otherwise, the reservoir will continually replenish the
infected population whatever the value of R0 (since even when
i = 0, i′ = f > 0). If there is no transmission from the
reservoir we have the well-known relationship between the basic
reproduction number (R0) and the proportion of the population
susceptible at equilibrium (S): R0 = 1/S. The model parameters
are difficult to measure directly and so we wish to estimate R0
through observable quantities by generalising this rule. Let I, S
and Λ = βI + f be the non-trivial (i.e. I, Λ ̸= 0) equilibrium
values of i, s and λ. As equilibrium points of (1) they satisfy

ΛS = γ I

or equivalently

γ = S
Λ

I
.

Now the proportion of transmission that is from the reservoir
at equilibrium, π , is

π =
f
Λ

= 1 −
βI
Λ

,

which re-arranged for β gives

β = (1 − π )
Λ

I
.

Substituting these expressions for β and γ into the expression
for the reproduction number we get

R0 ≡
β

γ
=

1 − π

S
. (2)

We can also write this in terms of the proportion infected (which
is usually what is reported rather than the proportion suscepti-
ble).

R0 =
1 − π

1 − I
. (3)

These expressions simplify to R0 = 0 if the disease is only
acquired from the reservoir (β = 0, π = 1) or to R0 =

1
S =

1
1−I

when none is acquired from the reservoir (f = 0, π = 0).
The general cases of these expressions lead to a simple rule for
the reproduction number: R0 > 1 if and only if I > π . The
disease can be maintained by transmission within the population
in the absence of reservoir exposure if and only if the prevalence
exceeds the proportion of transmission from the reservoir.

This simple rule has surprising implications. For diseases with
low prevalence (e.g. 2%), if a small but larger portion (e.g. 3%) of
transmission is from the reservoir, then the disease cannot be sus-
tained in the population by transmission within the population
alone (since R0 =

1−0.03
1−0.02 < 1). Preventing the small proportion of

transmission from the reservoir (reducing f and π to 0) will cause
the disease to become extinct in the population. Nevertheless,
names like ‘food-borne’ or ‘zoonotic’ may be misleading for such
diseases because the source of transmission is another human
in most (e.g. 97%) individual infections. Instead we call these
diseases reservoir-driven. We define the reservoir-driven threshold
as the minimum proportion of transmission which must be from
the reservoir for the disease to be considered reservoir-driven (I
in our simple SIS model).

The rest of this article will consider variants and extensions
of the simple SIS model to demonstrate which assumptions do
and do not affect the above expressions for the reproduction
number and reservoir-driven threshold. We will also show that
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an equivalent rule of thumb and threshold exists when a disease
is driven by imported cases due to travel or immigration. We
will however not relax the key assumptions that the disease
is at endemic equilibrium in the population, so the rules we
derive are at best only approximately valid for diseases where the
prevalence varies substantially over time. We will then consider
how this rule of thumb can be applied to case studies of real
diseases.

3. Simple extensions of the SIS model

3.1. Births and deaths

Simple demographics does not change our rule for the repro-
duction number. A modified model including deaths from both
classes at rate δ and births that balance deaths is described by
the equations

s′ = −λ(t)s + γ i − δs + δ

i′ = λ(t)s − γ i − δi ,

where λ(t) = βi + f is the force of infection. In this model
the next-generation method gives R0 =

β

γ+δ
, but as before is a

threshold parameter for extinction of the disease only when there
is no transmission from the reservoir. Let I, S and Λ = βI + f be
the non-trivial (i.e. I, Λ ̸= 0) equilibrium values of i, s and λ. Then

ΛS = (γ + δ) I,

or equivalently

γ + δ = S
Λ

I
.

The force of infection terms are the same as for our original
model so again we have β = (1− π )Λ

I . Substituting this into the
expression for the reproduction number we get the same result
as (2) and (3):

R0 ≡
β

γ + δ
=

1 − π

S
=

1 − π

1 − I
and the reservoir-driven threshold is still I . We have assumed that
the death rates are the same for infected and susceptible persons,
but it is simple to show that a higher (or lower) death rate for
infected individuals does not affect the reasoning.

3.2. Recovered classes and other common extensions

The simplest SIR model without birth and deaths or waning
immunity does not have an endemic equilibrium point so our
method for estimating the reproduction number is not applicable
to these models. Instead, consider the SIR model with births and
deaths:
s′ = −λ(t)s − δs + δ

i′ = λ(t)s − γ i − δi
r ′

= γ i − δr
,

where λ(t) = βi + f is the force of infection. Note that adding
the recovered class to the SIS model with births and deaths does
not change the reproduction number, the equation governing the
number of infected individuals or the force of infection and so the
reasoning is identical to that in the previous section. However,
since there are more than two classes, S + I ̸= 1. Therefore (3)
does not hold but instead,

R0 =
1 − π

S
=

1 − π

1 − (I + R)
.

The reservoir-driven threshold here is I + R, i.e. the disease
can be sustained by transmission within the population in the
absence of reservoir exposure if and only if the proportion of

transmission which is due to reservoir exposure is less than the
total proportion of people infected or immune/recovered.

The same reasoning can be used for models with waning im-
munity, vaccination, or latent/exposed classes. Since these mod-
ifications do not affect the equations governing the number of
infected individuals or the force of infection, Eq. (2) still holds
and therefore the reservoir-driven threshold is 1 − S in all these
cases. For diseases with comprehensive vaccination programmes
(or common diseases with lifelong immunity), almost all the pop-
ulation can be immune (e.g. 95%) and the proportion susceptible
very low. If reservoir exposure accounts for nearly all cases but is
still less than the reservoir-driven threshold (e.g. 90%), the disease
could be sustained by transmission within the population alone
if reservoir exposure was eliminated (since R0 =

1−0.90
1−0.95 > 1) and

so eliminating exposure to the reservoir would not eliminate the
disease from the human population.

3.3. Imported cases

Analogous rules can be derived for settings where some in-
fections are acquired locally and others are imported through
immigration or those returning from travel. Using a model setup
similar to Brauer and Van Den Driessche (2001), we assume
that susceptible and infected individuals emigrate/leave at the
same rate δ, that immigration balances emigration and that a
proportion p of those entering the population are infected. The
governing equations are
s′ = −λ(t)s + γ i − δs + (1 − p)δ
i′ = λ(t)s − γ i − δi + pδ

where λ(t) = βi is the force of infection. The next-generation
method gives R0 = β/(γ + δ) but R0 is not by itself a thresh-
old parameter for disease extinction because the continuous ar-
rival/immigration of new infected individuals will sustain the
disease (unless pδ = 0) (Brauer and Van Den Driessche, 2001).
Also note that the reproduction number here does not count
any secondary cases that may arise after the primary case em-
igrates/leaves, or those that may arise if the primary case returns
and is still infectious. The equilibrium proportion infected (I),
proportion susceptible (S) and force of colonisation (Λ = βI)
satisfy

ΛS + pδ = (γ + δ) I,

or equivalently

γ + δ =
ΛS + pδ

I
.

Meanwhile the proportion of new cases that are imported, q,
is

q =
pδ

ΛS + pδ
= 1 −

ΛS
ΛS + pδ

= 1 −
βIS

ΛS + pδ
which we can rearrange for the transmission parameter giving

β =
(1 − q)(ΛS + pδ)

IS
.

Therefore, we can write the reproduction number as

R0 ≡
β

γ + δ
=

1 − q
S

=
1 − q
1 − I

.

These expressions lead to simple rules for the reproduction
number analogous to those derived for diseased reservoir ex-
posure. R0 > 1 if and only if I > q. That is, in this simple
model, the disease can be sustained without importation by local
transmission if and only if the prevalence exceeds the proportion
of new cases that are imported through migration or travel. By
analogy to the reservoir exposure model, we call this threshold
the importation-driven threshold. This analogy still holds when
heterogeneity or multiple strains are incorporated into these
models — extensions we consider in Sections 4 and 5.
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4. Heterogeneity

It is known that accounting for population heterogeneity tends
to increase estimates of reproduction numbers (Lloyd-Smith et al.,
2005). Therefore, we might expect that introducing heterogeneity
into models with reservoir exposure will increase the reservoir-
driven threshold. Similar to Diekmann et al. (1990) consider a
general heterogeneous population consisting of people of differ-
ent ξ -types with susceptibility α(ξ ), transmission parameter β(ξ )
and mean infectious period 1/γ (ξ ), distributed according to the
probability density function (or when ξ takes discrete values a
probability mass function) g(ξ ). Then a SIS model with separable
mixing can be represented by

st (ξ, t) = −λ (t) α(ξ )s(ξ, t) + γ (ξ )i(ξ, t)
it (ξ, t) = λ (t) α(ξ )s(ξ, t) − γ (ξ )i(ξ, t)

and

s(ξ, t) + i(ξ, t) = g(ξ ),

where λ(t) = f +
∫

β(ξ )i(ξ, t)dξ with the integral to be
interpreted as a sum in the case of discrete ξ . For this model, the
next-generation approach gives R0 =

∫
β(ξ )/γ (ξ) α(ξ )g(ξ )dξ

(Diekmann et al., 1990) but as before R0 is only a threshold
parameter for disease extinction if f = 0. Let I and S be the non-
trivial equilibrium distributions of i and s and Λ =

∫
β(ξ )I(ξ )dξ+

f the equilibrium value of λ. As equilibrium points they satisfy

ΛS (ξ) α (ξ) = γ (ξ) I (ξ) ,

or equivalently,
S (ξ) α (ξ)

γ (ξ)
=

I (ξ)

Λ
. (4)

At equilibrium, the proportion of infections acquired from the
reservoir, which is the proportion of force of infection attributable
to the reservoir, is

π =
f
Λ

= 1 −

∫
β (ξ) I (ξ)

Λ
dξ .

Substituting (4) into the above gives

π = 1 −

∫
β (ξ) α(ξ )S(ξ )

γ (ξ )
dξ .

If we let ρ = βα/γ we can write the reproduction number and
the proportion of infections from the reservoir in simpler terms

R0 =
∫

ρ (ξ) g (ξ) dξ
= ρ

where ρ is the mean value of ρ across the population and

π = 1 −

∫
ρ (ξ) S (ξ) dξ

= 1 − S
∫

ρ (ξ)
S (ξ)

S
dξ

= 1 − SρS

where S:=
∫
S(ξ )dξ is the total susceptible population and ρS is

the mean value of ρ across the susceptible population. Therefore

R0 =
1 − π

S ρS
ρ

.

By similar reasoning one can show that

R0 =
1 − π

1 − I
∫

ρ(ξ ) I(ξ )I dξ∫
ρ(ξ )g(ξ )dξ

=
1 − π

1 − I ρI
ρ

(5)

where I:=
∫
I(ξ )dξ is the proportion of the whole population

that is infected and ρI is the mean value of ρ across the infected

population. The quantity we want to estimate, R0, appears as
ρ on the right-hand sides of each equation and the quantities
ρI and ρS are unlikely to be known, so this does not provide
a practical way to estimate the reproduction number. However,
these statements provide some insight into how heterogeneity
can affect our estimates of the reproduction number or reservoir-
driven threshold. The rule of thumb is similar to the rule for
a homogenous population: R0 > 1 if and only if IρI/ρ > π ,
i.e. the reservoir-driven threshold is IρI/ρ. If those who are in-
fected have higher-than-average (or lower-than-average) ρ, then
accounting for this heterogeneity increases (or decreases) the
reservoir-driven threshold. We derive simple expressions for the
value of ρI/ρ under some specific assumptions.

4.1. Variable susceptibility or infectious period

If we assume that the infectiousness (β) is fixed but the prod-
uct of susceptibility and length of infectious period (φ:= α/γ )
is heterogeneous, then the reservoir-driven threshold is always
higher than for a homogenous population. Consider the ratio ρI/ρ

ρI

ρ
=

∫
βα(ξ )
γ (ξ )

I(ξ )
I dξ∫

βα(ξ )
γ (ξ ) g(ξ )dξ

=

∫
φ(ξ ) I(ξ )I dξ∫
φ(ξ )g(ξ )dξ

=
φI

φ
,

where φ and φI are the mean values of φ across the whole
population and across the infected portion of the population
respectively. Now we can rearrange (4) in terms of the odds of
infection of an individual of type ξ

I(ξ )
S(ξ )

=
Λα(ξ )
γ (ξ )

= Λφ(ξ ). (6)

Since the odds of infection for an individual of type ξ is pro-
portional to φ(ξ ), individuals with high φ (i.e. more susceptible
individuals or individuals with longer infectious periods) will
be over-represented in the infected portion of the population
at equilibrium. Therefore φI ≥ φ and so the reservoir-driven
threshold is at least as high as for a homogenous population.

If the prevalence is low for people of all ξ -types (i.e. S(ξ ) ≈

g(ξ )) there is a simple approximation for the reservoir-driven
threshold. We can rearrange (4) to get

I(ξ ) = S(ξ )Λφ(ξ ) ≈ g(ξ )Λφ(ξ ).

and so

I =

∫
I(ξ )dξ ≈ Λ

∫
φ(ξ )g(ξ )dξ = Λφ

and

φI =

∫
φ(ξ )

I(ξ )
I

dξ ≈
1
φ

∫
φ(ξ )2g(ξ )dξ .

If the population variance of φ is σ 2:=
∫
(φ(ξ ) − φ)2g(ξ )dξ

the ratio can be written approximately as

φI

φ
≈

1

φ
2

∫
φ(ξ )2g(ξ )dξ = 1 +

σ 2

φ
2

and the reproduction number is

R0 ≈
1 − π

1 − I
(
1 +

σ2

φ
2

) .

When there is no heterogeneity in φ (i.e. when σ 2
= 0)

this simplifies to the result for the homogenous SIS model. The
larger the variance for a given mean, the greater the basic repro-
duction number and the higher the reservoir driven-threshold,
I(1 + σ 2/φ

2
). For example if φ(ξ ) and g(ξ ) are such that the

distribution of φ across the population is gamma with mean µ
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Fig. 1. The reservoir-driven threshold (RDT) – the minimum proportion of transmission attributable to the reservoir above which the basic reproduction number
is <1 – as a function of disease prevalence. Each curve indicates the RDT for different population heterogeneity assumptions for infectiousness (β) and the product
of susceptibility and infectious period (φ := a/γ). The RDT for a homogenous population is equal to the disease prevalence (black line). Heterogeneous β alone
does not change the RDT (black line). The RDT is higher if φ is heterogeneous and β is homogenous (solid curves). The size of the effect increases with increasing
heterogeneity (green curves: φ ∼ Γ (3, µ), blue curves: φ ∼ Γ (1, µ)). Heterogeneity in β interacts with heterogeneity in φ, further increasing the RDT if β ∝ φ

(dashed curves) but decreasing the RDT if β ∝ 1/φ (black line).

and shape parameter k (a convenient and often used assumption
(Lloyd-Smith et al., 2005), then the reservoir-driven threshold is
approximately I

(
1 +

1
k

)
(Fig. 1).

If the ξ type of an individual corresponds to some easily
determined risk class – for instance if ξ denotes gender or smoker
status – then the proportion of people in each class, g(ξ ), and the
odds of infection within each group, I(ξ )/S(ξ ), may be known.
Since the odds of infection is proportional to φ, we can express
φI/φ and R0 in terms of these observed quantities:

φI

φ
=

∫
φ(ξ ) I(ξ )I dξ∫
φ(ξ )g(ξ )dξ

=

∫ I(ξ )
S(ξ )

I(ξ )
I dξ∫ I(ξ )

S(ξ )g(ξ )dξ

and

R0 =
1 − π

1 − I φI
φ

=
1 − π

1 − I
∫ I(ξ )

S(ξ )
I(ξ )
I dξ∫ I(ξ)

S(ξ)
g(ξ )dξ

. (7)

4.2. Variable infectiousness

If infectiousness (β) is heterogeneous, but the product of sus-
ceptibility and length of the infectious period (φ:= a/γ ) is
fixed, then the reservoir-driven threshold is the same as for a
homogenous population. Consider the ratio ρI/ρ which can be
simplified as

ρI

ρ
=

∫
β(ξ )φ I(ξ )

I dξ∫
β(ξ )φg(ξ )dξ

=

∫
β(ξ ) I(ξ )I dξ∫
β(ξ )g(ξ )dξ

=
βI

β
,

where β and βI are the mean values of β across the whole
population and across the infected portion of the population

respectively. Now by (6), if φ is constant across the population
the odds of infection at equilibrium is the same for people of
every ξ -type, i.e. independent of their infectiousness. Therefore,
the mean infectiousness amongst the infected population is the
same as the mean infectiousness across the whole population and
βI/β = ρI/ρ = 1. Eq. (5) then simplifies to

R0 =
1 − π

1 − I
which is the same as the result for a homogenous population.

Heterogeneous infectiousness will affect the reservoir-driven
threshold in a population which is also heterogeneous with re-
spect to susceptibility or infectious period. If those who are more
likely to be in the infected class (high φ) are less infectious
(low β), this will reduce the reservoir-driven threshold relative
to homogeneous infectiousness but heterogeneous susceptibility
and infectious period. As a simple example of this, assume that
β(ξ ) = 1/φ(ξ ). Then ρ(ξ ) = 1, ρ = ρI = 1 and the reservoir-
driven threshold is simply I , less than what it would be if β were
constant across the population. On the other hand, if those who
are more likely to be colonised (high φ) are also more infectious
(high β), the reservoir-driven threshold will increase relative
to homogeneous infectiousness but heterogeneous susceptibility
and infectious period. As another simple example consider the
proportional mixing assumption, i.e. β ∝ φ. In this case ρ ∝ φ2

and so

ρI

ρ
=

∫
φ(ξ )2 I(ξ )

I dξ∫
φ(ξ )2g(ξ )dξ

.

When the prevalence is low for people of all ξ -types (i.e. S(ξ )
≈ g(ξ )) we can use the same reasoning as in the previous section
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to approximate this ratio as

ρI

ρ
≈

∫
φ(ξ )3g(ξ )dξ

φ
∫

φ(ξ )2g(ξ )dξ
=

ν

φ(φ
2
+ σ 2)

and the reproduction number by

R0 ≈
1 − π

1 − I
(

ν

φ(φ2
+σ2)

) .

where ν is the third raw moment of φ across the population. If
for example, φ(ξ ) and g(ξ ) are such that φ is gamma distributed
with shape parameter k then the reservoir-driven threshold is
approximately I(1 +

2
k ), which is higher than if β were ho-

mogenous.Fig. 1 summarises how the reservoir-driven threshold
changes for different types of heterogeneity explored so far.

4.3. Variable exposure to reservoir

Heterogeneous exposure to the reservoir in an otherwise
homogenous population does not change the reservoir-driven
threshold. Consider an SIS model where the population consists of
people of type ξ distributed according to g(ξ ) each with their own
level of exposure to reservoir f (ξ ). Then the differential equations
governing the system are

st (ξ, t) = −λ(ξ, t)s(ξ, t) + γ i(ξ, t)
it (ξ, t) = λ(ξ, t)s(ξ, t) − γ i(ξ, t)

and

s(ξ, t) + i(ξ, t) = g(ξ ),

where λ (ξ, t) = β
∫
i (ξ , t) dξ + f (ξ) is the force of infection

acting on individuals of type ξ . The basic reproduction number
for this model is β/γ . Let I and S be the non-trivial equilibrium
distributions of i, s (i.e. I ̸= 0), I and S be the total number
of people infected and susceptible at equilibrium and Λ(ξ ) =

β
∫
I(ξ )dξ +f (ξ ) = βI+f (ξ ) be the equilibrium force of infection.

As equilibrium points they satisfy

Λ(ξ )S(ξ ) = γ I(ξ ).

The proportion of transmission that is acquired from the reser-
voir is then

π =

∫
f (ξ )S(ξ )dξ∫
Λ(ξ )S(ξ )dξ

= 1 −

∫
βIS(ξ )dξ∫

Λ(ξ )S(ξ )dξ

= 1 −

∫
βIS(ξ )dξ∫
γ I(ξ )dξ

= 1 −
β

γ
S = 1 − R0S

and consequently

R0 =
1 − π

S
=

1 − π

1 − I
leaving the reservoir-driven threshold unchanged. However, in-
teractions with additional heterogeneities will affect the
reservoir-driven threshold. Consider the case where both reser-
voir exposure (f ) and the transmission rate within the population
(β) depend on the ξ -state. In this case the equilibrium force of
infection is Λ(ξ ) =

∫
β(ξ )I(ξ )dξ + f (ξ ), the reproduction number

is R0 =
∫
g(ξ )β(ξ )/γ dξ = β/γ where β is the mean value of β

in the population. The proportion of infections that are acquired
from the reservoir is

π =

∫
S(ξ )f (ξ )∫

S(ξ )Λ(ξ )dξ

= 1 −

∫
S(ξ )

∫
I(ξ )β(ξ )dξdξ∫

S(ξ )Λ(ξ )dξ

= 1 −

∫
I(ξ )β(ξ )dξ

∫
S(ξ )dξ∫
I(ξ )γ dξ

= 1 −

∫
I(ξ )
I

β(ξ )dξ
S
γ

= 1 −
βI

γ
S = 1 − R0

βI

β
S,

where βI is the mean value of β in the infected population.
Therefore

R0 =
1 − π

S βI
β

=
1 − π

(1 − I) βI
β

.

Those that have greater exposure to the reservoir are more
likely to be infected and so will have a disproportionally large
effect on βI . If those with more exposure to the reservoir are
also on more infectious then βI > β and the reservoir-driven
exposure is lower, and conversely if those with more exposure to
the reservoir also less infectious then βI < β and the reservoir-
driven threshold is higher (Fig. 2). Note that this is opposite to the
relationship for heterogeneous β and heterogeneous φ (Fig. 1).

5. Multiple strains

There is frequently more than one strain of a pathogen co-
circulating within human populations and the dynamics of multi-
strain interactions have been modelled extensively (e.g.
Andreasen et al., 1997; Ferguson et al., 1999; Kamo and Sasaki,
2002; Minayev and Ferguson, 2009; Wikramaratna et al., 2015).
In the few simple multi-strain models we consider, accounting
for host competition increases the reservoir driven threshold
for each strain compared to the single strain model. Consider a
simple competitive multi-strain extension of our basic SIS model
with reservoir exposure. Each strain has its own transmission
parameter (βk), recovery rate (γk) and reservoir exposure rate (fk).
We assume that infection with one strain prevents infection from
all other strains for the duration of the infection. With n strains
the n + 1 equations governing this system are

s′ = −

n∑
k=1

λk(t)s +

n∑
k=1

γkik

i′k = λk(t)s − γkik, k = 1, . . . , n

where λk(t) = βkik(t) + fk is the force of infection for each
strain. Using the next-generation approach each strain has its
own basic reproduction number: Rk

0 = βk/γk. Here, Rk
0 are not

threshold parameters for strain extinction because reservoir ex-
posure will cause the disease to persist and strain competition
for hosts may cause a strain without reservoir exposure to die
out even if that strain’s basic reproduction number exceeds one.
Let S, be the equilibrium number of susceptible people at the
non-trivial equilibrium where the number of people infected with
each strain (Ik) and the force of colonisation for each strain (Λk)
are non-zero. For each strain we have the following relation

ΛkS = γkIk,

or equivalently

γk =
ΛkS
Ik

.
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Fig. 2. The reservoir-driven threshold (RDT) for different assumptions for heterogeneity of reservoir exposure (f ) and the within-population transmission rate (β).
The RDT for a homogenous population is equal to the disease prevalence (black line). The RDT does not change if only f or only β is heterogeneous (black line).
The RDT is lower if both are heterogeneous and β ∝ f (dashed curves). The RDT is higher if β decreases with increasing f (solid curves: β ∝ e−f ). The size of the
effect increases with increasing heterogeneity (green curves: f ∼ Γ (3, µ), blue curves: f ∼ Γ (1, µ)).

The proportion of transmission of strain k that is from the
reservoir is

πk =
fk
Λk

= 1 −
βkIk
Λk

.

Rearranging for βk:

βk = (1 − πk)
Λk

Ik
.

We can re-write the basic reproduction number for strain k as

Rk
0 ≡

βk

γk
=

1 − πk

S
=

1 − πk

1 −
∑n

j=1 Ij
.

Consequently Rk
0 < 1 if πk >

∑n
j=1 Ij. It follows that a given

strain cannot persist without reservoir exposure if the proportion
of transmission of that strain due to reservoir-exposure is more
than the total prevalence of all strains.

We also want to account for strain competition which can
lead to the extinction of strains that would otherwise persist
in a population. Therefore, we consider the invasion reproduc-
tion number for each strain, i.e. not the reproduction number in
a fully susceptible population, but in a population at endemic
equilibrium with all the other strains. Consider the equilibrium
point without any infections of strain k that exists if there is no
reservoir exposure for strain k (i.e. fk = 0). Let Sk, Ik1, . . . , I

k
n , be the

equilibrium values of s, i1, . . . , in when fk = 0, such that Ikk = 0
and Ikj > 0 if j ̸= k. The invasion reproduction number for strain
k is then Rk

Invasion = Rk
0S

k. It is possible to calculate Sk in terms
of π1, . . . , πn and I1, . . . , In but the exact form is cumbersome
(even for the n = 2 case) so instead we consider a simple bound.
Consider that the equilibrium proportion of each strain other than

k will certainly not decrease in the absence of the competition
with strain k, i.e. Ikj ≥ Ij for j ̸= k. Consequently Sk ≤ S + Ik since

Sk = 1 −

n∑
j=1
j̸=k

Ikj ≤ 1 −

n∑
j=1
j̸=k

Ij = 1 + Ik −

n∑
j=1

Ij = S + Ik.

We can bound the invasion reproduction number for strain k
by

Rk
Invasion = Rk

0S
k

≤
1 − πk

S
(S + Ik)

=
1 − πk

1 −
Ik

S+Ik

.

Consequently Ik
S+Ik

is an upper bound for the reservoir-driven
threshold in the presence of other strains since Rk

Invasion < 1
whenever πk >

Ik
S+Ik

.
Our simple competitive model assumes complete exclusion,

but in reality, strains are unlikely to completely exclude one
another. If one allows for the possibility of coinfections or su-
perinfection, assuming that persons infected with strains other
than strain k (I¬k) are ak times as susceptible to infection with
strain k as those not infected with any strain (S) and that coinfect-
ing/superinfecting strains do not affect infectiousness or infec-
tious period for the infecting strains, then at endemic equilibrium

Λk (S + akI¬k) = γkIk

where Ik is the proportion of people infected with strain k (who
may also be infected with other strains) and Λk = βkIk + fk. One
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can use the same reasoning as above to show that

Rk
0 ≡

βk

γk
=

1 − πk

S + akI¬k
=

1 − πk

1 − Ik + (1 − ak) I¬k

and

Rk
Invasion ≤

1−πk

1− Ik
S+akI¬k+Ik

=
1−πk

1− Ik
1−(1−ak)I¬k

.

and so Ik
S+akI¬k+Ik

=
Ik

1−(1−ak)I¬k
is an upper bound for the reservoir-

driven threshold. If ak = 0, this reduces to the case of complete
exclusion we considered above. If ak = 1, that is if infection
with another strain neither prevents nor predisposes a patient
to infection with strain k, then the reservoir driven threshold and
reproduction number are the same for as for a model with only a
single strain. In general, for a given observed equilibrium, as the
exclusion against strain k increases (i.e. as ak → 0), the reservoir-
driven threshold and reproduction number for strain k increases.
Consequently, the case of complete exclusion is an upper bound
for these quantities in these simple models.

6. Case study: Clostridium difficile

Clostridioides difficile (also known as Clostridium difficile) is a
bacterium that colonises the intestines of many mammals includ-
ing humans and livestock (Hensgens et al., 2012). Most human
hosts do not have symptoms despite being colonised. Colonisa-
tion is typically transient, lasting approximately one month in
adults (Johnson et al., 1992), due to competition and interactions
with other intestinal flora (Britton and Young, 2012). Disruption
of the gut flora, often caused by consumption of antibiotics or
proton-pump-inhibitors, allows C. difficile to proliferate in large
numbers (Britton and Young, 2012). Toxigenic strains of C. difficile
then produce a number of toxins that can cause diarrhoea which
is often severe and sometimes life-threatening (Voth and Ballard,
2005). A robust immune response to these toxins is able to
neutralise their effect (Kelly and Kyne, 2011) and most of the pop-
ulation have anti-toxin antibodies starting at a young age (Viscidi
et al., 1983). Immune responses protect against symptoms but
not protect against colonisation (Loo et al., 2011). Asymptomat-
ically colonised carriers are also infectious (Riggs et al., 2007)
while animal models have shown that disruption of gut flora,
even in the absence of symptoms, increases spore shedding and
infectiousness (Lawley et al., 2009).

Historically, C. difficile has been of most concern and thus most
studied in hospitalised patients where it complicates the care of
many people initially hospitalised for other conditions (Gerding
and Lessa, 2015). However, there is growing recognition of cases
in patients who the pathogen prior to hospital admission but
for whom the onset of symptomatic disease only occurred once
they were admitted to hospital. Since C. difficile infections are
frequently observed in many hospitals and observed at much
higher rate than in the broader community, it has been assumed
that within-hospital transmission of C. difficile is the primary
driver both in the hospital and the broader community.

There are many published mathematical models of C. difficile
transmission that attempt to capture its complex epidemiology
(e.g. Lanzas et al., 2011; Rubin et al., 2013; Yakob et al., 2013). In
our own work we have used detailed models specifically tailored
to C. difficile to demonstrate that transmission of C. difficile cannot
be sustained by transmission in hospitals alone; that transmission
in the community does not require transmission in the hospital
to be sustained; that infants and asymptomatic carriers in the
community are likely to be the main source of transmission be-
tween people; and that even relatively low levels of exposure to
animal reservoirs of C. difficile would be sufficient to suggest that
C. difficile is ‘reservoir-driven’ in the sense used in this manuscript

(McLure et al., 2019a,b, 2018, 2017). However, we wish to see
whether qualitatively similar results would be attained by the
application of the much simpler modelling approach examined
here and using only readily available estimates of colonisation
and infection prevalence.

Since immunity to C. difficile toxins does not prevent coloni-
sation or infectiousness, a simple SIS model is an appropriate
starting point for C. difficile, provided we identify the I-class with
all C. difficile positive individuals (not just those with symptoms).
We will use variations on the SIS model below to determine
whether C. difficile is importation-driven in a hospital setting
and calculate the reservoir-driven threshold for C. difficile for the
human population as a whole (where animals are the reservoir).

6.1. C. difficile in hospitals

If we begin by modelling C. difficile in hospitals as a
(homogenous) SIS model with very high rates of migration (hos-
pital admission and discharge) then we can estimate the repro-
duction number using the method outlined in Section 3.3. In
words, we will estimate the within-hospital reproduction number
as equation which is given in Box I

One study of colonisation and infections in hospitalised pa-
tients found 184 patients colonised at the time of admission,
and another 240 patients that acquired colonisation or infection
after admission (Loo et al., 2011). They identified an additional
60 or so patients who were asymptomatic at the time of admis-
sion but developed symptomatic C. difficile infection within 72 h
of admission and were therefore deemed to have acquired the
pathogen prior to admission. Thus, the proportion of C. difficile
positive patients that acquired the pathogen prior to admission
was approximately 50%.

In the same study 528/5422 patients were colonised or de-
veloped an infection for part of their hospital stay. Some pa-
tients were excluded from their analysis (mostly for missing
data) leaving 424/4143 patients that were colonised or developed
an infection for part of the hospital stay. While these do not
provide an estimate of prevalence (since many of the colonised
or infected patients were only colonised for part of the hospital
stay) these figures provide upper bounds to the prevalence of
colonisation and infection in the study hospital: 9.7% amongst
all study patients and 10.2% after exclusions. Putting this into
the above formula gives an upper bound for the within-hospital
reproduction number of approximately 0.55.

Unlike the study cited above, most studies focus on symp-
tomatic patients and do not test asymptomatic patients at ad-
mission. However, the proportion of patients diagnosed with a
C. difficile infection that were admitted for a C. difficile infection
(principal diagnosis) is routinely reported. As patients admit-
ted with asymptomatic colonisation who subsequently develop
symptoms will not have C. difficile infection as their principal di-
agnosis, this proportion is a lower bound for the total proportion
of infections that are due to exposure prior to admission and thus
let us estimate an upper bound for the reproduction number. In
the USA in the years 1993–2014, 20%–34% of admissions who had
a C. difficile infection had it as their primary diagnosis (Healthcare
Cost and Utilization Project (HCUP), 2014). This is in excess of typ-
ical prevalence of colonisation and infection amongst hospitalised
patients: a review of colonisation prevalence reported a range
of 4%–29% (Furuya-Kanamori et al., 2015a). Therefore, our upper
bound for the reproduction number lies in the range 0.69–1.1.

So far, we have assumed hospitalised patients are homoge-
nous, but this is not the case. Patients who have recently been
administered antibiotics are not more susceptible to colonisation
but are more likely to develop symptoms and be more infectious
(Loo et al., 2011). Thus, an SIS model with heterogeneous infec-
tiousness is perhaps more appropriate. However, heterogeneity
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RHospital
0 =

1 − Proportion of colonisations and infections acquired prior to admission
1 − Prevalence of colonisation and infection

.

Box I.

in infectiousness alone does not affect the estimate of the re-
production number (Section 4.2). Factors affecting susceptibility
to colonisation exist and adjusting for these will increase our
estimate of the reproduction number (Section 4.1), but this is
unfortunately beyond the scope of this case study. However, our
simple estimates of R0 are in agreement with more sophisticated
models of C. difficile transmission in hospitals that have found that
the reproduction number is likely to be less than one in many or
most hospital settings (Lanzas et al., 2011; McLure et al., 2017).

There are many strains and types of C. difficile and it has been
suggested that certain strains or types, such as NAP1/RT027, are
particularly hospital-adapted (Fawley et al., 2016; Knight et al.,
2015). It is possible that these strains have significantly higher
reproduction numbers in the hospital than we have estimated
above and thus may be self-sustaining in hospitals. Unfortunately,
we do not have strain-level or type-level data for all strains or
types. However, the article used to calculate our first estimate
of the reproduction number reports the proportion of infections
and colonisations typed as NAP1/RT027 (Loo et al., 2011). As
the authors did not type all isolates, we assume that un-typed
isolates were equally likely to be NAP1/RT027 as the isolates
from similar patients that were typed, and that the proportion
of NAP1/RT027 infections in those with onset <72 h after admis-
sion (not reported) was similar to patients with colonisation at
admission (13%). Under these assumptions, approximately 32 out
of 150 (21%) colonisations or infections with NAP1/RT027 were
present at admission. Of the approximately 10% of cases that
were colonised or infected for some part of their hospital stay,
approximately 3% were with NAP1/RT027 and the remaining 7%
were with other types. Though colonisation with non-toxigenic
strains appears to be protective against infection with toxigenic
strains (Gerding et al., 2015), we do not have good information
about the interaction of C. difficile types. Nevertheless, we can use
the argument we presented in Section 5 to bound the invasion
reproduction number. This becomes as in Box II

The basic reproduction number (i.e. in a completely suscepti-
ble population without competition with other types) is slightly
greater (see Box III)

This suggests that even if other strains were eliminated and
NAP1/RT027 did not compete for hosts, the continual importation
of colonised and infected individuals would be required to sustain
endemic disease in the study hospital. If we perform the same
analysis for the pooled non-NAP1/RT027 strains in the study
(approximately 212 of 334 colonisations and infections were
present on admission) the equivalent upper bounds for the in-
vasion reproduction number and basic reproduction number are
both approximately 0.4. Therefore, it appears that NAP1/RT027,
though importation-driven, was better adapted for transmission
in the study hospital than other strains.

It is worth providing some clarifying remarks about how these
estimates of reproduction numbers should and should not be
interpreted. As noted in Section 3.3, these reproduction num-
bers do not include any secondary cases that may arise from
the primary case following discharge, either in the community
or during a subsequent readmission to a hospital (either the
same hospital or a different one). A reproduction number that
counted these secondary cases would be strictly higher than
those estimated here. Nevertheless, the reproduction numbers

estimated here are threshold parameters for disease extinction
in individual hospitals in the absence of imported cases. Since
our calculations suggest that this reproduction number is likely to
be below the critical threshold of one, it follows that preventing
the admission of colonised individuals, or the effective isolation
of patients colonised at admission would drive within-hospital
transmission to extinction, a conclusion corroborated by some
quasi-experimental studies (Longtin et al., 2016). However, note
that this conclusion would hold true even if all patients who
are colonised on admission are patients who have acquired the
pathogen in a previous hospital stay. Consequently, based on
these calculations alone, we cannot conclude that eliminating all
transmission in hospitals would not also eliminate (or dramati-
cally reduce) the proportion of admissions that are colonised at
admission. In other words, the calculations in this paper imply
that the admission of colonised patients is essential for the main-
tenance of endemicity in hospitals, but do not imply the converse
statement, that within-hospital transmission is not essential for
the maintenance of endemicity in hospitals. Nevertheless, we
have previously used models of C. difficile transmission in hos-
pitals and the broader community that are better able to answer
this question to demonstrate that this converse is also likely to
hold in most settings (McLure et al., 2019a,b).

6.2. C. difficile and animal reservoirs

Carriage of C. difficile in the general adult population is less
common than in hospitals or aged-care facilities, with reported
prevalence in the range 0%–15%, though ≲ 5% is perhaps most
typical (Furuya-Kanamori et al., 2015a). C. difficile is also com-
monly found colonising pets and livestock, while C. difficile spores
are frequently isolated on meat, fresh produce and in water
(Hensgens et al., 2012). Crucially, there is significant overlap in
strains observed in human and non-human sources (Knight et al.,
2015). However the proportion of human cases that are acquired
from a non-human reservoir is unknown. Consequently, we can-
not use our methods to estimate the reproduction number, but
we can calculate the reservoir-driven threshold. If it is reasonable
to suspect that reservoir exposure accounts for a proportion equal
to or exceeding the threshold, then C. difficile may be sustained
in the human population by exposure to animal reservoirs.

If we begin with a homogenous SIS model with reservoir expo-
sure, then our estimate of the reservoir-driven threshold is simply
the prevalence in the community which is typically ≲ 5% for
adults (Section 2). Given the ubiquity of non-human exposure it is
plausible that reservoir exposure exceeds this very low threshold.
Some individuals will have higher exposure to these reservoirs
(depending on diet and lifestyle factors), but this alone will not
affect the reservoir-driven threshold unless those with greater
exposure are also are more (or less) infectious (Section 4.3). Het-
erogeneous infectiousness due to potential differences between
patients with and without symptoms, or differences between
patients with and without recent antimicrobial exposure does
not affect the food driven exposure in isolation (Section 4.2).
However, communities are not homogenous with regard to C.
difficile colonisation risk, as demonstrated by the higher rates of
colonisation and infection in hospitals, aged-care facilities and the
very high colonisation rates amongst infants. Accounting for this
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RNAP1
Invasion ≤

1 − Proportion of NAP1 colonisations and infections acquired prior to admission
1 −

Prevalence of NAP1 colonisation and infection
Proportion C .difficile negative+Prevalence of NAP1 colonisation and infection

≈
1 − 0.21

1 −
0.03

0.9+0.03

≈ 0.8.

Box II.

RNAP1
0 ≤

1 − Proportion of NAP1 colonisations and infections acquired prior to admission
1 − Prevalence of any C .difficile colonisation and infection

≈
1 − 0.21
1 − 0.1

≈ 0.9.

Box III.

heterogeneity will increase our estimate of the reservoir-driven
threshold (Section 4.1).

If we split our population into four risk categories – (A) hos-
pitalised patients, (B) aged-care residents, (C) infants under 12
months and (D) the rest of the population – we can begin to
account for some of this heterogeneity. If we assume separable
mixing with heterogeneous susceptibility and infectious period,
we need only the prevalence in each group and the proportion of
the population that is in each group to estimate the reservoir-
driven threshold (Eq. (7)). The reported range of colonisation
prevalence in each of these groups is (A) 0%–29%, (B) 0%–51%, (C)
18%–90% and (D) 0%–15% respectively (Furuya-Kanamori et al.,
2015a), while the total proportion of the population in each of
these groups in a developed country like Australia is (A) <0.5%
(OECD, 2015), (B) <1% (Australian Institute of Health Welfare,
2010), (C) <1.5% (Australian Bureau of Statistics, 2017) and (D)
>97% respectively.

If we use the upper end of the prevalence range for each
risk group, though only 16.6% of the population is colonised, the
reservoir-driven threshold is 48.0%. Assuming a lower colonisa-
tion prevalence in the majority population (D) decreases over-
all prevalence but increases heterogeneity and can increase the
reservoir-driven threshold. If only 1% of the healthy adult popula-
tion is colonised, then overall prevalence is 3.0% but the reservoir-
driven threshold is much higher at 81.1%. These extreme values
taken from across the literature are not typical and are unlikely to
coincide in a single population. If we consider more typical values
of colonisation prevalence, the picture is quite different. With
prevalence half of the maximum reported values (i.e. (A) 14.5%,
(B) 25.5%, (C) 45% and (D) 7.5%), which is still probably much
higher than typical for infants in particular (Kubota et al., 2016),
the reservoir-driven threshold is only 13.0%. The reservoir-driven
threshold is lower still if prevalence is lower in any of the high-
risk minority groups (A–C). Fig. 3 explores the effect of different
prevalence assumptions on the reservoir-driven threshold.

This model and estimate of the reservoir-driven threshold is
of course very rough. Transmission is not well mixed between or
within the four risk-categories. Furthermore, the pathogen’s in-
teractions with medications, gut-flora and host immunity leads to
greater complexity than can be captured with a simple SIS model.
The risk-categories of individuals change over time as patients
age or move in and out of hospitals and so a multi-patch with
age structure would provide better estimates. Nevertheless, this
very simple calculation serves as a back-of-the-envelope estimate

for the plausible range of the reservoir-driven threshold, demon-
strating that under a range of reasonable assumptions a relatively
small amount of transmission from animals could be sustaining
endemic disease in human populations. Our simple calculations
with figures from the middle of the reported prevalence range
agree with a detailed, model of hospitals and communities that
found the reservoir-driven threshold was between 3.5% and 26.0%
for a wide range of plausible assumptions (McLure et al., 2019a).

There are many strains or types of C. difficile that circulate in
human populations and the arguments set out in Section 5 could
be used to determine whether individual types are reservoir-
driven. It could be the case that some strains are sustained by
exposure to animals, while other strains – though also present
in animal populations – are sufficiently transmissible between
humans to persist without transmission from animals. C. difficile
PCR ribotype 078 (RT078) is a particularly good candidate to
consider as a reservoir-driven strain. Though it is not known
what proportion of human RT078 cases can be attributed to
transmission from an animal source, whole-genome sequencing
of isolates of this strain from livestock and humans strongly
suggest frequent transmission between these groups (Knetsch
et al., 2018). On the other hand NAP1/RT027 which is found in
livestock but appears to be more transmissible between people
than other strains, might have some human cases attributable to
animal sources but is less likely to be animal-driven (Rodriguez-
Palacios et al., 2013). Finally RT001, which accounts for many
human infections in European settings, appears to be uncommon
in livestock (Rodriguez-Palacios et al., 2013).

7. Conclusion

We have outlined the theory and application of very sim-
ple rules to estimate reproduction numbers in the presence of
reservoir-exposure or imported cases. The rules require minimal
information about the population and the pathogen of interest
and could be a useful starting point or alternative to more com-
plex models tailored to a population or pathogen. Churcher et al.
have developed a statistical test using branching process theory
to infer whether R0 < 1 in populations that are nearing dis-
ease elimination but have many imported cases (Churcher et al.,
2014). Cauchemez et al. use a similar approach that accounts for
incomplete case detection and the overrepresentation of larger
outbreaks to estimate the reproduction number for emerging
zoonoses (Cauchemez et al., 2013). However, their models as-
sume almost all the population is susceptible and so are not
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Fig. 3. Estimates of the reservoir-driven threshold for C. difficile in human populations and its dependence on the prevalence of each of four risk groups. In each
subfigure, the prevalence in one risk group is varied across the reported range (Furuya-Kanamori et al., 2015a) (x-axes) while the other three prevalences are fixed
at the values indicated by the vertical lines in the other subfigures. We consider two scenarios; one where each of the fixed prevalences is assumed to be in the
middle of the reported range (solid lines and curves); the other the same except the prevalence in infants is only 25% (dotted lines and curves). We assume that
0.5%, 1%, 1.5% and 97% of the population are in the hospital, aged-care, infant and ‘other’ risk groups respectively.

suitable for situations where the prevalence of infection or im-
munity is far from zero. Moreover, the latter method assumes
that the reproduction is less than one so is not appropriate in
settings where is there is genuine uncertainty as to whether the
reproduction number is above or below one (Cauchemez et al.,
2013). Our model accounts for susceptible depletion and works
for infections where the reproduction number is above or below
one, but relies on estimates of prevalence to do so. This can pose
a potential difficulty as often incidence rather than prevalence is
reported. Reliable estimates of prevalence either requires near-
perfect case acquisition or surveys of sero-prevalence, carriage
or infection and these surveys must have large sample sizes
if prevalence is low. Indeed, a good deal of the variability in
colonisation prevalence reported for C. difficile outside hospitals
might be attributed to the relatively small sample sizes involved
(Furuya-Kanamori et al., 2015a). Another potential difficulty with
our method of estimating reproduction numbers comes when one

tries to estimate the proportion of cases that are attributable to
the reservoir or importation. It is often easier to demonstrate
that there is some movement of pathogens into the population
of interest from reservoirs or other populations, than to estimate
the proportion of cases in the population that can be directly at-
tributed to these external sources. Even in our case study, though
genetic evidence demonstrates transmission of C. difficile between
animals and humans (Knetsch et al., 2018), the proportion of
transmission from animals remains completely unknown. Exten-
sive, high-resolution molecular typing of pathogens (e.g. whole
genome sequencing) can be of use here and has been used to
estimate the proportion of C. difficile infections in hospitals that
can be attributed to transmission from symptomatic, hospitalised
individuals and link symptomatic individuals to asymptomati-
cally colonised infants (Stoesser et al., 2017; Walker et al., 2012).
For other diseases, the more traditional epidemiological tools
such as identifying exposures to the reservoir may be successful,



A. McLure and K. Glass / Theoretical Population Biology 134 (2020) 182–194 193

especially if exposure to the reservoir is clear and uncommon
(e.g. butchering the reservoir animal species (Zumla et al., 2015)).

Some caution is required when using the reservoir-driven
and importation-driven thresholds. It does not follow that if a
disease is reservoir-driven or importation driven, then interven-
tions targeting the external source and transmission from the
external source will be most effective or ‘best’. The ‘best’ control
strategy will depend on the relative effort required to prevent
each kind of exposure, the impact of these interventions and
metric used to compare these. If it is equally feasible and de-
sirable to eliminate all exposure from either source, eliminating
transmission from the reservoir or importation is clearly the
better choice for a importation-driven or reservoir-driven disease
as this will prevent all local human cases, while preventing only
local transmission or preventing only transmission not linked to
reservoir exposure will prevent only a portion of infections. How-
ever, if only modest reductions are feasible, then targeting local
human transmission may be more effective. One can calculate
the normalised derivatives of equilibrium prevalence to estimate
the reduction in prevalence achieved by a small reduction in
each kind of transmission. For example, in the homogenous SIS
model with reservoir-exposure, a greater reduction in prevalence
is achieved by reducing reservoir exposure only if more than half
of cases are acquired from the reservoir1. This is true whether or
not the disease is reservoir-driven. A similar rule can be derived
for the SIS model with imported cases.

The major limitation of our method is the assumption that the
disease and population are at equilibrium. Many diseases, includ-
ing our case study disease C. difficile, exhibit seasonal variation
(Furuya-Kanamori et al., 2015b). It is possible that an infec-
tion is sufficiently transmissible to be locally sustained in high-
transmission seasons, but reservoir-driven or importation-driven
in low-transmission seasons (Churcher et al., 2014). Similarly, it
possible that exposure to the reservoir is seasonal (Rodriguez-
Palacios et al., 2009). It is possible that an epidemic in one setting
is driven by exposure to a population or reservoir where an
epidemic is ongoing. Our model does not account for these kinds
of temporal variability when estimating reproduction numbers
and reservoir-driven thresholds.

The simplicity, minimal data requirements, generality and ex-
tensibility of the method we have presented here make it useful
starting point for understanding the impact and interaction of
transmission sources both internal and external to a population.
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