
cells

Article

Migration Inhibitory Factor in Conditioned Medium
from Human Umbilical Cord Blood-Derived
Mesenchymal Stromal Cells Stimulates Hair Growth

Hyun Ah Oh 1,†, Jihye Kwak 1,†, Beom Joon Kim 2, Hye Jin Jin 1, Won Seok Park 3, Soo Jin Choi 1,
Wonil Oh 1 and Soyoun Um 1,*

1 Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, Korea;
hyun_ah82@medi-post.co.kr (H.A.O.); jihyek@medi-post.co.kr (J.K.); genny77@medi-post.co.kr (H.J.J.);
sjchoi@medi-post.co.kr (S.J.C.); wioh@medi-post.co.kr (W.O.)

2 Department of Dermatology, Chung-Ang University College of Medicine, Seoul 06974, Korea;
beomjoon74@gmail.com

3 Aesthetic Research Team, Amore Pacific Corporation Research and Development Center, Yongin 17074,
Korea; wspark@amorepacific.com

* Correspondence: ssoso23@medi-post.co.kr
† These authors contributed equally to this work.

Received: 30 March 2020; Accepted: 27 May 2020; Published: 28 May 2020
����������
�������

Abstract: Conventional therapeutic applications of mesenchymal stromal cells (MSCs) focus on cell
replacement and differentiation; however, increasing evidence suggests that most of their therapeutic
effects are carried out by their various secretions. This study investigated the application of conditioned
medium (CM) from human umbilical cord blood-derived MSCs (hUCB-MSCs) to improve hair growth
and developed a method to reliably produce this optimized CM. Primed MSC-derived CM (P-CM)
with combinations of TGF-β1 and LiCl was optimized by comparing its effects on the cell viability of
dermal papilla cells (DPCs). P-CM significantly increased the viability of DPCs compared to CM.
The secretion of vascular endothelial growth factor (VEGF) in DPCs was regulated by the macrophage
migration inhibitory factor (MIF) in the P-CM secreted by MSCs. These findings suggest that P-CM
can improve the efficacy in hair growth via a paracrine mechanism and that MIF in P-CM exerts hair
growth-promoting effects via a VEGF-related β-catenin and p-GSK-3β [SER9] signaling pathway.
Furthermore, clinical trials have shown that 5% P-CM improved androgenetic alopecia through
producing an increased hair density, thickness, and growth rate, suggesting that this topical agent
may be a novel and effective treatment option for patients with androgenetic alopecia.

Keywords: hair growth; conditioned media; VEGF; MIF; human mesenchymal stromal cells;
androgenic alopecia

1. Introduction

Hair loss, also known as alopecia or baldness, occurs in two forms—localized and diffuse—with
an increasing incidence as men and women age. Common types of hair loss from the scalp include
patterned hair loss resulting from genetic programming and sex hormone expression; alopecia areata
caused by an autoimmune disease; and telogen effluvium caused by other factors, including medication,
pregnancy, or stress [1,2]. Patterned hair loss is divided into androgenetic alopecia for men and female
pattern hair loss for women. The symptoms of hair loss and thinning start as bitemporal recession
at the frontal hairline, followed by diffuse thinning over the vertex of the scalp [2]. The standard
treatment for this condition is either hair follicle transplantation or the stimulation of these follicles
with topical or oral medication [3–6]. However, these methods are not proven to treat hair loss and can
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have problematic side effects and high costs [7,8]. Therefore, there is significant interest in finding a
safe and effective treatment to prevent androgenetic alopecia and promote hair regrowth.

A hair follicle is a regenerative systemic organ that undergoes cycles of growth (anagen), regression
(catagen), resting (telogen), and shedding (exogen) [1,9]. Hair follicles comprise dermal papillae
(DP) derived from the mesenchyme and dermal sheath, surrounded by a variety of stem cells [10,11].
DP, located at the base of the hair follicle, reach their maximum size in an anagen state when the
cell number is double that in telogen. When a hair follicle is in an anagen state, DP stay deep in
subcutaneous fat. DP move up to the dermis in catagen. The hair growth cycle is a complex process
regulated by growth factors that are considered to affect the microenvironment that maintains hair
follicle growth. The hair growth cycle involves the rapid remodeling of both epithelial and dermal
components. Epithelial–mesenchymal interactions are essential for hair formation and postnatal hair
growth [12,13], and growth factors within and outside the hair follicle stimulate the proliferation
and differentiation of dermal papilla cells (DPCs) and keratinocytes [14]. Androgenetic alopecia is
characterized by small-sized hair follicles and a shortening anagen phase. A recent study showed
that a hair follicle went into a new anagen from the last telogen when the quiescent stem cells were
stimulated to promote proliferation in response to signals from the DP [10,15,16].

Mesenchymal stromal cells (MSCs) are an attractive option for the treatment and repair of
damaged tissues as they secrete trophic factors that exert their therapeutic effects, rather than relying
on their ability to differentiate into several cell types, including mesoderm- and ectoderm-lineage
tissues. Tissue injury activates immune and inflammatory cells, as well as changes in inflammatory
molecules and immune cells in the microenvironment, inducing the differentiation of MSCs [17].
Paracrine signaling is known to be one of the major modalities underlying the therapeutic efficacy
of MSC-based interventions. Umbilical cord blood (UCB) is an attractive source of mesenchymal
stromal cells because of its abundance and relative ease of collection. Some studies have demonstrated
that primitive human umbilical cord blood-derived MSCs (hUCB-MSCs) have biological advantages
over bone marrow or adipose tissue, which suggests that hUCB-MSCs are a useful model for clinical
applications of cell therapies [18,19]. Furthermore, hUCB-MSCs cultured with specific substances
produce growth factors and regulatory factors that have paracrine effects on surrounding cells.
These growth factors have also been shown to influence hair growth by promoting angiogenesis,
maintaining anagen hair, and activating hair growth [20].

The trophic factors secreted from stem cells include secretome and extracellular vesicles, which
are found in the culture medium, and their composition varies with changes in the culture conditions.
Media enriched for these substances is referred to as conditioned medium (CM) [21,22]. The use
of CM could be more beneficial due to the easier transport and lower costs involved than in the
application of MSCs themselves. Therefore, CM derived from stem cells could be a promising resource
for the development of an alopecia treatment [23,24]. Taken together, these results indicate that
UCB-MSC-derived CM may have a therapeutic effect on hair loss, while several other studies have
suggested that CM obtained from adipose tissue-derived stem cells promotes hair growth in vitro and
in vivo [23,25].

Many reports have suggested that the production of CM secreted from stem cells under hypoxic
culture conditions affects damaged cells by upregulating and downregulating growth factors [21,26].
Downregulated epidermal growth factor (EGF), upregulated vascular endothelial growth factor
(VEGF), platelet-derived growth factor (PDGF), and insulin-like growth factor II (IGF-II) in stem
cell-derived CM has been reported to aid in hair regeneration [24,27]. In addition, TGF-β1 induces the
inhibition of hair follicle cell growth as the hair growth cycle progresses from the anagen phase to the
catagen phase [28,29]. DPCs are important components of hair follicles and play a critical role in their
development through crosstalk with the microenvironment, including the Wnt signaling pathway and
surrounding stem cells. It is important to understand that stem cells interact with DPCs to trigger
hair regeneration. Wnt signaling is also known to regulate hair morphogenesis and regeneration.
By activating the Wnt/β-catenin pathway in DPCs, elevated hair growth was observed. In a previous
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study, the inhibition of GSK-3β by valproic acid and lithium chloride (LiCl) mimicked the effect of Wnt
signaling and promoted hair regeneration [15,30–32]. Previous reports suggest that CM from Wnt1a
overexpressing MSCs activates DPCs and promotes regeneration of the hair follicle [23]. However,
the underlying mechanism of Wnt signaling and its relationship with hair regeneration and DPC
stimulation following MSC-derived CM treatment remains unclear.

The aims of this study were to investigate the therapeutic potential of hUCB-MSC-derived CM in
the treatment of alopecia, to develop a method for the reliable production of optimized CM to promote
hair growth, and to elucidate the underlying mechanism enabling this enhanced hair growth.

2. Materials and Methods

2.1. hUCB-MSC Culture and CM Preparation

Neonatal umbilical cord blood collected from the umbilical vein was isolated using a
Ficoll-Hypaque solution (d = 1.077 g/cm3; cat# 17-1440-03, Sigma-Aldrich Co., St. Louis, MO,
USA), which separated out the mononuclear cells. Separated mononuclear cells were cultured in
alpha-minimum essential medium (α-MEM; cat# 12574-048, Gibco, Carlsbad, CA, USA) supplemented
with 10% fetal bovine serum (FBS; cat# 16000-044, Gibco) and 50 µg/mL gentamicin (cat# 15710-072,
Gibco). Isolated MSCs were incubated at 37 ◦C in a humidified atmosphere containing 5% CO2 and the
culture medium was replaced twice a week, as previously described [33]. The yield of MSC isolation
was approximately 50%. In total, four out of eight UCB harvests produced MSC-like cells. The cells
were passaged to 60%–70% confluency and then used for experiments or redistributed to new culture
plates. All subjects (n = 8) gave their informed consent for inclusion before they participated in the
study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Institutional Review Board of MEDIPOST Co., Ltd. (MP-2015-06).

To collect the conditioned medium (CM) from the MSC cultures, 10 ng/mL transforming growth
factor-beta 1 (TGF-β1; cat# PRD240-01, R&D Systems, Minneapolis, MN, USA) and 5 mM lithium
chloride (LiCl, cat# L7206, Sigma-Aldrich Co.) in serum-free α-MEM were added to the MSCs (passage
7, 5000 cells/cm2) for 1 day, and the culture medium was then changed to serum-free follicle dermal
papilla cell growth medium (DPCM; cat# C-26505, Promocell, Heidelberg, Germany). After 3 days,
CM from the MSC cultures was collected and used as primed MSC-derived conditioned medium
(P-CM), and CM was collected without pre-treatment with TGF-β1 and LiCl to act as the control
(Supplementary Figure S1a).

2.2. Culture of Follicle Dermal Papilla Cells

Primary human DPCs (55, female, Caucasian) were purchased from Promocell (cat# C-12071,
Heidelberg, Germany), and these cells were isolated from human dermis from the lateral scalp
and maintained in Dulbecco’s modified Eagle’s medium (DMEM; cat# SH30243.01, Hyclone, South
Logan, UT, USA) supplemented with 10% FBS (Gibco) and 100 µg/mL streptomycin/100 U penicillin
(cat# 15140122, Gibco) in a humidified 5% CO2 atmosphere at 37 ◦C. DPCs were treated with P-CM
from passage five (Supplementary Figure S1b).

2.3. Cell Viability Assay

The cell viability was evaluated by the CCK-8 assay (cat# CK04-01, Dojindo, Rockville, MD, USA).
DPCs were plated in 96-well flat-bottom tissue culture plates at a density of 4 × 103 cells/well and
incubated for 24 h in DMEM with 10% FBS. DPCs were then cultured for an additional 48 h with
the addition of 10%, 25%, 50%, or 100% P-CM, CM, or recombinant human macrophage migration
inhibitory factor protein (MIF; cat# 289-MF, R&D Systems) in serum-free DMEM. After incubation,
the medium was replaced with the CCK-8 reagents diluted in DMEM, and the plates were incubated in
the dark for an additional 1 h at 37 ◦C. The optical density was measured at 450 nm using a VERSAmax
microplate reader (Molecular Devices, San Jose, CA, USA).
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2.4. Western Blot Analysis

After undergoing the treatment described earlier, DPCs were washed with ice-cold 1× PBS and
lysed with RIPA buffer (cat# 89901, Thermo Scientific, Waltham, MA, USA) containing a protease
and phosphatase inhibitor cocktail (cat# 1861281, Thermo Scientific). Protein concentrations were
determined using a BCA Protein assay (cat# 23225, Thermo Scientific). The lysates were separated using
Novex, NuPAGE, and Bolt precast gels (Invitrogen, Carlsbad, CA, USA) under denaturing conditions
and transferred to nitrocellulose membranes. After blocking with 5% bovine serum albumin solution
for 1 h at room temperature, the membranes were immunoblotted with various antibodies (anti-human
phospho-GSK-3β [SER9], cat# 9323; anti-human β-catenin, cat# 9562; anti-human phosphor-AKT
[SER473], cat# 9271; anti-human cyclin D1, cat# 2978; and anti-human GAPDH; cat# 5174, Cell Signaling,
Danvers, MA, USA) overnight at 4 ◦C, and then probed with horseradish peroxidase-conjugated
secondary antibodies for 1 h at room temperature. The bands were visualized using an enhanced
chemiluminescence immunoblotting system (GE Healthcare Life Sciences, Buckinghamshire, UK).

2.5. Growth Factor Array

The human growth factor array (cat# AAH-GF-1, RayBiotech, Inc., Noncross, GA, USA) was used
to evaluate the growth factors secreted from MSCs or DPCs. The DPCs were plated in 60-mm culture
dishes at 2 × 105 cells and incubated for 24 h. They were then cultured for 48 h with 50% P-CM in
FBS-free DMEM medium, and the culture supernatants were collected. A cytokine antibody array
was conducted according to the manufacturer’s protocol (Supplementary Figure S2). The membranes
were incubated in blocking buffer at room temperature (RT), and the membranes were then incubated
with 1 mL supernatants collected from P-CM or P-CM-treated DPCs for 4 h at RT. The membrane was
washed and then incubated with a biotinylated antibody cocktail. The antibodies bound to the array
were detected using HRP-streptavidin and an enhanced chemiluminescence detection system, and the
spot intensity was quantified using densitometry on Image J software.

2.6. L507 Antibody Array

The RayBio® Label-based L-Series Human Antibody Array L-507 (cat# AAH-BLG-1, RayBiotech)
was used to assay over 507 cytokines, chemokines, growth factors, soluble receptors, and other proteins
in P-CM. From 3.2 × 105 MSCs (P7), 1 mL CM and P-CM were collected. The CM was removed from
the serum using dialysis (buffer: 1× PBS, pH 8.0) overnight at 4 ◦C. CM was dialyzed into a clean
microfuge tube and centrifuged at 10,000 rpm for 5 min to remove any particulates or precipitates.
The biotin-labeled CM was diluted two-fold in blocking buffer and then incubated with gentle rocking
for 2 h at RT. The glass slides were washed five times in wash buffer at RT, and Cy3-conjugated
streptavidin was added and incubated for 2 h at RT. The data from this study was analyzed using the
RayBio Analysis Tool software, which is available to users of the RayBio Biotin Label-based Antibody
Array (EBIOGEN Inc, Seoul, Korea). Each set of data from P-CM and CM was normalized to raw
media to minimalize the factors from media.

2.7. ELISA

To determine VEGF secretion levels, DPCs were plated in 60-mm culture dishes at a density of
2 × 105 cells and incubated for 24 h. They were then cultured for an additional 48 h with 25% CM in
serum-free DMEM medium, and the culture supernatant was collected and analyzed using a VEGF
Quantikine ELISA kit (cat# DVE00, R&D Systems). For the analysis of MIF protein levels, CM and
P-CM secreted from four different MSC cultures were collected and tested using an MIF ELISA, which
was performed according to the manufacturer’s instructions. MIF secretion levels were measured
using a human MIF Quantikine ELISA Kit (cat# DMF00B, R&D Systems).
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2.8. Neutralizing Antibody

To evaluate the effects of VEGF and MIF in DPCs, 25% PM-CM DMEM was treated with neutralizing
MIF antibody (1:400, cat# MAB289, R&D systems) or neutralizing VEGF antibody (100 ng/mL, cat#
MAB293, R&D Systems) for 48 h. The DPC expression of β-catenin, p-GSK-3β [SER9], p-AKT, and
cyclin D1 was then assayed as before.

2.9. Clinical Study

This study was designed to be run as a double-blind placebo-controlled clinical trial conducted on
physically and mentally healthy adults (aged between 20 and 60 years) who had been diagnosed with
mild-to-moderate patterned hair loss (males: Type II according to the modified Norwood–Hamilton
classification, women: Ludwig classification Type I). A total of 30 patients completed the 16-week
study (P-CM group = 16, placebo group = 14). During clinical trials, we excluded two participants
who wanted to withdraw from the clinical trial. Participants who had a history of any skin or scalp
disorders, endocrine abnormalities, or systemic diseases such as liver function abnormality were
excluded from this study. For preventing any influence of other types of treatment on our results,
we excluded any individual who had previously undergone androgenetic alopecia treatment, including
the administration of finasteride, an applied topical hair restorer, or surgical treatment for androgenetic
alopecia, such as a hair transplant or scalp reduction. Pregnant and nursing women were also excluded.

The topical agent used in this study comprised 5% hUCB-MSC-derived CM pretreated with
LiCl and TGF-β1. The placebo included 5% DPCM and was provided to the control group under
the same conditions. Both groups were asked to apply this agent twice daily (morning and evening,
1–2 mL/dose) and then massage the scalp after application for 1–2 min for a total of 16 weeks. The hair
density and diameter were objectively assessed using a phototrichogram (Folliscope 4.0; Lead M, Seoul,
Republic of Korea) and compared to the patient baseline data (baseline) after 4, 8, and 16 weeks of
treatment. The hair density (hair count/cm2) was calculated by counting the total number of hairs in
the target area. The hair thickness (mm) and hair growth rate (mm/day) were calculated as the average
diameter of five hairs measured manually in the target area. The formula for determining the rate
of hair growth was as follows: Hair growth rate = (Hair length 3 days after shaving − Hair length
immediately after shaving) / passed days. Prior to conducting hair measurements, patients who had
hair in the same area affected by patterned hair loss were asked to shave a circle with a diameter of
1 cm near the crown of the head to a length of <2 mm. The target area at the center of the circle was
marked with a 1-mm black dot (tattoo).

To determine the hair density in the 24-week study, 5% P-CM treatment was run separately as a
double-blind placebo-controlled clinical trial with 52 patients. During clinical trials, we excluded nine
participants who dyed their hair or applied other hair restorer. Overall, 43 participants (CM group = 25,
placebo group = 18) completed the clinical trial. After 24 weeks of treatment, the hair density (each/cm2)
was measured and a professional visual assessment was performed using a phototrichogram (Folliscope
4.0), and the results were compared to the baseline data. The hair density (each/cm2) was calculated
by counting the total number of hairs in the target area. For the professional visual assessment,
the score was determined by comparing the results with the patient baseline data (baseline) after 8, 16,
and 24 weeks of treatment: +3, excellent; +2, good; +1, moderate; 0, no change; −1, poor; −2, very
poor; −3, bad [34]. This study was approved by the KC Skin Research Center. The participants in the
clinical trial provided written informed consent prior to study participation (KC-IRB-018).

2.10. Flow Cytometry

MSCs isolated from cord blood were labeled with the following antibodies: FITC-conjugated
human CD14 (cat# 555397), CD45 (cat# 555483), HLA-DR (cat# 555811), PE-conjugated human CD73
(cat# 550257), CD166 (cat# 559263, BD Biosciences), CD90 (cat# 12-0909-42), and CD105 (cat# 12-1057-42,
Invitrogen). Isotype controls were also included: PE-conjugated Isotype Control (cat# 555743) and
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FITC-conjugated Isotype control (cat# 555573, BD Biosciences). Stained cells were analyzed by flow
cytometry on a MACSQuant instrument (Miltenvi Biotec, Bergisch Gladbach, Germany).

2.11. Statistical Analysis

All data are presented as the mean ± standard deviation (SD), and each of the values were
calculated using experimental data repeated at least three times. Statistical analysis was performed
using a one-way nonparametric and two-tailed t-test analysis of variance (ANOVA), followed by a
Fisher’s least significant difference (LSD) test on Prism 7 software (GraphPad, San Diego, CA, USA).
A statistically significant difference was reported if p < 0.05.

In the clinical study, statistical analyses were carried out using SPSS (v23.0; IBM SPSS, Armonk,
NY, USA) software. These analyses were used to assess the efficacy of the test product. Statistically
significant differences between week 0 and 16 of the same group were determined by paired-simple
t-tests. Statistically significant differences between the test and control groups were determined by the
Mann–Whitney U test. For parametric tests, the level of significance was set at p < 0.05. Statistically
significant differences between before and after the use of the product for each group were determined
by ANOVA.

3. Results

3.1. Primed CM Promoted the Cell Viability of DPCs

To investigate the effect of primed conditioned medium (P-CM) on DPCs, MSCs derived from
human UCB were first treated with TGF-β1 and LiCl for 1 day. After priming, the medium was changed
and incubated with DPCM for 3 days, after which P-CM was collected (Supplementary Figure S1).
CM and P-CM were used to treat DPCs for 48 h and these cultures were then subject to the CCK-8
assay to determine the cell viability, although the important consideration, changes in the intracellular
metabolic activity, still remained. The cell viability was improved in both 25% CM and 25% P-CM
in DMEM when compared to the untreated medium. P-CM (with TGF-β1 and LiCl) improved the
DPC cell viability when compared with unprimed CM (Figure 1a and Supplementary Figure S6).
The DPC viability was seen to increase in a P-CM concentration-dependent manner (Figure 1b and
Supplementary Figure S6). This data suggests that CM and P-CM had some positive effect on the
cell viability, and that this effect was enhanced in CM produced from cells pre-treated with TGF-β1
and LiCl.

It is well-known that activating the Wnt/β-catenin signaling pathway by inhibiting GSK-3β induces
β-catenin phosphorylation and degradation, promoting DPC proliferation [15,20,23,30]. Therefore,
we examined the protein levels of β-catenin, phosphorylated GSK-3β (p-GSK-3β [SER9]), p-AKT,
and cyclin D1, which are all known to mediate cell proliferation, by western blot analysis. P-CM
treatment was shown to increaseβ-catenin, p-GSK-3β [SER9], phosphorylated AKT, and cyclin D1 when
compared to the control and CM-treated groups. Our results suggested that CM and P-CM significantly
enhance the DPC viability while activating β-catenin via the inhibitory [SER9] phosphorylation of
GSK-3β (Figure 1c–e; Supplementary Figure S3). Taken together, these findings imply that the proteins,
cytokines, cell-signaling molecules, and growth factors secreted by MSCs primed with TGF-β1 and
LiCl might promote the viability of DPCs via the β-catenin signaling pathway.
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Figure 1. Primed CM (P-CM) induced the viability of DPCs and increased the expression of β-catenin
and p-GSK-3β [SER9]. DPCs were treated with 25% CM and P-CM in DMEM for 48 h. DPCs were
cultured in DMEM medium without supplementation as a control. (a) The cell viability of the DPCs,
which was evaluated by the CCK-8 assay, was significantly increased after treatment with 5% P-CM.
(b) The data shows that the viability of DPCs increased with an increasing P-CM concentration.
(c–e) Western blot analysis: After treating DPCs with 25% CM or P-CM for 48 h, cell lysates were
collected and subjected to western blot analysis with specific antibodies. β-catenin and p-GSK-3β
[SER9] expression in P-CM-treated DPCs was significantly increased. In addition, there was also an
increase in p-AKT and cyclin D1 in P-CM-treated cells. The data are reported as the fold change in
comparison to the control group (CON). Data represent the mean ± SD. Each experiment was repeated
at least three times. Statistically significant differences were determined by one-way nonparametric
ANOVA. * p < 0.05, ** p < 0.01, and *** p < 0.001. Abbreviations: CON, raw Dulbecco’s modified Eagle’s
medium (DMEM); CM, mesenchymal stromal cell (MSC)-derived conditioned medium; P-CM, primed
MSC-derived conditioned medium; DPCs, follicle dermal papilla cells.

3.2. P-CM Enhanced the Secretion of Growth Factors in DPCs

To determine which factors in the P-CM influence the DPC viability, we identified the growth
factors secreted by DPCs after treatment with P-CM using a growth factor array. A screening of
growth factor production was performed to discover the mechanisms underlying hair growth by
P-CM secreted from MSCs. When we compared the results for P-CM-treated DPC secretion and P-CM,
P-CM induced a greater secretion of glial cell-derived neurotrophic factor (GDNF), insulin-like growth
factor-binding protein (IGFBP-6), platelet-derived growth factor receptor (PDGFR)-beta, placental
growth factor (PlGF), and VEGF in DPCs. There was a significant (0.7-fold) decrease in GDNF in
DPCs following P-CM treatment, while PlGF (1.3-fold), IGFBP-6 (1.71-fold), PDGFR-beta (1.36-fold),
PlGF (1.3-fold), and VEGF (1.66-fold) were all increased following P-CM treatment (Figure 2a,b and
Supplementary Table S1).
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identified using an antibody array following DPC treatment with 50% P-CM for 48 h. (b) The levels
of five growth factors were significantly changed when compared to 50% P-CM only in DMEM.
This increased secretion was quantified and analyzed using optical intensity analysis. The growth
factor array demonstrated that P-CM significantly increased VEGF secretion in DPCs. Four proteins,
consisting of IGFBP-6, PDGFR-beta, VEGF, and PIGF, were also elevated. Data was evaluated for
the fold increase, normalized to the intensity of these proteins in P-CM only, which was defined as 1.
On the other hand, the level of GDNF was significantly downregulated in DPCs. (c) To confirm the
upregulation of VEGF in DPCs following P-CM treatment, the VEGF secretion levels were measured by
ELISA. (d–f) Neutralizing VEGF antibody was used to block the increased VEGF in DPCs to confirm
the hypothetical role of this protein. When VEGF was neutralized, there was a corresponding reduction
in β-catenin, p-GSK-3β [SER9], p-AKT, and cyclin D1 in DPCs, confirming that VEGF is likely to
be a key regulator in this cascade. Data represent the mean ± SD. Each experiment was repeated at
least three times, except for the protein array. The protein array was repeated two times. Statistically
significant differences were determined by a two-tailed and unpaired t-test. * p < 0.05, ** p < 0.01, and
*** p < 0.001. Abbreviations: P-CM, primed MSC-derived conditioned medium; DPCs, follicle dermal
papilla cells; VEGF, vascular endothelial growth factor; IGFBP-6, insulin-like growth factor-binding
protein; PDGFR, platelet-derived growth factor receptor; PIGF, placental growth factor; GDNF, glial
cell-derived neurotrophic factor.

We confirmed our observations using a VEGF ELISA on DPCs treated with P-CM. In the P-CM
treatment group, we observed a three-fold increase in the VEGF protein levels (Figure 2c). Western blot
analysis showed that the expression levels of β-catenin and phosphorylated GSK-3β [SER9] increased
in DPCs treated with P-CM. Using a neutralizing antibody against VEGF, we were able to reverse the
P-CM-induced changes to β-catenin and p-GSK-3β [SER9], demonstrating that the regulation of these
proteins was predominantly due to the activity of VEGF (Figure 2d). Taken together, these results
demonstrate that P-CM enhances the secretion of VEGF in DPCs, triggering an improved growth of
DPCs via the β-catenin and p-GSK-3β [SER9] signaling pathway.
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3.3. MIF Expression was Increased in MSCs with Priming

MSC-derived CM contains various growth factors, cytokines, and proteins secreted by the stromal
cells, which function in tissue regeneration. To identify potential targets related to the increased cellular
proliferation on DPCs following MSC priming with TGF-β1 and LiCl, growth factor expression profiling
of P-CM was performed using 507 antibodies and compared to CM (Supplementary Table S2). CM and
P-CM were normalized to raw medium. The results show that 57 growth factors were significantly
upregulated and 35 were significantly downregulated in P-CM normalized to raw medium. The ratio of
P-CM to CM is shown in Table 1. MIF was upregulated four-fold in P-CM compared to CM (Figure 3a–c
and Table 1). MIF was significantly upregulated in MSCs pretreated with TGF-β1 and LiCl. Four
different lots of MSCs were tested to evaluate variations in priming. The secretion of MIF was found
to have increased by approximately three-fold compared to that in CM without significant variation
(Figure 3d). Additionally, there was no change in surface markers related to stem cell characteristics.
This indicates that MSCs did not lose their stemness with priming (Supplementary Figure S4).

Table 1. Upregulated and downregulated proteins in CM and P-CM.

Upregulated in P-CM
Normalized to Raw Medium

Downregulated in P-CM
Normalized to Raw Medium

Protein
CM P-CM

P-CM/CM
Ratio

Protein
CM P-CM

P-CM/CM
RatioNormalized to Raw

Medium
Normalized to Raw

Medium

MIF 5.50 22.62 4.11 PlGF 0.26 0.50 1.96
IL-18 R alpha/IL-1 R5 3.87 8.90 2.30 Angiopoietin-1 0.49 0.50 1.02

EDA-A2 9.72 8.10 0.83 GCP-2/CXCL6 0.07 0.50 6.67
IFN-alpha/beta R1 14.50 7.66 0.53 EDAR 0.04 0.50 12.50

CCR1 2.64 5.97 2.26 NeuroD1 0.29 0.49 1.72
MDC 1.56 4.65 2.99 IL-1 R8 0.20 0.49 2.49

IGFBP-rp1/IGFBP-7 1.90 3.58 1.89 LBP 0.05 0.48 10.35
LECT2 0.60 3.46 5.77 GDF1 0.40 0.47 1.18
Glut5 0.59 3.18 5.36 SCF R/CD117 0.26 0.47 1.83
GDF8 0.78 3.11 1.90 NCAM-1/CD56 0.10 0.47 4.49

MIP-1d 0.80 2.95 3.97 MMP-19 1.06 0.46 0.44
Frizzled-3 0.66 2.88 3.67 Smad 5 0.06 0.46 7.72
VEGF-B 1.28 2.82 4.34 PDGF-BB 0.18 0.45 2.52

Cerberus 1 1.44 2.79 2.21 CD14 0.57 0.45 0.79
Glypican 3 0.64 2.75 1.94 sFRP-1 0.24 0.44 1.85

TROY/TNFRSF19 1.10 2.71 4.29 PF4/CXCL4 0.17 0.44 2.63
FGF-18 0.51 2.69 2.45 MMP-13 0.02 0.43 25.54
IL-16 1.83 2.69 5.27 NRG1 0.34 0.42 1.23

Crossveinless-2 0.64 2.50 1.47 TWEAK R 0.20 0.42 2.10
Angiostatin 0.76 2.37 3.91 Tie-2 0.31 0.42 1.36

Thymopoietin 0.50 2.32 3.12 VEGF R3 0.32 0.42 1.32
HGFR 1.05 2.29 4.65 Angiogenin 0.46 0.41 0.90
Glut3 0.62 2.28 2.19 MCP-3 0.45 0.40 0.90
Csk 1.21 2.21 3.69 MMP-9 0.25 0.40 1.59

TRADD 0.58 2.21 1.82 PDGF-D 0.37 0.38 1.01
IL-10 R alpha 0.55 2.21 3.80 TCCR/WSX-1 0.14 0.36 2.51
GITR Ligand 0.68 2.19 4.01 XEDAR 0.62 0.35 0.56

Growth Hormone 0.75 2.18 3.22 WISP-1/CCN4 0.27 0.33 1.21
Hepassocin 0.63 2.17 2.88 MIP-3 alpha 0.28 0.28 1.01

CTLA-4/CD152 0.69 2.15 3.45 Pentraxin3 0.30 0.25 0.83
IL-1 sRI 0.64 2.15 3.10 SCF 0.03 0.23 8.86
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Table 1. Cont.

Upregulated in P-CM
Normalized to Raw Medium

Downregulated in P-CM
Normalized to Raw Medium

Protein
CM P-CM

P-CM/CM
Ratio

Protein
CM P-CM

P-CM/CM
RatioNormalized to Raw

Medium
Normalized to Raw

Medium

HVEM/TNFRSF14 0.74 2.15 3.35 RANTES 0.14 0.17 1.18
IL-17C 0.10 2.14 2.92 ICAM-3 (CD50) 0.12 0.14 1.18

IL-1 sRII 0.68 2.14 22.31 LRP-6 0.02 0.13 8.22
IL-9 0.76 2.13 3.16 NT-4 0.10 0.11 1.18

NOV/CCN3 0.82 2.13 2.81
IL-1 R6/IL-1 Rrp2 0.76 2.11 2.60

Frizzled-7 0.56 2.10 2.76
Vasorin 0.58 2.10 3.78
Artemin 0.67 2.09 3.64

IL-20 R alpha 0.56 2.09 3.12
EDG-1 0.69 2.09 3.71

Frizzled-1(FZD1) 0.66 2.06 3.03
TGF-beta 5 0.59 2.06 3.11

Activin RIB/ALK-4 0.63 2.06 3.51
CCL28/VIC 0.70 2.06 3.28

SAA 0.63 2.05 2.95
Fractalkine 0.96 2.05 3.27
Activin C 0.70 2.03 2.12

SMDF/NRG1 Isoform 0.61 2.03 2.91
TECK/CCL25 0.67 2.02 3.34

IL-22 R 0.60 2.02 3.03
E-Selectin 0.59 2.02 3.36

LRP-1 0.73 2.01 3.45
HGF 0.56 2.00 2.76

Endothelin 0.56 2.00 3.58
TIMP-1 0.21 2.00 9.66

(Left) 57 growth factors were significantly upregulated and (Right) 35 growth factors were significantly
downregulated in P-CM normalized to raw medium. The ratio of P-CM to CM is shown in each part. Abbreviations:
MIF, Migration inhibitory factor; IL-18 R alpha, Interleukin 18 receptor alpha; EDA-A2, Ectodysplasin A2;
IFN-alpha/beta R1, Interferon-alpha/beta receptor 1; CCR1, CC-Chemokine receptor-1; MDC, Macrophage-derived
Chemokine; IGFBP-rp1, Human Insulin-like growth factor binding protein-related protein-1; LECT2, Leukocyte
cell-derived chemotaxin-2; Glut5, Glucose transporter 5; GDF8, Growth differentiation factor 8; MIP-1d, Macrophage
Inflammatory Protein 1d; VEGF-B, Vascular endothelial growth factor B; TNFRSF19, Tumor necrosis factor receptor
superfamily, member 19; FGF-18, Fibroblast growth factor-18; IL-16, Interleukin 16; HGFR, Hepatocyte growth factor
receptor; Glut3, Glucose transporter 3; Csk, C-Terminal Src Kinase; TRADD, Tumor necrosis factor receptor type
1-associated death domain; IL-10 R alpha, Interleukin 10 receptor alpha; GITR Ligand, Glucocorticoid-induced Tumor
necrosis factor receptor-related protein ligand; GH, Growth Hormone; CTLA-4, Cytotoxic T-lymphocyte-associated
protein 4; IL-1 sRI, Interleukin-1 soluble receptor type 1; HVEM, Herpesvirus entry mediator; IL-17C, Interleukin
17C; IL-1 sRII, Interleukin-1 soluble receptor type 2; IL-9, Interleukin-9; CCN3, Cellular communication network
factor 3; IL-1 R6, Human Interleukin 1 receptor 6; IL-20 R alpha, Interleukin 20 receptor alpha; EDG-1, Endothelial
Differentiation Gene-1; FZD1, Frizzled-1; TGF-beta 5, Transforming growth factor-beta-5; Activin RIB, Activin
receptor IB; CCL28, CC-Chemokine ligand 28; SAA, Serum Amyloid A; SMDF, Neuregulin 1 Isoform; TECK,
Thymus-expressed Chemokine; IL-22 R, Interleukin 22 receptor; LRP-1, Low-density lipoprotein receptor-related
protein 1; HGF, Hepatocyte growth factor; TIMP-1, Tissue inhibitor of metalloproteinases-1; PlGF, Placental
growth factor; GCP-2, Granulocyte Chemotactic Protein 2; EDAR, Ectodysplasin receptor; NeuroD1, Neurogenic
differentiation 1; IL-1 R8, Human Interleukin 1 receptor 8; LBP, Lipopolysaccharide-binding protein; GDF1, Growth
differentiation factor 1; SCF R, Stem cell factor receptor; NCAM-1, Neural cell adhesion molecule 1; MMP-19,
Matrix Metalloproteinase 19; Smad 5, Human mothers against DPP homolog 5; PDGF-BB, Platelet-derived growth
factor BB; CD14, Cluster of Differentiation 14; sFRP-1, Secreted frizzled-related protein 1; PF4, Platelet Factor 4;
MMP-13, Matrix Metalloproteinase 13; NRG1 Isoform GGF2, Neuregulin-1 Isoform glial growth factor 2; TWEAK R,
Tumor necrosis factor-related Weak inducer of Apoptosis Receptor; Tie-2, TEK tyrosine kinase; VEGF R3, Vascular
endothelial growth factor receptor 3; MCP-3, Monocyte chemoattractant protein-3; MMP-9, Matrix Metalloproteinase
9; PDGF-D, Platelet-derived growth factor D; TCCR, T-Cell Cytokine Receptor; XEDAR, X-linked ectodysplasin-A2
receptor; WISP-1, Wnt Inducible Signaling Pathway Protein 1; MIP-3 alpha, Macrophage Inflammatory Protein
3 Alpha; SCF, Stem cell factor; RANTES, regulated on activation, normal T cell expressed and secreted; ICAM-3,
Intercellular Adhesion Molecule 3; LRP-6, Low-density lipoprotein receptor-related protein 6; NT-4, Neurotrophin
factor 4.
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Figure 3. Priming MSCs with TGF-β1 and LiCl resulted in a significantly increased secretion of MIF.
(a,b) CM and P-CM, collected from supernatants of MSCs after priming with or without TGF-β1 and
LiCl, were subjected to an antibody array, and the dot intensity was then analyzed. The normalized log2
expression of cytokines, chemokines, and proteins in P-CM showed significant differences (p < 0.05)
between the CM and P-CM groups, which is represented by the color scale. MIF levels in MSCs with
priming were significantly increased. (c) After being normalized to Raw M, the normalized intensities
of CM and P-CM were the logarithm to base 2 for comparison. Detailed increases (1.5-fold, red line)
and decreases (1.5-fold, green line) of P-CM compared to CM are shown. (d) The secretion of MIF was
measured by ELISA in four lots of UCB-MSCs after priming with TGF-β1 and LiCl. Data represent
the mean ± SD. ELISA was repeated four times in triplicate. The growth factor array was repeated
two times. Statistically significant differences were determined by one-way nonparametric ANOVA.
*** p < 0.001. Abbreviations: MSC, mesenchymal stromal cells; MIF, macrophage migration inhibitory
factor; CM, MSC-derived conditioned medium; P-CM, primed MSC-derived conditioned medium;
Raw M, raw medium; UCB, umbilical cord blood.

3.4. MIF-Regulated P-CM Induced VEGF Secretion

We examined whether MIF regulated DPC viability and VEGF secretion. DPCs were treated
with various concentrations of recombinant MIF proteins for 48 h. The cell viability of the DPCs
significantly increased in a concentration-dependent manner with increasing MIF concentrations
(Figure 4a). MIF treatment significantly stimulated VEGF secretion in a dose-dependent manner
(Figure 4b). Using a neutralizing antibody for MIF, the elevated cell viability and VEGF secretion in
P-CM-treated DPCs was suppressed (Figure 4c,d). These results suggest that MIF is a key regulator of
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the increased DPC viability for recruitment of the DPC conduction ability induced by P-CM treatment.
MIF secreted by MSCs primed with TGF-β1 and LiCl regulates VEGF secretion in DPCs, enhancing
their viability.
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different (p > 0.05). Males comprised 3.33% of the study population (1/30 individuals) and females 
comprised 96.67% (29/30). None of the patients included in the study used any products or were 
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The mean hair density in the P-CM group increased from 96.69 ± 16.989 to 110.06 ± 17.726 
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Conversely, the hair density of the placebo group decreased from a mean of 114.64 ± 20.78 hairs/cm2 

Figure 4. Increased levels of MIF in MSCs, following priming, increased the cell viability by regulating
the secretion of VEGF in DPCs. (a) The cell viability of DPCs, measured by CCK-8, demonstrated
an increased viability in the presence of recombinant human MIF proteins. (b) The supernatants of
DPCs were collected to analyze the secretion of VEGF after treatment with varying concentrations of
MIF proteins. (c) To confirm the effect of MIF on the viability of DPCs, MIF-neutralizing antibodies
were added with CM or P-CM. The cell viability of DPCs was reduced following MIF neutralizing
antibody exposure. (d) The increased VEGF levels following the P-CM treatment of DPCs was
significantly impaired following the addition of the MIF neutralizing antibodies. Data represent the
mean ± SD. Each experiment was repeated at least three times. Statistically significant differences
were determined by one-way nonparametric ANOVA. * p < 0.05 and *** p < 0.001. Abbreviations:
MIF, macrophage migration inhibitory factor; CM, MSC-derived conditioned medium; P-CM, primed
MSC-derived conditioned medium; VEGF, vascular endothelial growth factor; MIF, macrophage
migration inhibitory factor.

3.5. Topical Agents Containing P-CM Improved Androgenetic Alopecia

Toxicity studies were conducted with P-CM pursuant to the MFDS guidelines for cosmetic
products to confirm that the conditioned medium is safe for use in topical application (Supplementary
Data S1). The mean patient (n = 30) age was 46.9 years (range: 33–55 years). The mean ages of the
P-CM and placebo groups were 46.0 and 47.9, respectively, which were not significantly different
(p > 0.05). Males comprised 3.33% of the study population (1/30 individuals) and females comprised
96.67% (29/30). None of the patients included in the study used any products or were taking any drugs
that could be reasonably expected to influence hair growth for at least 6 months prior to the start of
this study.

The mean hair density in the P-CM group increased from 96.69± 16.989 to 110.06 ± 17.726 hairs/cm2

over the 16-week treatment period (p < 0.001), which represented an increase of 14.24%. Conversely,
the hair density of the placebo group decreased from a mean of 114.64 ± 20.78 hairs/cm2 prior to
treatment to 108.07 ± 19.59 hairs/cm2 after 16 weeks. The increase in hair density experienced by the
P-CM group was statistically significant when compared to the values of the placebo group (p < 0.001)
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(Figure 5a,b). To demonstrate the long-term effect of P-CM, the hair density in the two groups was
evaluated over a 24-week treatment period. Overall, the P-CM groups showed a significant increase in
hair density (Supplementary Figure S5).
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Figure 5. Clinical study of hair growth in participants using P-CM at 4, 8, and 16 weeks. The results
of the clinical study suggest that a hair tonic containing 5% P-CM could help to treat androgenetic
alopecia. Measurements of the (a,b) hair density, (c,d) hair thickness, and (e,f) hair growth rate showed
a significant increase in the 5% P-CM-treated group compared to the placebo group. Statistically
significant differences for the (a) total hair density, (c) hair thickness, and (e) hair growth rate were
determined between week 0 and 16 of the same group. For the change of the (b) hair density, (d) hair
thickness, and (f) hair growth factor, a significant difference of P-CM was determined compared to the
placebo group. * p < 0.05, ** p < 0.01, and *** p < 0.001. Abbreviations: P-CM, primed MSC-derived
conditioned medium.

The mean hair thickness in the test group increased from 0.074 ± 0.009 mm to 0.094 ± 0.010 mm
(p < 0.001), representing an increase of 28.19%. Conversely, the control group had a hair thickness of
0.078 ± 0.007 mm prior to treatment, 0.076 ± 0.007 mm after 4 weeks, 0.073 ± 0.007 mm after 8 weeks,
and 0.071 ± 0.009 mm after 16 weeks. The differences in hair thickness between the groups were not
statistically significant (p > 0.05); however, at 16 weeks, the test group showed a statistically significant
increase in hair thickness compared with the control group (p < 0.001) (Figure 5c,d).

The change in the rate of hair growth during the study in the treatment and control groups
was analyzed by evaluating changes in hair length over 16 weeks. The mean rate of hair growth in
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the test group increased from 0.262 ± 0.039 to 0.312 ± 0.045 mm/day over the 16-week study period
(p < 0.001), which was an increase of 19.54%. In contrast, the rate of hair growth decreased from a
mean of 0.257 ± 0.039 mm/day prior to treatment to 0.241 ± 0.043 mm/day after 16 weeks (p > 0.05).
The increase in the rate of hair growth noted for the test group was statistically significant compared
with that of the control group (p < 0.001) (Figure 5e,f).

Taken together, the results of this study indicate that the application of a topical agent (cosmetic
formulation) containing P-CM at 5% (v/v), as used in this study, can induce statistically significant
improvements in the hair density, hair thickness, and hair growth rate, when compared with those in a
placebo group. No severe adverse effects were noted for any of the patients in this study. Likewise,
none of the patients reported irritation or itching.

4. Discussion

MSCs are living cells that can adapt to disease environments by changing their pattern of trophic
factor secretion. MSC-derived CM is a promising pharmaceutical agent for regenerative medicine,
including treatment for hair loss. CM is a collection of trophic factors free from MSCs; thus, it should
be possible to tailor this CM by pretreating MSCs in order to induce the secretion of specific factors
optimized for the promotion of hair growth [21–23]. For pretreatment, we first exposed MSCs in vitro
to an artificial environment mimicking an alopecia state in hair follicles (“priming”). Human hair
follicles affected by androgenic alopecia showed dramatic decreases in viability and proliferation.
Dermal papilla cells (DPCs) on hair follicles manage hair follicle cycling by inducing signaling factors
related to cell growth. The restoration of hair induction by DPC stimulation is considered a potential
therapy for hair loss. In this study, we demonstrated that conditioned medium (CM), collected
from MSCs primed with TGF-β1 and LiCl, upregulated the viability of DPCs and hair growth. MIF,
secreted by primed MSCs, induced VEGF in the DPCs by inhibiting GSK-3β, which induces β-catenin
phosphorylation (Figure 6).
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Figure 6. Schematic diagram of DPC proliferation and hair follicle growth. Increased MIF in P-CM
secreted by MSCs was induced by TGF-β1 and LiCl. MIF in P-CM activates VEGF secretion in the DPCs,
followed by the activation of the inhibitory phosphorylation GSK-3β and phosphorylation of β-catenin,
which increases the ubiquitination and thereby the degradation of β-catenin. Overall, P-CM regulated
the viability of DPCs and hair follicle growth via the activation of VEGF in DPCs. Abbreviations: MSCs,
mesenchymal stromal cells; MIF, macrophage migration inhibitory factor; P-CM, primed MSC-derived
conditioned medium; DPCs, follicle dermal papilla cells; VEGF, vascular endothelial growth factor.
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The paracrine effect is known to play a key role in the therapeutic efficacy of MSCs. When MSCs
are administered in the body, they adapt to the new environment in the damaged areas and start
to secrete various trophic factors, including cytokines and growth factors, which play roles in the
anti-inflammatory response, the induction of anti-apoptotic factors, mitogenesis, and the activation
of endogenous stem cells [35–37]. The therapeutic effects of the trophic factors secreted by MSCs
are collectively referred to as the paracrine effect or paracrine action of MSCs. CM, containing
growth factors and tissue regenerative agents secreted by MSCs, has a paracrine effect on neighboring
cells [38]. Previous research has shown that cytokines secreted by umbilical cord blood-derived
and adipose-derived stem cells promote hair growth [20,22–24]. Additionally, one clinical study
demonstrated that the hair stimulating complex produced by skin cells grown under hypoxic conditions
secreted high levels of Wnt protein and had an efficacy in hair restoration [39]. Therefore, conditioned
medium secreted by primed cells had the possibility to regulate hair growth. In this study, we treated
MSCs with TGF-β1 and LiCl to induce the secretion of cytokines involved in the stimulation of hair
growth by mimicking the conditions of alopecia.

In hair follicles, the high expression of TGF-β induces growth suppression and cell apoptosis
in the hair follicular matrix and epithelial strands through a shift in hair cycle progression from the
anagen to the catagen phase [28,29]. It has become apparent that TGF-β is deeply involved in the
progression of alopecia. TGF-β1 knockout mice have hair follicles that exhibit anagen phase elongation,
and a shift to the catagen phase can be induced by TGF-β1 administration. These findings suggest that
TGF-β1 functions as a regression phase inducer of hair follicles and that controlling TGF-β signaling
may be an effective strategy for alopecia treatment. TGF-β has been shown to induce a catagen-like
morphology and inhibit human hair follicle growth in vitro. Previous studies have reported that the
production of TGF-β1 and hair growth inhibitory factors from DPCs is enhanced by androgens [40–42].
It is interesting that the TGF-β family mimetic peptide promotes the proliferation of human follicle
dermal papilla cells and hair growth [43]. Lithium chloride (LiCl) is an agonist of canonical Wnt
signaling that inhibits GSK-3β activity and thereby effectively stabilizes free cytosolic β-catenin [44,45].
Specifically, one report showed that TGF-β2 plays a prominent role in dampening BMP signaling
and facilitates the activation of hair follicle stem cells [46]. Another study showed that the inhibition
of TGF-β signaling in hair follicles during telogen to early anagen leads to the blockade of anagen
re-entry [47]. Taken together, these results strongly indicate that TGF-β signaling plays an important
role in regulating the proliferation, differentiation, and apoptosis of distinct stem cell populations in
hair follicles. Furthermore, these findings indicate the therapeutic potential of hUCB-MSC-derived
CM pretreated with LiCl and TGF-β in androgenetic alopecia. Therefore, TGF-β and LiCl appear to
contribute to maximizing the efficacy of CM. We found that conditioned medium (P-CM) obtained
by priming with a combination of TGF-β1 and LiCl resulted in a significantly enhanced viability of
DPCs. However, these two potent agents might have masked the efficacy of CM alone. To clarify this,
a further in vivo study is required.

Hair follicle regeneration begins when signals from the DPCs reach multipotent epidermal stem
cells in the bulge region. Androgenetic alopecia involves the action of dihydrotestosterone (DHT)
on the DPCs that line the base of the hair follicle. However, the mechanism behind this action is not
completely understood. Circulating androgens act on DPCs and alter paracrine factors that influence
hair epithelial cells. According to a previous study, DHT shortens the duration of the hair growth cycle
by initiating cell-cycle arrest and downregulating levels of β-catenin. Specifically, DHT decreases the
levels of total and nuclear β-catenin, an important regulator of hair growth and proliferation, while LiCl,
a glycogen synthase kinase-3β inhibitor, attenuates DHT-induced downregulation of β-catenin [48].
LiCl consistently reverses the effect of DHT on the ability of dermal papilla cells to induce hair follicle
stem cell differentiation. For example, one study showed that conditioned medium from DPCs treated
with LiCl and DHT induced the expression of K6hf, indicating that the activation of Wnt ⁄β-catenin by
LiCl in DHT-treated DPCs rescues the capacity for hair cell differentiation [49]. Taken together, these
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results suggest that at least some of the paracrine factors involved in hair differentiation are target
genes in the Wnt/β-catenin signaling pathway.

Hair follicle regeneration begins when signals from mesenchyme-derived DPCs reach multipotent
epidermal stem cells in the bulge region of the follicle [11]. Several signaling molecules involved in
the Wnt, BMP, shh, and TGF-β signaling cascades have been shown to be involved in the normal
hair follicle cycle [10,14]. The Wnt/β-catenin pathway is one of the most important elements in hair
growth regulation [15]. β-Catenin is markedly activated in DPCs during the anagen phase and is
important for regeneration of the hair cycle. The inhibition of glycogen synthase kinase 3 (GSK-3)
results in the hypo phosphorylation of β-catenin, as well as its increased abundance and nuclear
accumulation; this promotes the transcription of growth-promoting gene products cyclin D1 and p21,
which are responsible for the cell cycle [15,50,51]. Wnt/β-catenin signaling activation by inhibiting
GSK-3β maintains the ability of human DPCs to induce hair growth, and β-catenin activity via p-Akt
in the DP regulates morphogenesis and the regeneration of hair. In our study, we observed increases in
p-GSK-3β [SER9] and β-catenin expression following DPC treatment with P-CM, and demonstrated
that the effect of β-catenin on hair growth can be attributed to its influence on DPCs. Although cyclin
D1 and p-AKT were not significantly changed, the P-CM treatment of DPCs increased the expression
of cyclin D1 and p-AKT, which are both related to the proliferation mechanism of DPCs.

To investigate the hair growth-promoting effects of the MSC secretions, the cytokine expression
profile of these cells was verified using an antibody array. The results revealed that GDNF, IGFBP-6,
PDGFR-beta, PlGF, and VEGF all increased after the P-CM-treatment of DPCs. There is evidence that
IGF and IGFBP exert a positive effect on the cell viability and VEGF secretion via β-catenin signaling in
DPC [20,24]. In addition, PlGF and VEGF expression is known to mediate hair growth [7,24,52]. In this
study, primed CM significantly induced the secretion of VEGF in DPCs. VEGF is a strong regulator
of pathological angiogenesis and regulates DPC proliferation [53–55]. VEGFR2 is a well-known
VEGF receptor, and β-catenin and AKT are downstream proteins that are regulated by VEGF [56–58].
When we treated cells with P-CM, β-catenin and p-GSK-3β [SER9] expression in DPCs was significantly
increased. When cells were treated with a neutralizing VEGF antibody, the increased expression of
β-catenin and p-GSK-3β [SER9] was suppressed. Overall, these results suggest that VEGF is a key
mediator of DPCs and promotes cell viability via β-catenin/GSK-3β signaling, triggered by treatment
with TGF-β1/LiCl-primed MSCs.

These findings suggested that a further examination of the specific factors in the P-CM collected
was warranted. We hypothesized that a specific factor in CM could be responsible for the effects of
primed CM. To examine this possibility, the growth factors secreted by the MSCs primed with TGF-β
and LiCl were analyzed using an L507 growth factor array. This analysis revealed at least 88 growth
factors that were differentially expressed between the control and P-CM. Among these, MIF was shown
to be upregulated four-fold in P-CM. MSCs from four different donors showed the continued and
elevated secretion of MIF upon priming with TGF-β and LiCl.

MIF was originally identified because of its ability to inhibit the random migration of macrophages
in vitro. MIF is expressed in hair follicles, and there is a close association between reduced MIF in hair
follicles and the development of alopecia areata, which is an autoimmune disease of the skin [59,60].
Interestingly, treatment with TGF-β1 and LiCl induced the expression of MIF in MSCs, and treatment
with MIF induced DPC viability for recruitment of the conduction ability. To obtain a better insight
into the relationship between MSC-secreted MIF and VEGF in DPCs, we confirmed that the VEGF
expression in DPCs was dependent on MIF. Significant increases in VEGF expression were observed
when MIF was introduced, and these changes appeared to be dose-dependent. The increased levels of
VEGF in DPCs treated with P-CM were significantly suppressed when a neutralizing MIF antibody
was introduced. However, the relationship between the inflammatory, chemotactic, and proliferative
capacities of MIF and cancer severity is still unclear. Overexpressed MIF levels in multiple models of
cancer have been reported [61]. Therefore, the direct use of recombinant MIF proteins for the treatment
of hair loss requires more studies.



Cells 2020, 9, 1344 17 of 20

Additionally, a double-blind and placebo-controlled clinical study on patients with patterned
hair loss demonstrated that the hair density and thickness were significantly increased, while the
hair growth rate increased from 0.262 to 0.312 mm/day, with no severe adverse reactions on hair and
skin when patients used a topical treatment enriched with 5% v/v P-CM. The improvements caused
by 5% v/v P-CM treatment were significantly greater that those observed in placebo-treated sites in
terms of the hair density at 4, 8, and 16 weeks. Although the patients were randomized before the
treatment, the total density at week 0 showed a dramatic difference between P-CM and placebo groups.
This could be due to the difference in the initial disease severity of patients between the two groups.
This study lays the groundwork for future work, which will require a larger sample size to confirm the
inherent limitation of this clinical data. Notwithstanding the inherent limitation, the changes of the
total hair density, hair thickness, and hair growth rate of the P-CM-treated group in the terminal week
(16 weeks) showed significant increases compared to the placebo group.

These findings demonstrate that MIF is required for the effects of P-CM and is a key modulator
of hair growth-related protein, VEGF, in DPCs. This interaction is mediated via the β-catenin and
p-GSK-3β [SER9] signaling pathways. These results strongly suggest that P-CM can counteract hair
loss and could be a promising therapeutic agent for hair restoration. In addition, the results of the pilot
clinical trial suggest that P-CM derived from MSCs is a safe and effective treatment for androgenetic
alopecia. Emerging and future combined treatments with MSCs may lead to a new paradigm in the
management of androgenetic alopecia.
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