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Background: Phosphogluconate dehydrogenase (PGD) is involved in the

regulation of various tumors. However, its role in hepatocellular carcinoma

(HCC) is poorly understood. This study tried to determine the prognostic

efficacy of PGD and its value for immunotherapy in HCC.

Methods: The data from the TCGA database was used to explore the predictive

power of PGD expression and methylation on the overall survival (OS) of HCC

through Cox regression and the Kaplan-Meier analysis. Then, we used the GEO

and ICGC database to further verify the predictive power. Finally, the

relationship between PGD and immune cells and the relationship between

PGD and the efficacy of immunotherapy were explored through bioinformatics

analysis in HCC.

Results: PGD is highly expressed in HCC tissues, which is negatively regulated by

PGD methylation. Low PGD expression and PGD hypermethylation predict better

OS in HCC patients. Besides, a meta-analysis based on the TCGA, GSE14520, and

ICGC databases further confirms that low PGD expression is closely related to

favorable OS. Then, we find significant differences of immune cell infiltrations

between high and low PGD expression groups. Expressions of immune

checkpoints, most HLA members and tumor mutation burden (TMB) are higher

in the high PGD expression group, which indicates beneficial efficacy of

immunotherapy in this group. And the potential mechanisms of PGD are exhibited.
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Conclusion: PGD is an independent prognostic factor of HCC patients and

plays an important role in immune cell infiltration and immunotherapy, which

indicates that PGD can be used as a predictive biomarker for HCC

immunotherapy.
KEYWORDS

hepatocellular carcinoma, immunotherapy, immune cell, methylation, phosphog
luconate dehydrogenase
Introduction

Hepatocellular carcinoma (HCC) is one of the most

common cancers globally and the third leading cause of

cancer-related deaths (1). Epidemiological reports indicate that

the incidence of HCC shows gender differences. The incidence of

HCC in men is higher than that in women, and the possibility of

HCC in men is 2-4 times higher than that in women (2).

Nowadays, the most widely used treatment for HCC is surgical

resection and liver transplantation. However, these two methods

show obvious disadvantages, including postoperative recurrence

and liver donor shortage. In addition, these two methods show

limitations in the treatment of advanced HCC, so the therapeutic

effect of HCC is far from satisfactory (3). Due to the limited

curative effect of the treatment for hepatocellular carcinoma,

researchers have focused on new methods for treating HCC,

among which immunotherapy is a research focus (4, 5).

Phosphogluconate dehydrogenase (PGD), also called 6-

phosphogluconate dehydrogenase (6-PGD), plays a key role in

the pentose phosphate pathway (PPP) as an oxidative

carboxylase (6, 7). In recent years, the overexpression of PGD

in various cancers has attracted researchers’ attention (8).

Previous studies have reported the up-regulation of PGD in

kinds of human cancers, such as cervical cancer (9), ovarian

cancer (10), lung cancer (11), and so on. Chen H et al. suggested

that PGD was up-regulated in HCC tissue (12). However, there

is no research on the clinical and prognostic analysis of PGD

in HCC.

Immunotherapy brings new opportunities and developments

for tumor therapy (13). However, it is currently found that many

factors may affect the effect of immunotherapy, so it is particularly

important to find new biomarkers that can predict the effect of

immunotherapy (14, 15). Daneshmandi S et al. uncovered that

PGD could act as a regulator in the process of CD8+ T cell

activation and differentiation, suggesting that PGD might serve as

a key therapeutic target for cancer immunotherapy (16). And the

same team also found that blocking PGD in the process of

oxidative PPP could lead to a significant decrease in the
02
inhibitory function of Tregs and a transition to Th1, Th2, and

Th17 phenotypes, proving that PGD played a key role in

regulating Treg, thus revealing that PGD could become a new

metabolic checkpoint for immunotherapy (17).

In view of the lack of clinical studies on PGD-related HCC, it

is meaningful to explore the immune relevance and prognostic

value of PGD, as well as the relationship between PGD and the

prediction of immunotherapy effects.

In this study, the differences of PGD expression in HCC

tissues and adjacent tissues were compared, and the significance of

PGD on the prognosis of HCC was studied. Subsequently, we

further integrated the HCC cases in the three databases (TCGA,

ICGA, GSE14520) through meta-analysis to verify the prognostic

ability of PGD. We also evaluated the relationship between PGD

and tumor immune cell infiltration and then explored the

relationship between PGD and the efficacy of immunotherapy.

Finally, we conducted functional analysis on PGD to show the

relevant mechanisms in which PGD participates.
Methods

Data resource

Transcriptome RNA-sequencing data of PGD in 374 HCC

tissues and 50 non-tumor tissues were downloaded from the

TCGA database (https://cancergenome.nih.gov/). Then, clinical

information of 370 HCC patients (4 samples without survival

information were removed) and PGD DNA methylation

expression were also obtained through the TCGA database. In

addition, PGD expression and clinical data of 232 HCC samples

and 202 non-tumor samples were downloaded from the ICGC

database (https://dcc.icgc.org/) to validate the prognostic role of

PGD. Furthermore, 242 HCC samples and 239 non-tumor

samples from GSE14520 in the Gene Expression Omnibus

database (GEO)were also included in the study (18). We

summarized the clinicopathological features of HCC patients

in these three databases in Supplementary Table 1.
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Evaluation of PGD on the prognosis of
HCC patients

We evaluated the impact of PGD expression and PGD DNA

methylation on overall survival (OS) in HCC patients from the

TCGA database, using Kaplan-Meier survival analysis via the R

package “survival.” A ROC curve was also performed with the R

package of “survival ROC”. The prognostic significance of PGD

for HCC patients was validated in the ICGC database. Moreover, a

meta-analysis with all HCC patients based on the three databases

was used to further verify and summarize the prognostic utility of

PGD for HCC. We showed the result of a meta-analysis by forest

plot, and pooled HR (hazard ratio) was calculated based on the

fixed-effect model because there is no obvious heterogeneity

(I2<50%). Then, univariate Cox proportional hazards regression

analysis was conducted based on PGD expression and clinical

factors, and factors with p value< 0.05 in univariate Cox regression

analysis were included in multivariate proportional hazards

regression analysis.
Immune cell infiltration analysis

The immune cell infiltration of the high PGD expression

group and the low PGD expression group was compared based on

several algorithms, including ESTIMATE (19), MCP-counter

(20), ssGSEA (21) and CIBERSORT methods (22). The immune

score and ESTIMATE score of all samples were calculated using

the ESTIMATE algorithm. MCP-counter method was applied to

evaluate the abundance of CD8+T cells, cytotoxic lymphocytes,

myeloid dendritic cells, monocytic lineage cells, neutrophils, NK

cells, T cells and endothelial cells. The enrichment scores

calculated by ssGSEA method was used to assess 28 types

immune cell infiltrations and gene markers of these immune

cells were obtained from a previous study (23). Finally, we used

CIBERSORT tomeasure 22 kinds of immune cells in HCC tissues.

In addition, the correlations between PGD expression and the

amount of six kinds of immune cell infiltration (CD4 + T cells, CD8

+ T cells, B cells, neutrophils, dendritic cells, and macrophages) in

HCC were conducted using TIMER (Tumor Immune Estimation

Resource) (24). Then, we also explored the relationship between

marker genes of immune cells (monocyte, macrophage, Treg cells,

dendritic cells, B cells, neutrophils, CD8 + T cells, Th1 cells, NK

cells) and PGD to further reflect the relationship between immune

cells and PGD. The marker genes of these immune cells are based

on the previously published article (25).
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Predicting the response of PGD
subgroups to immunotherapy therapy

Currently, tumor immunotherapy has become the focus of

cancer treatment. And many factors in the research can predict

the response and efficacy of immunotherapy, including tumor

mutation burden (TMB) (26), immune checkpoints (27), and

human leukocyte antigen (HLA) member expression (28). In

order to further evaluate the role of PGD in immunotherapy of

HCC, we explored the differences of the expression of immune

checkpoints, HLA member expression, TMB and tumor

immune dysfunction and exclusion (TIDE) score in the high

and low PGD expression subgroups. Among them, TIDE (http://

tide.dfci.harvard.edu) is a new computing architecture based on

the tumor immune escape mechanism and has been verified to

predict efficacy of immunotherapy (29). In addition, 360 cases

from TCGA were grouped according to the classification criteria

of tumor immune subtypes (30), and we compared the different

immune subtypes in the high expression PGD and the low

expression PGD group. Finally, according to the grouping of

immune subtypes, the response of each immune subtype group

to immunotherapy was evaluated according to TIDE scores.
GSEA gene enrichment analysis

GSEA (Gene Set Enrichment Analysis) is a tool for analyzing

genome-wide expression profile chip data (31). The GO (Gene

Ontology) term and KEGG (Kyoto Encyclopedia of Genes and

Genomes) pathways enriched by PGD are explored in HCC.

And KEGG enrichment pathways and GO terms with the false

discovery rate p-value (FDR p-value) less than 0.05 were

considered significant.
Statistical analysis

The median PGD expression was regarded as the cutoff value

in the three databases. HR values and 95% CI (confidence

interval) values used for meta-analysis were obtained and

analyzed by SPSS 25. Meta-analysis was performed with

STATA 13.0. Additionally, we used R version 3.5.1 to

complete the remaining statistical analyses in this study (32).

And p-value was two-sided, and the p value < 0.05 was viewed as

statistically significant (32).
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Results

Prognostic value of PGD expression in
TCGA database

The RNA-sequencing data of 374 HCC tissues and 50

nontumor tissues were downloaded from TCGA, and we found

that PGD expression showed lower expression in nontumor

tissues while higher expression in HCC tissues (Figure 1A), and

then paired analysis further proved the results (Figure 1B). Then,

HCC patients were grouped into low PGD expression and high

PGD expression according to the median expression of PGD.

Subsequently, Kaplan-Meier plots showed that low PGD

expression (p=0.005, Figure 1C) predicted better OS than high

PGD expression in HCC patients. The 1-year, 2-year, and 3-year

ROC curve analysis of PGD demonstrated that the area under the

curve (AUC) was 0.667, 0.624, and 0.603, respectively (Figure 1D).

Moreover, the relationships between PGD expression and

clinical characteristics were explored. As shown in Figure 2, the

expression of PGD was closely correlated with AFP (Figure 2A,

p=0.017), gender (Figure 2B, p = 0.037) and grade (Figure 2C, p =

0.005). However, the expression of PGD showed no significant

relationship with age (Figure 2D), hepatitis B virus infection

(Figure 2E), and stage (Figure 2F). And PGD methylation was

affected by hepatitis B infection (Figure 2G, p=0.022). Then,

univariate Cox analysis (Figure 2M) and multivariate Cox

analysis (Figure 2N) with PGD expression and these

characteristics were conducted. The results suggested that PGD

expression (HR = 1.006, 95% CI = 1.001-1.011, P = 0.024) was

independent prognostic factors for OS inHCC patients (Figure 2N).
Verification of the prognostic
value of PGD expression in ICGC
and GEO database

To further verify the prognostic efficacy of PGD, we analyzed

RNA sequencing data of 232 and 242 patients from the ICGC
Frontiers in Oncology 04
database and GSE14520 dataset, respectively. And the

differential expression of PGD was also confirmed by data

from the ICGC database. The results showed that PGD

expressed higher in HCC tissue in differential analysis and

paired analysis (Figures 3A, B). Then, Kaplan-Meier analysis

was employed to investigate the association between PGD

expression and OS in HCC patients (Figure 3C), and we found

that low PGD was closely correlated with better OS in the ICGC

database (P = 0.004). In addition, the 1-year, 2-year, and 3-year

ROC curve analysis showed that the area under the curve (AUC)

was 0.724, 0.693, and 0.721, respectively (Figure 3D).

According to the results of the meta-analysis based on 848

HCC patients from the above three databases, the pooled HR

and 95% CI of the relationship between PGD expression and OS

were 0.49(0.24–0.73), and there was no significant heterogeneity

between the three databases (I2 = 20.9%, P = 0.282, Figure 3E).

Therefore, we can conclude that low PGD expression is a good

predictor of OS in HCC patients.
The expression of immune cells is
different in the high and low PGD
expression groups

The differences in tumor-infiltrating immune cells between

high and low PGD expression groups were compared based on

the several algorithms. First, we used the ssGSEA algorithm to

estimate the relative quantity of 28 infiltrating immune cells in

each tumor sample from the TCGA database. The relative

quantity of activated CD4+T cell (p<0.001), activated dendritic

cell (p<0.01), CD56 dim natural killer cell (p<0.05), central

memory CD8+T cell (CD8+TCM, p<0.05), central memory

CD4+T cell (CD4+TCM, p<0.05), effector memory CD4+T

cell (CD4+TEM, p<0.05), myeloid-derived suppressor cells

(MDSC, p<0.05), regulatory T cell (Tregs, p<0.01), T helper

cell 17 (Th17, p<0.05) and T helper cell 2 (Th2, p<0.01) was

higher in the high PGD expression group, while the relative

quantity of eosinophil (p<0.001)was higher in the low PGD
A B DC

FIGURE 1

The expression and clinical significance of PGD in TCGA database (A) PGD is highly expressed in HCC tissues. (B) PGD is highly expressed in
HCC tissues by paired analysis. (C) Kaplan-Meier curve for the high and low PGD expression group of HCC patients. (D) 1-year, 2-year, and 3-
year ROC curve of PGD expression.
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expression group (Figure 4A). Second, the abundance of six

immune-related cells and two stromal cells was estimated using

the MCP-counter algorithm. Compared with the low PGD

expression group, the abundance of T cells (p<0.001),

monocytic lineage (p<0.001), myeloid dendritic cell (p<0.01)

was significantly upregulated in the high PGD expression group,

while endothelial cells (p<0.01) were upregulated in the low

PGD expression group (Figure 4B). Third, we also used the

CIBERSORT method to further evaluate the relative fraction of

22 infiltrating immune cells in each tumor sample. The relative

fractions of memory B cell (p<0.05), activated memory CD4+T

cell (p<0.05), follicular helper T cell (Tfh, p<0.01), Tregs

(p<0.01), macrophage M0 (p<0.001) and neutrophils (p<0.05)

were significantly elevated in high PGD expression group, while
Frontiers in Oncology 05
the relative fractions of resting memory CD4+T cell (p<0.01),

gamma delta T cells (p<0.05), resting NK cells (p<0.05),

monocytes (p<0.001) and resting mast cells (p<0.05) were

higher in low PGD expression group (Figure 4C). Last, we

calculated ESTIMATE score and the immune score based on

the ESTIMATE algorithm. The immune score (585.01 vs.

487.17) and ESTIMATE score (-54.58 vs. -72.15) were higher

in high PGD expression group compared with low PGD

expression group, while the difference showed no statistical

difference (Figures 4D, E). Furthermore, the differences in

tumor-infiltrating immune cells between high and low PGD

expression groups were further analyzed in ICGC database and

GSE14520 database using the three algorithms (Supplementary

Figures 3D-I). Moreover, we also analyzed differences in
I

G
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FIGURE 2

The correlations between PGD expression and PGD methylation with clinical characteristics in TCGA database (A) Correlations between PGD
expression and AFP. (B) Correlation between PGD expression and gender. (C) Correlation between PGD expression and grade. (D) Correlation
between PGD expression and age. (E) Correlation between PGD expression and hepatitis (B) (F) Correlation between PGD expression and stage.
(G) Correlation between PGD methylation and AFP. (H) Correlation between PGD methylation and stage. (I) Correlation between PGD methylation
and AFP. (J) Correlation between PGD methylation and grade. (K) Correlation between PGD methylation and gender. (L) Correlation between PGD
methylation and age. (M) Forest plot for univariate cox analysis. (N) Forest plot for multivariate cox analysis. AFP, alpha fetoprotein; Hepatitis B,
Hepatitis B virus.
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immune cells between patients receiving chemotherapy and

those not receiving chemotherapy (Supplementary Figures 3A–

C). The results indicated that the fractions of activated NK cell

and activated dendritic cell were elevated in chemotherapy

group using CIBERSORT algorithm.

Furthermore, the correlations between PGD expression and

the markers of 9 kinds of immune cells were evaluated in HCC

using the TIMER database (Supplementary Table 2) and we also

showed these correlations adjusted by purity and age in

Supplementary Table 2. As illustrated in Supplementary

Figure 1, the results suggested that PGD expression was related

with immune markers of neutrophils (Figure S1A), macrophage

(Figure S1C), monocyte (Figure S1D), Treg cell (Figure S1E), B

cells (Figure S1G), CD8 + T cells (Figure S1H), and dendritic cell

(Figure S1I) in HCC. However, there are no significant

relationships between PGD expression and immune markers of

NK cells (Figure S1B) and Th1 cells (Figure S1F). In addition, we

also explored the correlation between PGDmRNA expression and

immune cell infiltration based on the TIMER database. As shown

in the plots (Figure S1J), the expression of PGD was positively

correlated with B cells (P <0.0001), CD8+ T cells (P =0.000546),

CD4+ T cells (P =0.000131), macrophage (P <0.0001), and

neutrophils (P <0.0001) and dendritic cell (P <0.0001) infiltration.
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Patients in the high PGD expression
group respond better to HCC
immunotherapy

Then, to help explore the application of PGD in

immunotherapy, we further explored whether immune

checkpoints are differentially expressed between high- and

low-expressed PGD groups, including programmed cell death-

1(PD1; also known as PDCD1), programmed cell death-Ligand

1(PDL1; also known as CD274), T lymphocyte-associated

antigen 4 (CTLA4), lymphocyte activation gene3 (LAG3), T

cell membrane protein 3 (TIM3; also known as HAVCR2), and

T cell immunoreceptor with Ig and ITIM domains (TIGIT) (33).

As exhibited in Figures 5A–F, PD1 expression (p=0.002), PDL1

expression(p=0.0023), CTLA4 expression(p<0.0001), LAG3

(p=0.029), HAVCR2(p<0.0001), and TIGIT(p=0.002) were

significantly higher in the high PGD expression group than in

the low PGD expression group. Lack of HLA may impair the

ability of cells to present new antigens and lead to immune

tolerance (28). Then, we explored expression of HLA members

in the high PGD expression and low PGD expression group. The

result showed that most HLA members (including HLA-DOA,

HLA-DMB, HLA-A, HLA-DRA, HLA-L, HLA-DRB6, HLA-
A B D

E

C

FIGURE 3

Verification of PGD expression and prognostic power in ICGC and GEO database (A) PGD is highly expressed in HCC tissues in ICGC database.
(B) PGD is highly expressed in HCC tissues by paired analysis in ICGC database. (C) Kaplan-Meier curve for the high and low PGD expression
group of HCC patients in ICGC database. (D) 1-year, 2-year, and 3-year ROC curve of PGD expression in ICGC database. (E)Forest plot of low
PGD expression with favorable OS in HCC patients based on three datasets (TCGA database, ICGC database and GSE14520 dataset).
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DQB1, HLA-DPA1, HLA-DMA, HLA-DQA1, HLA-F, HLA-

DPB1, HLA-DRB1, HLA-DOB, and HLA-DQB2) were higher in

high PGD expression group compared with low PGD expression

group (Figure 5G).

Furthermore, TMB refers to the number of somatic

mutations per one million bases, which is a new feature of

cancer and patients with high TMB respond significantly better

to immunotherapy. The waterfall diagram revealed the overall

status of somatic mutations in TCGA HCC conducted by the

MutSigCV algorithm (Figure 6A). The findings showed that

missense mutations, SNP, and C>T mutation were more

common, and the highest mutation frequency was 1270

(Figure 6B). As we expected, TMB was significantly higher in

high PGD expression group compared to low PGD expression

group, which indicated that high PGD expression group patients

may respond better to immunotherapy (p<0.001, Figure 6C).

The TIDE score could evaluate immune escape and

immunotherapy response, and a high TIDE score predicts a

poor response for immunotherapy. We showed TIDE score

(-0.043 vs. -0.035) was lower in high PGD expression group

compared to low PGD expression PGD, while there was no

statistical significance (Figure 6D). In addition, as shown in
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Figure 6E, detailed information of four immune subtypes,

including C1, C2, C3, C4 in the low and high PGD expression

group, was exhibited. And we could conclude that there were

obvious differences in C2 (p=0.007), C3 (p=0.003) and overall

immune subtypes (p=0.001) between the low PGD expression

group and the high PGD expression group. Then, the plot

suggested that TIDE (Figure 6F) was different in the four

immune subtypes of HCC, which indicates that different

immune subtypes are significantly related to the therapeutic

effect of immunotherapy. In short, the above results could

provide new ideas and foundations for the immunotherapy

of HCC.
Mechanisms of PGD and PGD DNA
methylation in HCC

In order to gain insight into the potential signaling pathways

of PGD in HCC, GSEA analysis was used to determine its

possible biological processes and functional role. As shown in

Figure 7A, we exhibited the top 5 KEGG pathways enriched in

PGD high expression group in HCC, including cell cycle, DNA
A B

D EC

FIGURE 4

Comparison of immune cells between high and low PGD expression group (A) Evaluation of 28 immune cell infiltration using the ssGSEA
method. (B) Differential infiltration levels of indicated cell types between two PGD expression groups using MCP-counter method. (C) Evaluation
of 22 immune cell infiltration using the CIBERSORT method. (D) ESTIMATE scores in the high and low PGD expression group based on
ESTIMATE algorithm. (E) Immune scores in the high and low PGD expression group based on ESTIMATE algorithm. *represents p < 0.05,
**represents p < 0.01, ***represents p < 0.001. ns represents p>=0.05.
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replication, hematopoietic cell lineage, Leishmania infection,

and pentose phosphate pathway. In addition, the top 5 gene

ontology (GO) biological processes enriched in PGD high

expression group were demonstrated in Figure 7B, including

adaptive immune response, cell division, chromosome

segregation, humoral immune response, and mitotic nuclear

division. The top 5 GO cellular components enriched in PGD

high expression group were chromosomal region, chromosome

centromeric region, condensed chromosome, condensed

chromosome centromeric region, and immunoglobulin

complex (Figure 7C). And the top 5 GO molecular functions

were antigen binding, CXCR chemokine receptor binding, DNA

replication origin binding, immunoglobulin receptor binding,

and microtubule binding (Figure 7D). Additionally, Hong et al.

have shown that phosphatase and tensin homolog (PTEN)

inhibits PPP pathway in human liver tumors. PTEN inhibits

glucose consumption and biosynthesis through PPP (34).

Therefore, we also explored the expression of PTEN in the

database, but we did not find that PTEN was down-regulated in

HCC tissues (Supplementary Figure 4).

Furthermore, PGD expression was shown to be negatively

correlated with PGD DNAmethylation (P <0.0001) (Figure 8A).

Moreover, 17 PGD CpG sites were exhibited in Figure 8B. Next,

the correlations between PGD expression and PGD gene

methylation at these 17 CpG sites (Figures 8D–T) were
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explored by Pearson correlation analysis. We could see that 6

CpG sites, including cg02916418 (Figure 8D), cg06829969

(Figure 8E), cg04909257 (Figure 8F), cg03344767 (Figure 8G),

cg14718680 (Figure 8H), and cg22341865 (Figure 8I), were

correlated with the expression of PGD, while PGD gene

methylation at the remaining CpG sites showed no relationship.

Furthermore, HCC patients with high PGD methylation

levels showed longer OS (p=0.012, Figure 8C) according to

Kaplan-Meier curve analysis. In addition, we investigated the

predictive values of the 17 PGD CpG sites in HCC patients. As

shown in Supplementary Figure 2, hypomethylation of

cg06829969 CpG sites (Figure S2A, p=0.002) and

hypermethylation of cg13077490 CpG sites (Figure S2B,

p=0.027) were correlated with poorer OS among patients with

HCC, and the remaining CPG sites showed no significant

relationship with the prognosis of HCC patients.
Discussion

In our research, low PGD expression in the TCGA database

suggested a better prognosis for HCC patients, and this conclusion

was also verified in the ICGC database. We found that the level of

immune cell infiltration was significantly different between low

and high PGD expression group, in which most immune cell
G
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FIGURE 5

Expression levels of immune checkpoints and HLA members (A) Significantly elevated expression level of PDCD1 was found in the high PGD
expression group. (B) Significantly elevated expression level of CD274 was found in the high PGD expression group. (C) Significantly elevated
expression level of CTLA4 was found in the high PGD expression group. (D) Significantly elevated expression level of LAG3 was found in the
high PGD expression group. (E) Significantly elevated expression level of HAVCR2 was found in the high PGD expression group. (F) Significantly
elevated expression level of TIGIT was found in the high PGD expression group. (G) The profile of HLA member expression levels indicates an
overall enhance in HLAs in the high PGD expression group. *represents p < 0.05, **represents p < 0.01, ***represents p < 0.001, ns represents
p>=0.05.
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infiltrations were higher in high PGD expression group. At the

same time, the results revealed that high PGD expression group

responded better to immunotherapy. In summary, this study

provided a new research perspective and research foundation

for PGD in the prognosis prediction of HCC and the evaluation of

immunotherapy effect in HCC.

As far as we know, there is no research on the prognostic

value of PGD expression and PGD immune infiltrating in HCC.

We found that the expression of PGD in HCC tissues is higher

than that in adjacent non-tumor tissues, which is consistent with

the results of a previous study (12). PGD upregulation has been

proved to be related to the occurrence and development of a

variety of tumors, including breast cancer, colon cancer, cervical

cancer, and so on, and this may be due to the coordinated

regulation of PGD involved in anabolic and redox (35–39). In

these studies, Hu Chen, etc., confirmed a correlation between the

high expression of PGD and HCC (12), but there is currently a

lack of research on the prognosis of PGD for HCC and related

research on its function in HCC. In this study, we used three

public databases to explore the relationship between PGD

expression and the survival of HCC patients. According to the

results of survival analysis and multivariate Cox regression

analysis, we proved that PGD expression could be used as an

independent prognostic factor for predicting the prognosis of

HCC. In addition, a meta-analysis of 848 patients based on the
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three databases also further revealed that low PGD expression

predicts a better prognosis for HCC patients. Moreover, we also

found PGD expression was correlated with AFP levels. PGD is a

key enzyme in the PPP, which is important in cancer, and

activation of this pathway induces tumorigenesis (6). Tumor

cells increase nucleotide synthesis through the PPP process,

thereby increasing the growth rate of tumor cells (6).

Furthermore, AFP is thought to be significantly associated

with the growth and development of HCC (40). Our findings

suggest that patients with high AFP expression exhibited high

levels of PGD expression, which may be a manifestation of PGD

promoting HCC growth and development through the

PPP pathway.

Increasing evidence suggests that immune cell infiltration plays

an important role in the development and progression of HCC (41).

In the present study, we discovered that immune score and

ESTIMATE score were higher in high PGD expression group

compared to low PGD expression group. Then, based on ssGSEA

method, high PGD expression was correlated with several types of T

cells, including activated CD4+T cell, CD8+TCM, CD4+TCM,

CD4+TEM, Tregs, Th17 and Th2. And the CIBERSORT

algorithm further confirmed that there was a significant difference

in the abundance of immune cells between the high and the low

PGD expression group. Similarly, previous study showed that

blocking PGD in oxidized PPP will reduce the inhibitory function
A B
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FIGURE 6

Analysis of TMB expression and TIDE score (A, B) Profile of genetic alteration in the TCGA HCC cohort. (C)The high PGD expression group
exhibits significantly higher TMB than the low PGD expression group. (D) The relationship between PGD expression and TIDE. (E) The
distribution of cases in C1, C2, C3, and C4 immune subtype based on TCGA database. (F) The relationship between the four immune subtypes
and TIDE. TMB, tumor mutation burden, TIDE, tumor immune dysfunction and exclusion. ns represents p>=0.05.
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of Tregs and the ability of Tregs to differentiate into Th1, Th2 and

Th17 phenotypes (17). In addition, Saeed Daneshmandi et al.

uncovered that PGD might play an important role in regulating

CD8+ T cell activation and differentiation. Blocking PGD would

lead to faster and better development of effector functions in the

stimulated naive CD8+ T cells, thereby enhancing the ability to

inhibit tumor growth in vivo (16). These results indicated that

different immune cells infiltration levels may partly explain the

difference in survival between the patient groups with high and low

PGD expression. Additionally, most immunotherapy works

through immune cells, in which immune checkpoint inhibitors

enhance T cell response to tumors by blocking immune checkpoint

receptors (42). However, we lack information about

immunotherapy and cannot analyze changes in immune cells in

patients who receive immunotherapy, which needs to be further

analyzed and validated in clinical patients.

Given that we have demonstrated that PGD is significantly

related to survival of HCC patients and immune cells level, it

may contribute to select patients who respond better to

immunotherapy and improve patient treatment options. We

evaluated the association between PGD expression and several

immunotherapy biomarkers, including immune checkpoint

genes, TMB (43), HLA (28) and TIDE. High levels of immune

checkpoint genes and TMB are generally considered predictive
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biomarkers for patients who are suitable for immunotherapy.

We found that compared with the low PGD expression group,

the expression level of PD1, PDL1, CTLA4, LAG3, HAVCR2,

and TIGIT in the high PGD expression group was significantly

upregulated. Consistently, high PGD expression group tend to

show higher TMB levels than low PGD expression group. These

results indicate that the high PGD expression group is more

likely to respond better to immunotherapy. In addition, we also

found that most HLA genes were higher in the high PGD

expression group. Decreased HLA expression may weaken the

ability of cells to present new antigens and lead to immune

escape (28). Additionally, PGD activation increased the chemo-

and immune-resistance of renal cell carcinoma (RCC) cells, and

PGD inhibition made RCC cells sensitive to chemotherapy and

immunotherapy (such as IFN-a) (44). Similarly, we found that

high PGD expression indicated a better response to

immunotherapy. Overall, these results indicated that PGD

affected immune cell infiltrating and correlated with the

therapeutic effect of immunotherapy in HCC. Thus, it can be

used as a potential target for HCC immunotherapy.

According to recent studies, epigenetic disorders are an

important driving factor for human malignancies, and of

course, HCC is no exception. Among these studies, the role of

DNA methylation in the occurrence and development of HCC is
A B
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FIGURE 7

The results of GSEA analysis (A) The top 5 significant enrichment KEGG pathways in high PGD expression group. (B) The top 5 significant
enrichment GO biological processes in high PGD expression group. (C) The top 5 significant enrichment GO cellular components in high PGD
expression group. (D) The top 5 significant enrichment GO molecular functions in high PGD expression group.
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one of the hot spots (45, 46). However, there is currently a lack of

exploration of the relationship between PGD methylation and

the prognosis of HCC. We have confirmed for the first time that

PGD hypermethylation is significantly associated with a

favorable prognosis of HCC patients. In addition, it was also

discovered for the first time that PGD expression and PGD

methylation status were negatively correlated in HCC. Then, we

further explored the correlation between PGD methylation at

specific CpG sites and PGD expression. Among them, the

methylation level of 6 CpG sites (including cg02916418,

cg06829969, cg04909257, cg03344767, cg14718680, and

cg22341865) was significantly correlated with PGD. Moreover,

PGD hypermethylation at cg06829969 CpG sites and

hypomethylation at cg13077490 CpG sites were correlated well

with better prognosis in HCC patients. Taken together, PGD
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expression was negatively related to PGD methylation, and PGD

methylation status might be a promising predictive factor for OS

in HCC patients.
Conclusion

In summary, PGD shows great potential as a prognostic

biomarker and predictor of immunotherapy for patients with

HCC. This study is the first to demonstrate that high PGD

expression is correlated with the favorable therapeutic effect of

immunotherapy, and low PGD expression indicates a better

prognosis in HCC patients. In addition, we found that PGD

expression is elevated in HCC tissues and is negatively regulated

by the level of PGD DNA methylation. And PGD may play an
IG
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FIGURE 8

Correlations between PGD expression and PGD methylation in TCGA database (A) The expression of PGD was negatively regulated by PGD DNA
methylation. (B) The distribution of 17 PGD DNA promoter CpG sites. (C) Kaplan-Meier curve for the PGD hypermethylation and hypomethylation
group of HCC patients. (D-T) Correlations between PGD expression and PGD DNA promoter CpG sites in HCC patients, including cg02916418 site
(D), cg06829969 site (E), cg04909257 site (F), cg03344767 site (G), cg14718680 site (H), cg22341865 site (I), cg11673391 site (J), cg20768298 site
(K), cg05704155 site (L), cg0208989 site (M), cg00885901 site (N), cg19368966 site (O), cg23036555 site (P), cg25312481 site (Q), cg13077490
site (R), cg17520927 site (S), and cg18017109 site (T).
frontiersin.org

https://doi.org/10.3389/fonc.2022.993503
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2022.993503
important role in immunotherapy and can be an effective

prognostic biomarker for HCC patients, but the related

regulatory pathways require further experimental exploration.
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