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Abstract

The occurrence of Microcystis blooms is a worldwide concern that has caused numerous adverse effects on water quality
and lake ecology. Elevated ammonia and microcystin concentrations co-occur during the degradation of Microcystis blooms
and are toxic to aquatic organisms; we studied the relative and combined effects of these on the life history of the model
organism Daphnia magna. Ammonia and microcystin-LR treatments were: 0, 0.366, 0.581 mg L21 and 0, 10, 30, 100 mg L21,
respectively. Experiments followed a fully factorial design. Incubations were 14 d and recorded the following life-history
traits: number of moults, time to first batch of eggs, time to first clutch, size at first batch of eggs, size at first clutch, number
of clutches per female, number of offspring per clutch, and total offspring per female. Both ammonia and microcystin were
detrimental to most life-history traits. Interactive effects of the toxins occurred for five traits: the time to first batch of eggs
appearing in the brood pouch, time to first clutch, size at first clutch, number of clutches, and total offspring per female. The
interactive effects of ammonia and microcystin appeared to be synergistic on some parameters (e.g., time to first eggs) and
antagonistic on others (e.g., total offspring per female). In conclusion, the released toxins during the degradation of
Microcystis blooms would result, according to our data, in substantially negative effect on D. magna.
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Introduction

Cyanobacterial blooms occur worldwide in eutrophic lakes and

reservoirs [1]. Such blooms are of great ecological concern, as

many genera of bloom-forming cyanobaceria produce cyanotoxins

[1–3]. Furthermore, there is an expectation that such blooms are

likely to increase in prevalence and magnitude in the future,

especially with climate change [4]. Microcystins, which are cyclic

heptapeptides and a main group of the cyanotoxins, are mainly

retained within the producer-cells during cyanobacterial bloom

development [5]. Upon ingestion, microcystins are actively

absorbed by fish, birds, and mammals, and have adverse effects

on these aquatic organisms [6–8].

To date, concentrations of dissolved microcystins have been

measured to be generally ,10 mg L21 [9,10]. However, recent

studies have revealed much higher levels. Microcystin levels can be

as high as 10 mg L21 in localized regions of eutrophic lakes: e.g.

this has been observed in Lake Taihu, which is typical of many

lakes in the Asian subcontinent [10], and especially during the

water crisis of Lake Taihu in 2007, microcystin concentrations

reached .15 mg L21 [11]. Furthermore, in a few cases, micro-

cystin levels be .1800 mg L21 when toxins are released into water

after lysis of cyanobacterial cells, during the collapse of heavy

blooms [12,13]. These observations of high levels, which may

become more common as cyanobacterial blooms increase in

frequency and become more pronounced [4], stimulated us to

examine a range of concentrations that include extremely high

concentrations. The released toxins can then come into contact

with a wide range of aquatic organisms and have deleterious

effects on them [3,5,7,8,14–16]. Specially, microcystin inhibits

feeding, reduces growth, and increases mortality in cladocerans

[17–20], and in particular, the variant microcystin-LR exerts

strong toxic effects on Daphnia [18,21–26].

In general, due to the degradation of organic martial formed by

phytoplankton blooms, ammonia can be produced [27]. Such

ammonia levels normally are very low, except under conditions of

rapid decomposition of organic matter. Thus, like microcystin,

during the degradation of heavy Microcystis blooms, elevated

concentrations of ammonia occur and can reach surprisingly high

levels: e.g., 0.2–3.4 mg L21 in areas of Lake Taihu at specific

times [28] and ,4 mg L21 with localized peaks of ,12 mg L21

during the water crisis in the same lake [11]. Also, total ammonia

in localized regions of other freshwaters, e.g. the Mississippi, can

be on the order of is about 0.07–4 mg L21 [29]. It is well accepted

that high ammonia levels are deleterious to cladocerans and can

result in mortality, inhibited growth, and reduced reproductive

performance [30–35]; here we, therefore, considered medium and

very high levels of this toxin, following the same arguments made
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for microcystin, above. Finally, and importantly, it might also be

expected that when ammonia and microcystin are simultaneously

released, and persist for days in the region of blooms [9], that they

have combined impacts on aquatic organisms, especially cladoc-

erans; however, there is little, if any, information available on their

combined effects.

It is clearly important to examine the influence of toxins on

cladocerans, as they are generally the dominant zooplankton in

freshwaters, contributing up to 80% of the secondary production

[33]. Furthermore, they are an important component of aquatic

food webs, acting as major consumers of primary production and

as a major food source for fish and invertebrate predators [33].

Species of Daphnia tend to be the dominant caldocerans and are

model organisms for studying a range of issues [36–38].

Specifically, to fully understand how external factors affect

Daphnia, many studies carefully resolve their influence on a range

of distinct life history traits [26,35,39].

Here, therefore, we have focused on the combined effects of

ammonia and microcystin, two of the main toxins that arise as end

products of Microcystis blooms, on the life-history traits of a model

cladoceran. Our research employs the model species D. magna,

which has been used for a range of ecophysiological, behavioral,

and developmental studies. For instance, D. magna has been used to

reveal the unexpected toxicity of fatty acids on zooplankton [40],

the chronic toxicity of NOx to the crustacean [36], and the toxicity

of nanoparticles on freshwater organisms [41]. Furthermore,

several studies directly relate to cyanobacterial toxins have been

conducted on this species, making D. magna an even more relevant

model for our purposes: e.g. chronic toxicity of microcystin [42],

and effects of microcystin-LR on biotransformation and oxidative

stress [43].

Specifically, to obtain well-controlled and repeatable results that

will allow further exploration, we chose a reliable clone of D. magna

that has been maintained in laboratory for more than 10 years.

We hypothesized that most life-history traits of D. magna will not

only be adversely affected by ammonia and microcystin indepen-

dently, but interactive effects between the two toxins will occur.

Surprisingly, our data reveal that interactive effects occurred, but

these were both synergistic and antagonistic, depending on the life-

history traits. Our work thus stimulates a new avenue for

toxicological studies, specifically on cladocera and in general on

freshwater zooplankton.

Materials and Methods

Test organism
A laboratory clone of Daphnia magna, maintained for .10 years,

was cultured in 200 mL beakers and fed Scenedesmus obliquus, at

25uC, under fluorescent light at 40 mmol photons m22 s21, with a

light-dark period of 12:12 h. All experiments were conducted

under these conditions.

Experimental design
New-born (,24 h-old) D. magna, taken from a single mother (F0)

in a stock culture, were isolated and grown individually in 50 mL

beakers and fed daily on S. obliquus (5.06104 cells mL21).

Experimental lines (F1, F2) were conditioned for maternal effects

under constant conditions for two generations prior to experi-

ments, with each new generation arising from randomly chosen

individuals from the third clutch of the previous generation.

Experimental animals (F3) were placed randomly in 50-mL

beakers. Each beaker contained one experimental animal to

avoid density effects [44], and each treatment was replicated

(n = 4). Ammonia test solutions were prepared by dissolving

ammonium chloride (NH4Cl) in de-chlorinated tap water. NH3-

N concentrations were calculated using the general equation of

bases [45]:

NH3~
½NH3zNHz

4 �
½1z10(pKa{pH)�

where, the calculation of pKa is based on the equation [45]:

pKa = 0.09018+2729.92/T, (T is in uK), pH was stable at 7.5.

Based on the toxin levels in the field during degradation of heavy

Microcystis blooms, un-ionized ammonia nitrogen concentrations

(NH3-N) and purified microcystin-LR (MC-LR) concentrations

(Express, Beijing, China) treatments were: 0, 0.366,

0.581 mg L21 and 0, 10, 30, 100 mg L21, respectively. Experi-

ments followed a fully-factorial design; i.e. there were 12

treatment combinations. To maintain constant ammonia and

microcystin concentrations, test solutions were replaced every two

days (preliminary data indicated this maintained stable levels).

Experimental conditions were identical to those described above

for culturing, and S. obliquus concentration was maintained at

5.06104 cells mL21.

The animals were exposed to the test solutions for 14 days.

During the 14-day exposure, the following parameters were

recorded. The survival and moults (i.e. shed carapaces) were

monitored daily. Body length was measured from above the eye

to the base of the tail spine daily. Offspring production was

measured daily; once counted these were removed. Also

recorded were: the time to first batch of eggs appearing in the

brood pouch; the time to first clutch; the size at first batch of

eggs; the size at first clutch; the number of clutches per female;

the number of offspring in each clutch; and the total number of

offspring per female.

Statistical analysis
Treatment effects were assessed by two-way ANOVA followed

by Duncan’s multiple range test (a= 0.05). Data are presented as

means 6 1 SE, with different letter to indicate lack of significant

differences.

Results

Survival and moults
Experimental animals in all treatments survived during the

exposure and the recovery period. Two-way ANOVA showed

both ammonia and microcystin had significant effects on number

of moults, but their effects were independent, i.e. no interactive

effect of ammonia and microcystin on number of moults (Table 1).

Generally, number of moults decreased with increasing ammonia

concentration under mid-dose microcystin conditions (Figure 1b–

c), whereas the presence of microcystin increased number of

moults under any ammonia concentrations, even significant

effects were detected in some microcystin concentrations

(Figure 1e–g).

Age and size at first reproduction
Both ammonia and microcystin significantly delayed time to

first eggs and time to first clutch, and there was significant

interaction between ammonia and microcystin on time to first eggs

and first clutch (Table 1). Generally, time to first eggs was delayed

with increasing ammonia concentration under any microcystin

concentrations (Figure 2a–d); it was also delayed with increasing

microcystin concentration under any ammonia concentrations

(Figure 2e–g). The time to first clutch was delayed with increasing

Effects of Ammonia and Microcystin on Daphnia
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ammonia concentration under all microcystin concentrations

(Figure 3a–d). Interestingly, under high ammonia concentrations,

the presence of microcystin significantly alleviated the delayed

effects of ammonia on time to first clutch (Figure 3g), although

time to first clutch was delayed by microcystin under lower or no

ammonia conditions (Figure 3e–f).

The size at first eggs was significantly affected by ammonia and

microcystin (Table 1). In general, size at first eggs increased with

increasing microycstin concentration (Figure 4e–g), but the effect

of ammonia on size at first eggs was irregular (Figure 4a–d).

Surprisingly, size at first clutch significantly decreased under high

ammonia and high microcystin (Figure 5a,e) but remained

unchanged under mixed toxins with high concentrations

(Figure 5d,g), indicating significant interactive effect of ammonia

and microcystin on size at first clutch (Table 1).

Clutches and offspring
Number of clutches decreased significantly with increasing

ammonia concentration under all microcystin concentrations

(Figure 6a–d), but the effects of microcystin on number of clutches

under different ammonia concentrations were complex and

seemed irregular: number of clutches was not significantly

influenced by microcystin without ammonia (Figure 6e); under

mid-dose ammonia, the number of clutches decreased significantly

with increasing microcystin concentration (Figure 6f); under high-

dose ammonia, the number of clutches increased significantly with

increasing microcystin concentration (Figure 6g). There was

significant interactive effect of ammonia and microcystin on the

number of clutches (Table 1).

The number of offspring per clutch decreased significantly with

increasing ammonia concentration without microcystin (Figure 7a),

but no significant difference occurred among different ammonia

concentrations under any microcystin concentrations (Figure 7b–

d). Under lower ammonia concentrations, microcystin significantly

decreased the number of offspring per clutch (Figure 7e, f),

whereas under high ammonia concentrations, no significant

difference occurred among different microcystin concentrations

(Figure 7g).

The total offspring per female decreased significantly with

increasing ammonia concentration under all microcystin concen-

trations (Figure 8a–d). Under lower ammonia concentrations,

microcystin significantly decreased the total offspring per female

(Figure 8e,f), whereas under high ammonia concentrations, no

significant difference occurred among the different microcystin

concentrations (Figure 8g).

Discussion

Using the model species Daphina magna, we investigated the

combined effects of ammonia and microcystin-LR on life-history

traits. Our main finding was that both ammonia and microcystin

are substantially detrimental to D. magna reproduction, and

expected maximum levels of ammonia [28] seemed more harmful

than expected maximum levels of microcystin [9,10]. Further-

Table 1. Results from two-way ANOVA for the factors ammonia (NH3-N) and microcystin-LR (MC-LR) for each response variable.

Traits Source of variation DF SS MS F P

Number of moults NH3-N 2 2.375 1.188 4.071 0.025

MC-LR 3 5.167 1.722 5.905 0.002

NH3-N6MC 6 2.958 0.493 1.690 0.152

Time to first eggs NH3-N 2 30.466 15.233 131.430 ,0.001

MC-LR 3 21.527 7.176 61.912 ,0.001

NH3-N6MC 6 5.797 0.966 8.336 ,0.001

Time to first clutch NH3-N 2 26.073 13.036 49.728 ,0.001

MC-LR 3 5.807 1.936 7.384 ,0.001

NH3-N6MC 6 11.552 1.925 7.344 ,0.001

Size at first eggs NH3-N 2 111190.912 55595.456 6.831 0.003

MC-LR 3 170623.804 56874.601 6.988 ,0.001

NH3-N6MC 6 113802.785 18967.131 2.331 0.053

Size at first clutch NH3-N 2 45917.540 22958.770 1.721 0.193

MC-LR 3 84585.525 28195.175 2.114 0.116

NH3-N6MC 6 303777.888 50629.648 3.795 0.005

Number of clutches NH3-N 2 4.625 2.313 16.650 ,0.001

MC-LR 3 2.167 0.722 5.200 0.004

NH3-N6MC 6 3.208 0.535 3.850 0.005

Number of offspring per clutch NH3-N 2 64.823 32.411 9.328 ,0.001

MC-LR 3 24.863 8.288 2.385 0.085

NH3-N6MC 6 33.094 5.516 1.587 0.179

Total offspring per female NH3-N 2 1600.167 800.083 26.956 ,0.001

MC-LR 3 505.750 168.583 5.680 0.003

NH3-N6MC 6 669.500 111.583 3.759 0.005

doi:10.1371/journal.pone.0032285.t001

Effects of Ammonia and Microcystin on Daphnia
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more, the interactive effects of ammonia and microcystin occurred

for most of the life-history traits; i.e. of the eight traits examined,

interactive effects of microcystin and ammonia occurred for five

(Table 1): time to first batch of eggs appearing in the brood pouch,

time to first clutch, size at first clutch, number of clutches, and

total offspring per female.

We note that although there were statistically significant effects

for some of the response variables, the magnitude of the effects

for many of the variables at most is ,5 to 10%; this is especially

so for the developmental variables such as time to first batch of

eggs appearing in the brood pouch, time to first clutch, and size

at first clutch. In contrast, the reproductive variables (number of

clutches and total offspring per female), which will have direct

effects on population growth, changed by as much as 50% due to

treatments, and interaction altered these in some cases by ,10–

20%. As indicated in the Introduction, the specifics of these

Figure 1. Number of moults. Effect of ammonia under different microcystin-LR concentrations (a–d) and the effect of microcystin-LR under
different ammonia concentrations (e–g) on number of moults. Error bars indicate 1 SE (some error bars are too small and covered), and different
letters denote significant difference at P,0.05.
doi:10.1371/journal.pone.0032285.g001

Effects of Ammonia and Microcystin on Daphnia
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changes may vary depending on the experimental organism of

study, so we shall not place emphasis on details. Rather, we use

these data to illustrate that in a 14-day incubation there can be

subtle and dramatic influences of these toxins on zooplankton,

individually and in combination. Given predictions that cyano-

bacterial blooms will increase in frequency and magnitude in the

future [4], we might anticipate that these individual responses,

which will influence exponential population growth and compet-

itive advantages may have pronounced effects on populations and

communities. Below, in more detail, we examine these toxins

independently and then consider the implication of their

interactive effects.

Ammonia is toxic to most aquatic organisms, including

arthropods and fish, with a range of physiological consequences

[46–48]. We indicate that sub-lethal ammonia levels are

detrimental to D. magna reproduction, causing delayed maturity,

reductions in offspring production, and affecting maternal

growth and size at maturity. Such chronic consequences of

Figure 2. Time to first eggs. Effect of ammonia under different microcystin-LR concentrations (a–d) and the effect of microcystin-LR under
different ammonia concentrations (e–g) on time to first eggs. Error bars indicate 1 SE, and different letters denote significant difference at P,0.05.
doi:10.1371/journal.pone.0032285.g002

Effects of Ammonia and Microcystin on Daphnia
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ammonia toxicity on cladocerans are well understood for other

species [30–33,35]. Thus, we support an increasing body of

literature on the problems caused by sub-lethal ammonia

concentrations and maintain that its generation and accumula-

tion must be managed to protect aquatic ecosystems. For

instance, due to bacterial degradation of Microcystis blooms

maximum total ammonia (including ionized ammonia and un-

ionized ammonia) levels in lakes can be on the order of 0.2–

3.4 mg L21 (e.g. in certain areas of Lake Taihu at specific times)

[28], which would result, according to our data, in substantially

negative effect on D. magna.

Microcystin-LR is a hepatotoxin produced by several cyano-

bacteria [49] that affects both vertebrates [50] and invertebrates

[18]. Microcystin induces oxidative stress and inhibits protein

phosphatases, which are main mechanisms of its toxicity [51–53].

Furthermore, microcystin-LR reduces Daphnia filtration rate,

inhibiting feeding [19]. However, both chronic and acute toxicity

of Microcystis blooms and toxins on Daphnia are variable, and

Figure 3. Time to first clutch. Effect of ammonia under different microcystin-LR concentrations (a–d) and the effect of microcystin-LR under
different ammonia concentrations (e–g) on time to first clutch. Error bars indicate 1 SE, and different letters denote significant difference at P,0.05.
doi:10.1371/journal.pone.0032285.g003

Effects of Ammonia and Microcystin on Daphnia
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unexpected levels of tolerance to microcystins by Daphnia occurs

[26,42,54,55]. For instance, Dao et al. [56] observed reduced

neonate production and shortened time to maturity for D. magna at

50 mg L21 of microcystin-LR. We noted similar reduced effect of

microcystin on offspring produced per clutch (a parameter akin to

neonate production) and total offspring per female. Meanwhile, we

also noted microcystin significantly delayed time to first eggs,

which is inconsistent with some other studies, probably suggesting

the strain we used is more sensitive than some other studied strains

[39,56]. Also, purified microcystin seems, in some cases, not to be

detrimental to Daphnia [39], or it only does so under very high

concentrations [18].

The differences in tolerance to microcystin are probably due to

the long-term maintenance of some species or clones under

pristine laboratory conditions (such as the clone used in this

experiment), while others, more recently isolated, have become

adapted to microcysin as they regularly experiences Microcystis

blooms [39,57–59]. In our experiments, the clone of D. magna was

maintained in the laboratory for more than 10 years, and probably

has either lost its tolerance to microcystin or has not developed a

Figure 4. Size at first eggs. Effect of ammonia under different microcystin-LR concentrations (a–d) and the effect of microcystin-LR under different
ammonia concentrations (e–g) on size at first eggs. Error bars indicate 1 SE, and different letters denote significant difference at P,0.05.
doi:10.1371/journal.pone.0032285.g004

Effects of Ammonia and Microcystin on Daphnia
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resistance to it through regular exposure; in either case, our data

can then be used to provide a ‘‘worst-case scenario’’ assessment of

cyanobacterial blooms. For instance, as blooms are becoming

more prevalent globally, our data are especially relevant to areas

where blooms are becoming a problem.

The interactive effects of ammonia and microcystin occurred for

the five traits (Table 1): the time to first batch of eggs appearing in

the brood pouch, time to first clutch, size at first clutch, number of

clutches, and total offspring per female. Interestingly, it seems that

the interactive effects of ammonia and microcystin are synergistic

on some parameters and but antagonistic on some other

parameters. For example, a synergistic effect was found on the

time to first eggs, i.e. D. magna confronted simultaneously with

ammonia and microcystin, delays its time to produce the first

clutch of eggs, compared with those exposed to a single toxin

(Figure 2). In contrast, under lower ammonia concentrations,

microcystin significantly decreased total offspring per female

(Figure 8e,f), whereas under high ammonia concentrations, no

difference occurred among different microcystin concentrations

(Figure 8g), indicating an antagonistic effect. Another antagonistic

Figure 5. Size at first clutch. Effect of ammonia under different microcystin-LR concentrations (a–d) and the effect of microcystin-LR under
different ammonia concentrations (e–g) on size at first clutch. Error bars indicate 1 SE, and different letters denote significant difference at P,0.05.
doi:10.1371/journal.pone.0032285.g005

Effects of Ammonia and Microcystin on Daphnia
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effect occurred for the time to first clutch, under high ammonia

concentrations: the presence of microcystin alleviated the delayed

effects of ammonia on time to first clutch (Figure 3g), which is

similar to the effect of nitrite and microcystin on Daphnia obtusa

[39]. Thus, the above phenomenon suggested that combined

effects of ammonia and microcystin on different traits of life-

history are complex and unintuitive. We suggest, given the

importance of Daphnia in food webs and the growing concerns

regarding cyanobacterial blooms [1,33], that there now is a need

to rigorously assess the mechanism behind these phenomenon. We

also emphasize that our results on this one model taxon should

stimulate similar experiments on other cladocerans and freshwater

zooplankton, as differences will undoubtedly occur between

genera, species, and even clones. Revealing such variation in the

response to toxins may indicate the robustness of the zooplankton

community to cyanobacterial blooms.

Figure 6. Number of clutches. Effect of ammonia under different microcystin-LR concentrations (a–d) and the effect of microcystin-LR under
different ammonia concentrations (e–g) on number of clutches. Error bars indicate 1 SE (some error bars are too small and covered), and different
letters denote significant difference at P,0.05.
doi:10.1371/journal.pone.0032285.g006

Effects of Ammonia and Microcystin on Daphnia
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Conclusion
We support the wide body of literature that recognizes

ammonia and microcystin as toxins. Both ammonia and micro-

cystin can adversely affect life-history traits of D. magna.

Furthermore, interactive effects of ammonia and microcystin

occurred for five traits: the time to first batch of eggs appearing in

the brood pouch, time to first clutch, size at first clutch, number of

clutches, and total offspring per female. Critically, it seems that the

interactive effects are synergistic on some traits (e.g. time to first

eggs) and but antagonistic on some other traits (e.g. total offspring

per female). This study reveals complex interactions between these

toxins that require careful physiological-based study to understand

the underlying mechanisms. We thus conclude by recommending

an interdisciplinary approach to address this issue, possibly

coupling ecophysiological techniques with more classical mecha-

nistic physiology and modern methods of gene expression [60,61]

to untangle these issues and allow us to prepare for the inevitable

expansion of cyanobacterial blooms, on a global scale.

Figure 7. Number of offspring per clutch. Effect of ammonia under different microcystin-LR concentrations (a–d) and the effect of microcystin-
LR under different ammonia concentrations (e–g) on number of offspring per clutch. Error bars indicate 1 SE, and different letters denote significant
difference at P,0.05.
doi:10.1371/journal.pone.0032285.g007

Effects of Ammonia and Microcystin on Daphnia
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(2004) Microcystin-producing blooms–a serious global public health issue.
Ecotox Environ Safe 59: 151–163.

8. Chen J, Zhang D, Xie P, Wang Q, Ma Z (2009) Simultaneous determination of

microcystin contaminations in various vertebrates (fish, turtle, duck and water
bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis

blooms. Sci Total Environ 407: 3317–3322.
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