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This study investigated the healing effects of topical application of zerumbone, a well-known anti-inflammatory compounds
loaded on nanostructured lipid carrier gel (Carbopol 940) (ZER-NLCG) on excisional wounds in streptozotocin-induced
diabetic rats. Diabetic rats with inflicted superficial skin wound were topically treated with ZER-NLCG, empty NLCG, and
silver sulfadiazine cream (SSDC) once daily for 21 days. Wound tissue samples were analyzed for proinflammatory cytokines,
namely, interleukin-6 (IL-6), interleukin-1 β (IL-1β), and tumor necrosis factor-α (TNF-α), hydroxyproline contents, catalase,
superoxide dismutase activities, and lipid peroxidation level, and were subjected to histopathological analysis, respectively.
Among the treated groups, ZER-NLCG was the most effective at decreasing proinflammatory cytokine level and inflammatory
cell infiltration while increasing antioxidant enzyme activities, hydroxyproline content, and granulation of wound tissues of
diabetic rats. ZER-NLCG is a potent formulation for the enhancement of wound healing in diabetic rats through its anti-
inflammatory, antioxidant, and tissue repair activities.

1. Introduction

Wound healing is a well-organized interplay between migra-
tion and proliferation of blood cells, endothelial cells, extra-
cellular matrix production, fibroblasts, cytokines, growth
factor release, and angiogenesis [1, 2]. Delayed wound heal-
ing is a major complication in diabetics, and this is princi-
pally associated with hyperglycemia, abnormalities in
cytokine expressions, oxidative stress, and impaired neovas-
cularization [3–5]. In fact, diabetic patients are prone to
develop chronic nonhealing foot ulcers [6, 7].

Numerous phytochemicals have been shown to have
wound healing properties [8]. These phytochemicals include
curcumin, picroliv, and arnebin-1 [9], thymoquinone [10],
and zerumbone [11]. The wound healing properties of phy-
tochemicals are partly exerted through their natural antiox-
idant properties [12, 13]. Unfortunately, many
phytochemicals are water-insoluble, which compromise
their therapeutic potentials. Several carriers have been used
to solubilize these compounds. These include cyclodextrins,
chitosan, liposome nanoparticles, and nanostructured lipid
carriers (NLC) [14, 15]. Nanostructured lipid carriers are
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second-generation lipid-based nanoparticles that are devel-
oped based on the solid lipid nanoparticles (SLN) [16].
Unlike SLN, which is primarily composed of solid lipids,
the NLC has a core structure comprising of both solid and
liquid lipids. The core of the NLCs has an imperfect matrix
structure that increased space for accommodation of drug,

drug load, and with less potential for drug expulsion than
SLN [17–19].

Zerumbone is the major sesquiterpene phytochemical in
the rhizome of edible ginger Zingiber zerumbet (L.) Smith
[20]. Zerumbone possesses antioxidant, anti-inflammatory,
antimicrobial, hepatoprotective, antinociceptive [21], and

Table 1: Blood glucose concentration in diabetic rats treated with NLCG, SSDC, and ZER-NLCG.

Treatment
Groups
(n = 6)

Blood glucose (mmol/l)
Days postwound infliction

0 8 14 21

Normal (nontreated) 5:23a ± 0:07 5:35a ± 0:12 5:26a ± 0:18 5:30a ± 0:14
Diabetic (nontreated) 18:63b ± 0:55 18:73b ± 1:32 19:07b ± 0:98 19:03b ± 1:99
NLCG 19:43b ± 1:68 19:30b ± 2:30 19:37b ± 1:13 19:78b ± 2:03
SSDC 19:44b ± 1:52 19:54b ± 1:97 18:73b ± 0:84 17:08b ± 2:09
ZER-NLCG 20.33b±1.46 20:15b ± 1:40 18:83b ± 2:20 20:58b ± 1:86
a,bMeans with different superscript within columns are statistically significant (p < 0:05) different from the normal values.
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ZER-NLCG

NLCG

Normal
nontreatment

Diabetic
control

Day 0 Day 7 Day 14 Day 21

Figure 1: Wound healing in diabetic rats treated with NLCG, SSDC, and ZER-NLCG. ZER-NLCG produced the most best healing effect
among treatment with wound contraction rate similar to that of nontreated normal rats.
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anticancer [22, 23] properties. Despite the known therapeu-
tic applications, the effect of zerumbone on wound healing
process is still not investigated. Zerumbone has been loaded
in NLC and the complex has shown to have anticancer prop-
erties [24].

Therefore, the present study was undertaken to deter-
mine the wound healing effects of free and NLC-loaded zer-
umbone in a streptozotocin-induced diabetic rat model.

2. Materials and Methods

2.1. Chemicals and Reagents. Streptozotocin (STZ) and
sodium citrate were purchased from Sigma-Aldrich (St.
Louis, USA). Ketamine and xylazine were purchased from
Troy Laboratories Pte. Ltd. (New South Wales, Australia).
The assay kits used for the determination of proinflamma-
tory, hydroxyprolin levels, and enzyme activities were sup-
plied by Cusabio Biotech (Houston, USA), while the issue
lysis buffer (tissue protein extraction) reagent was purchased
from Thermo Scientific Ltd. (Massachusetts, USA).

2.2. Preparation of Zerumbone-Nanostructure Lipid Carrier
(ZER-NLCG) Gel. Pure colourless zerumbone (ZER) crystal
was extracted from fresh Zingiber zerumbet rhizome essen-
tial oils using steam distillation, and zerumbone-
nanostructure lipid carrier (ZER-NLC) was prepared and
characterized as described by Rahman et al. [25]. The
ZER-NLC gel (ZER-NLCG) and NLC gel (NLCG) were pre-
pared as described earlier [26]. Briefly, the ZER-NLC has the
particle size of 52:68 ± 0:1nm and polydispersity index of
0:29 ± 0:0041nm. The zeta potential of this compound is
recorded at a level of 25:03 ± 1:24mV, while the drug
entrapment value is approximately 99.03% w/w.

2.3. Experimental Animals. All studies were performed in
accordance to the guidelines of the Institutional Animal
Care and Use Committee (ACUC), University of Malaya
(ISB/22/07/2013/SFA).

In the present study, healthy and normal glycaemic male
Wistar albino rats weighing in between 200 to 250 g were
used. Animals were housed in stainless-steel cages under
controlled ambient temperature of 25 ± 2°C and 12h light-
dark cycle. Commercial rat/mouse pellet (Specialty Feeds,
Western Australia) and water were provided ad libitum.

2.4. Streptozotocin-Induced Diabetes. The rats were weighed
and their fasting blood glucose were determined before the
induction of diabetes. Food and water were withhold from
the rats for 18 hours, and then, they were induced with a sin-
gle intraperitoneal injection of 65mg/kg streptozotocin
(Sigma-Aldrich, USA) dissolved in 0·05M sodium citrate
(pH 4.5) to develop diabetes mellitus condition. Two days
after the induction, the development of hyperglycemia
(blood glucose levels higher than 16.7mmol/L) in the rats
was confirmed by estimating the fasting blood glucose con-
centrations using the Glucocheck strip (Accu-Chek® Active,
Roche Diagnostic GmbH, USA) [27].

2.5. Excision Wound Model. Full-thickness excision skin
wounds were created in the diabetic rats as described previ-
ously [28]. Briefly, while under anesthesia with intramuscu-
lar injection of ketamine hydrochloride (25mg/kg)-xylazine
hydrochloride (10mg/kg), the hair on the dorsal neck of dia-
betic and normal control rats were shaved and the exposed
skin were cleaned with 70% ethanol. A circular full thickness
wound of 8mm diameter was created aseptically on the
exposed skin of each rat using a sterile skin biopsy punch
(Biopunch®, Fray Products Corp., New York, USA). The
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Figure 2: Wound contraction in diabetic rats treated with NLCG, SSDC, and ZER-NCLG. ZER-NLCG was most effective among treatments
at acceleration wound closure in diabetic rats. Means significantly different from those of diabetic controla, NLCG-treated groupb, and
SSDC-treated groupc at p < 0:01. Values are expressed as mean ± SD.
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wounds were dabbed with cotton soaked in normal saline to
stop the bleeding [29].

2.6. Animal Grouping and Treatment. Diabetic rats were
divided into five groups (n = 6/group). Normal nondiabetic
rat control was assigned as group 1. Untreated diabetic rats
were assigned as group 2. In group 3 which is considered
as positive control, rats were treated with 0.2ml 1% w/w sil-
ver sulfadiazine cream (SSDC) (reference standard). In
group 4, rats were topically treated with 0.2ml of NLCG,
whereas in group 5, rats were topically treated with 0.5mg/
ml ZER-NLCG. These treatments were given for 21 days.

2.7. Healing and Wound Contraction. The size of the open
wound was determined with planimetry by tracing the
wound with transparent sheets, and the total area was deter-
mined with graph papers. The rate of healing was calculated
and expressed as percentage wound contraction on days 7,
14, and 21. The wounds were photographed. The rate of
healing was calculated using the following formula [28].

Wound closure %ð Þ = A0 mm3� �
– At mm3� �

A0 mm3ð Þ × 100, ð1Þ

A

(a)

B
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C
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Figure 3: Skin wound tissue of diabetic rats treated with (c) NLCG, (d) SSDC, and (e) ZER-NLCG after 21 days. (a) Nontreated normal
wound tissue and (b) nontreated diabetic wound tissue.
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where A0 is wound area on day 0 and At is the wound area
postwound infliction.

2.8. Biochemical Analysis

2.8.1. Determination of Blood Glucose Levels. Approximately
0.1ml of blood was collected from the tail vein of each rat. A
glucometer was used to determine the blood glucose levels
immediately before and postwound infliction on days 7,
14, and 21.

2.8.2. Determination of Collagen Synthesis. The total collagen
content in granulation tissue samples was estimated based
on the hydroxyproline level. Wound tissue samples were
homogenized in ice-cold tissue lysis buffer and centrifuged
at 10,000 × g for 5min, and the hydroxyproline contents in

the supernatants were quantitatively determined by ELISA
(CSB-E08838r Cusabio Biotech Co., Ltd., Wuhan, China).

2.8.3. Determination of Levels of Proinflammatory Cytokines.
Wound tissue samples were excised and wound lysates pre-
pared using tissue lysis buffer with protease and phosphatase
inhibitors and analyzed for the presence of immunoreactive
IL-1β, lL-6, and TNF-α by using ELISA kits.

2.8.4. Oxidative Stress Level Determination. Skin tissue sam-
ples were prepared according to the method described by
Albaayit et al. [28]. The activities of catalase (CAT) and
superoxide dismutase (SOD) and lipid peroxidation (LPO)
were determined by using ELISA kits.

2.9. Histology. Skin wound tissues of the rats were removed
immediately after sacrifice and fixed in 10% buffered

Table 2: Histological changes in wound tissues of diabetic rats treated with NLCG, SSDC, and ZER-NLCG.

Parameter
Lesion score (%)

Normal control Diabetic control NLCG SSDC ZER-NLCG

Epidermal wound closure 87:7a ± 3:6 0:7b ± 0:9 51:7a ± 12:6 100c ± 0 100c ± 0
Epithelial proliferation and differentiation 48:3a ± 10:2 0:3b ± 1:9 2:3b ± 1:1 83:3c ± 2:4 86:7c ± 4:7
Epithelial ballooning 13:0a ± 15:8 53:3b ± 4:7 37:0a ± 18:8 16:6a ± 2:4 10:0c ± 0:0
Keratin proliferation 56:6a ± 13:1 0 0 86:6b ± 4:7 88:0b ± 2:4
Edema 9:0a ± 5:4 40:0b ± 4:1 47:0b ± 3:1 0 0

Epidermal PMN cell infiltration 10:7a ± 3:3 85:0b ± 4:1 73:0b ± 3:1 3:7c ± 0:9 4:7b ± 3:8
Dermal PMN cell infiltration 23:3a ± 8:5 75:0b ± 4:1 71:0b ± 3:1 26:6c ± 16:5 8:3c ± 2:4
Neovascularization 75:0a ± 4:1 65:0b ± 4:1 80:0b ± 4:1 75:0a ± 4:1 75:0a ± 4:1
Fibroblast proliferation 61:7a ± 8:5 75:0b ± 4:1 65:0b ± 4:0 81:6b ± 6:2 83:3b ± 6:2
Collagen proliferation index 75:0a ± 4:1 8:3b ± 2:6 3:3b ± 2:3 71:7c ± 6:2 70:0c ± 4:1
Values are mean ± std dev. a,b,cMeans within row with different superscripts are significantly different at p < 0:05. PMN= polymorphonuclear cell.
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Figure 4: Hydroxyproline concentration in skin biopsies of diabetic rats treated with NLCG, SSDC, and ZER-NLCG. The concentrations of
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formaldehyde solution pH 7.4, dehydrated through graded
concentrations of 70 and 95% of absolute ethanol, cleared
in xylene, and embedded in paraffin wax at the melting point
of 56°C. The tissues were sectioned to 5μm thickness and
stained with haematoxylin and eosin (H&E) and examined
microscopically at 400x magnification. The wounds were
histologically scored using method described by Atiba et al.
[30]. Lesion parameters were scored according to their dis-
tribution in each microscopic field.

2.10. Statistical Analysis. Data were expressed as means ±
standard deviation (SD). Comparisons between groups and
between days were performed using one-way analysis of var-
iance (ANOVA) using GraphPad InStat version 3.0 (2000)
statistical software. The level of significance was set at p <
0:05.

3. Results

3.1. Blood Glucose Level. Mean blood glucose was found to
be significantly stable at higher levels and in the diabetic
control and NLCG-, SSDC-, and ZER-NLCG-treated dia-
betic rats compared to the nontreated normal rats over the
21-day period of the study (Table 1).

3.2. Zerumbone-Nanostructure Lipid Carrier Gel Enhanced
Wound Closure. Diabetic rats treated with ZER-NLCG
showed accelerated and significant wound closure with
almost complete epithelialization and healing by day 21 in
comparison with the nontreated diabetic control or the
SSDC-treated diabetic rats (Figure 1). The rate of wound

healing in diabetic rats treated with ZER-NLCG is similar
to that of the normal rats. The quantitative assessment of
wound healing of the treated diabetic rats is shown in
Figure 2. The most significant wound contraction in order
of percentage was as follows: ZER-NLCG, followed by SSDC
and NLCG treatment. By day 21, wounds treated with ZER-
NLCG had contracted by 96% compared to 43.7% in the
nontreated normal rats.

3.3. Histological Evaluation of Wound Tissues. Nontreated
normal and diabetic rats treated with SSDC and ZER-
NLCG showed significant epithelialization in the epidermal
layer and connective tissue after 21 days, which was evident
in the in NLCG-treated and nontreated diabetic rats
(Figure 3) (Table 2). The treated diabetic rats also showed
a well-grown mature granulation tissue rich with newly
formed capillaries and collagen fibers. Nontreated diabetic
rats showed incomplete and mild granulation tissue in the
wounds. Based on the histological changes, wound tissues
of nontreated diabetic showed much slower healing than
the treated diabetic rats. The effect of ZER-NLCG on wound
healing was essentially similar to that of SSDC. Nontreated
diabetic rats showed much slower healing than the treated
diabetic rats. The effect of ZER-NLCG on wound healing
was essentially similar to that of SSDC.

3.4. Hydroxyproline. The concentration of hydroxyproline
was significantly lower (p < 0:05) than in the skin of non-
treated diabetic than normal rats (Figure 4). Treatments
with NLCG, SSDC, and ZER-NLCG increased the level of
hydroxyproline in the skin of the diabetic rats. ZER-NLCG
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was the most effective, among treatments, at elevating
wound tissue hydroxyproline in diabetic rats to a level sim-
ilar to that observed in the normal rats.

3.5. Proinflammatory Cytokines. Figure 5 presents the effect
of treatments on the IL1-β, IL-6, and TNF-α levels in the
granulation tissues of control after 21 days. Treatment with
NLCG, SSDC, and ZER-NLCG lowered the concentrations
of cytokines in the diabetic rat skin tissue. However, signifi-
cant decreases (p < 0:001) were only observed in rats treated
with SSDC and ZER-NLCG. ZER-NLCG was more effective
than SSDC at reducing skin tissue cytokine levels.

3.6. Oxidative Stress Markers in Skin Tissue. Treatment gen-
erally increased SOD and CAT and decreased LPO activities
(Figure 6). The SOD and CAT were highest while LPO activ-
ities were lowest in wound tissues of rats treated with ZER-
NLCG.

4. Discussion

Repair of tissue injuries is defined by several stages: coagula-
tion and hemostasis, inflammation, proliferation, and
wound modeling with scar formation. Histological changes
during wound healing begin to become evident at the prolif-
eration stage. The proliferative stage is characterized by
fibroblast migration and deposition of new extracellular
matrix, angiogenesis, tissue granulation, and collagen syn-
thesis [1, 26]. Wound healing in diabetes is usually chronic
and this is the result of disruption in one or more of the
healing stages. One the main causes of impaired and delayed

wound healing in diabetic patients is hyperglycemia, which
hampers fibroblast proliferation and decreases collagen pro-
duction and impairs chemotaxis and phagocytosis [31]. In
our study, nontreated diabetic rats showed incomplete and
mild granulation in the wound tissues, suggesting a much
slower wound healing process. Treatment with ZER-NLCG
improved wound healing by prompting epithelial and kera-
tin proliferation and epithelial differentiation. In the ZER-
NLCG-treated rats, complete wound closure was observed
by 21 days of treatment. This finding is supported by study
from Gourishetti and colleague who indicates that the use
of Sesamol-loaded PLGA nanosuspension accelerates wound
healing and 90% wound closure was observed on day 15 of
treatment [32].

There is ongoing search for new and cheaper therapeutic
compounds from natural sources that could be used to heal
wounds [33–39]. Among these compounds is zerumbone
from the essential oil of the rhizomes of Zingiber zerumbet
[40]. In pure crystalline form, zerumbone is water-
insoluble due to which it has poor bioavailability and distri-
bution in the body thus decreases its therapeutic potential.
Recently, it was reported that zerumbone solubility increases
upon loading into NLC [41]. The loading of zerumbone in
NLC improves the biodistribution and effectiveness of the
complex, allowing for parentally application of otherwise a
water-insoluble compound.

Wound size and contraction are parameters used to eval-
uate healing of injured tissues [42–44]. In our study, wound
contraction is determined by the percentage reduction in
size of postwound infliction. The application of ZER-
NLCG had hastened wound healing in diabetic rats through
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Figure 6: (a) Superoxide dismutase, (b) catalase, (c) glutathione peroxidase, and (d) lipid peroxidase (LPO) activities in skin biopsies of rats
treated with NLCG, SSDC, and ZER-NLCG. Treatment generally increased SOD and CAT and decreased LPO activities. ZER-NLCG
produced the most significant effect on the level of the enzymes. AMeans significantly different from those of diabetic (nontreatment)
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the influence of its active principle, zerumbone. Diabetic rats
showed better wound healing after ZER-NLCG than SSDC
treatment. ZER-NLCG decreased the infiltration inflamma-
tory cells and increased intensity of collagen maturation
and distribution in the wound tissues. The study showed
that ZER-NLCG healed wounds without scarring.

Hydroxyproline is a major component of collagen.
Hydroxyproline functions to stabilize the triple helix struc-
ture of collagen. The molecule is also used as an indicator
of collagen content in tissues [45]. In wound healing, colla-
gen formation peaks and under optimal condition epithelial-
ization occurs after 22 to 48 postinjury [46]. ZER-NLCG
significantly (p < 0:001) increased wound tissue hydroxypro-
line level (Figure 4), suggesting that there were increased
synthesis and deposition of collagen in the wound tissues
with the treatment. Based on the hydroxyproline level,
ZER-NLCG was more efficacious at healing wounds in dia-
betic rats than SSDC.

Inflammation plays a vital role in normal wound healing
process [47–49]. Inflammation delays healing of injured tis-
sues and can cause increased scarring [50, 51]. In diabetes,
tissue injuries are associated with elevated levels of proin-
flammatory cytokines [52] that affect the recruitment of var-
ious inflammatory cells and function of fibroblast and
keratinocyte, production of extracellular matrix, and angio-
genesis and impaired wound healing [5, 53]. In diabetic rats,
ZER-NLCG more than SSDC significantly downregulated
the proinflammatory cytokines, TNF-α, IL-1β, and IL-6.
These findings highlight that the inhibition inflammatory
response is one of the many facets of the wound healing
effects of ZER-NLCG.

Oxidative stress in tissues is the result of the imbalance
between the level of reactive oxygen species (ROS) and the
ability of antioxidative mechanism to remove the ROS [54,
55]. While low tissue ROS levels initiate, high levels hinder
the normal process of tissue healing [56, 57]. The tissue
ROS level is high in diabetes due to decrease or/and increase
in catalase (CAT), superoxide dismutase (SOD), and gluta-
thione peroxidase (GSH-Px) production. The constant state
of hyperglycemia in diabetes also increases the production of
free radicals via the oxidation of glucose and the glycation of
nonenzymatic proteins [58]. ZER-NLCG exerts antioxidant
effects by increasing SOD and CAT and decreasing LPO
activities. These effects of ZER-NLCG prevented inflamma-
tion and oxidative damage and promoted healing of wounds
in diabetic rats. Previous study has also indicate that sus-
tained drug release as in our study using ZER-NCLG are
able to reduce the level of reactive oxygen species (ROS) thus
increasing its antioxidant activity and promotes a much fas-
ter wound healing [59, 60].

5. Conclusion

Topical applications of ZER-NLCG might effectively
improve wound healing in streptozotocin-induced diabetic
rats by suppressing production of proinflammatory cyto-
kines, reducing inflammatory response, increasing collagen
deposition, and reducing the effect of ROS by stimulating
production of antioxidant enzymes without scarring.
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