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The magnitude of the immune response is closely associated with clinical

outcome in patients with cancer. However, finding potential therapeutic tar-

gets for lung cancer in the immune system remains challenging. Here, we

constructed a vital immune-prognosis genes (VIPGs) based cluster of lung

adenocarcinoma (LUAD) from IMMPORT databases and The Cancer

Genome Atlas. A transcription factor regulatory network for the VIPGs

was also established. The tumor microenvironment of LUAD was analyzed

using the ESTIMATE (Estimation of STromal and Immune cells in MAlig-

nant Tumor tissues using Expression data) algorithm and single-sample

Gene Set Enrichment Analysis. The immune checkpoints and genomic

alterations were explored in the different immune clusters. We identified 15

VIPGs for patients with LUAD and clustered the patients into low-immu-

nity and high-immunity subtypes. The immune score, stromal score and

ESTIMATE score were significantly higher in the high-immunity subtype,

whereas tumor purity was higher in the low-immunity subtype. In addition,

the immune checkpoints cytotoxic T lymphocyte associate protein-4

(CTLA4), programmed cell death protein-1 and programmed death-ligand

were elevated in the low-immunity subtype. The genomic results also

showed that the tumor mutation burden was higher in the high-immunity

subtype. Finally, Gene Set Enrichment Analysis showed that several

immune-related gene sets, including interleukin-2/STAT5 signaling, inflam-

matory response, interleukin-6/Janus kinase(JAK)/signal transducer and

activator of transcription 3 (STAT3) signaling, interferon-gamma response

and allograft rejection, were elevated in the high-immunity subtype. Finally,

high-immunity patients exhibited greater overall and disease-specific sur-

vival outcome compared with low-immunity patients (log rank P = 0.013

and P = 0.0097). Altogether, here we have identified 15 immune-prognosis

genes and a potential immune subtype for patients with LUAD, which may

provide new insights into the prognosis and treatment of LUAD.
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Lung cancer, which includes non-small cell lung cancer

(NSCLC) and small cell lung cancer, is a disease with

devastating consequences [1]. NSCLC includes lung

adenocarcinoma (LUAD) and lung squamous carci-

noma. LUAD is not only the most common histologi-

cal subtype in lung cancer but also poses a higher risk

for distant metastasis during all disease stages [2].

Despite diagnosis at an early stage and proper treatment

with targeted therapy, chemotherapy and immune ther-

apy, survival among patients with lung cancer is still

limited [3]. Only a small proportion of patients with

lung cancer is diagnosed early, and they have a 56%

five-year survival rate [4]. Although the targeted therapy

and immunotherapy have greatly improved treatment

for patients with lung cancer, identifying potential

diagnostic markers, therapeutic targets in the immune

system and immune cells that promote or inhibit the

progression of lung cancer remains challenging [5].

Therefore, it is necessary to study new molecular mark-

ers of LUAD for potential therapeutic targets.

Recently, immunotherapies that activate the immune

system to eliminate tumors [6] have shown broad pro-

spects in treating NSCLC [7,8]. For example, nivolu-

mab, an antibody against programmed cell death

protein-1 (PD-1), enhances the ability of cytotoxic T

lymphocytes to kill NSCLC cells by blocking the

interaction between advanced PD-1 and its ligand,

programmed death-ligand (PD-L1) [9]. The degree of

immune cell infiltration between tumors and within

tumors is different, and there are different barriers to

neoantigen expression in different tumor microenviron-

ments (TMEs) [10]. Immunotherapy stimulates the

immune system to inhibit the growth and spread of

tumor cells [11]. The influence of the TME on thera-

peutic response is becoming more and more important

[12]. The TME consists of mesenchymal cells, immune

cells, inflammatory mediators, endothelial cells and

extracellular matrix molecules. Moreover, the TME

also affects levels of gene expression in tumor tissue

and clinical outcomes. In contrast, normal lung devel-

opment depends on the activity of transcription factors

(TFs) [13], and abnormal TF activity can lead to lung

diseases. Therefore, it is particularly important to

study the relationship between the TME and TFs, as

well as prognostic markers of LUAD. Seo et al. [14]

previously conducted the study focusing on the TME

NSCLC based on the immune subtype. However, there

were still many questions to be answered, for example,

whether the intratumor heterogeneity and mutant

allele tumor heterogeneity were affected by the differ-

ent immunes subtype of LUAD. The potential role of

the tumor mutation burden for the TME of the

LUAD immune subtype should be uncovered. These

discoveries of new immune subtype might help

improve the treatment in patients with LUAD. Thus,

a more comprehensive and systematic study is needed

to get insight into the immune subtype of LUAD.

In this study, we identified 15 vital immune-progno-

sis genes (VIPGs) and constructed novel immune sub-

types for patients with LUAD from The Cancer

Genome Atlas (TCGA) database. By combining clini-

cal, genomic and transcriptomic data, we hope to

uncover the immune mechanisms of LUAD and pro-

vide new evidence for the treatment of patients.

Materials and methods

Data standardization and preprocessing

Transcriptomic (fragments per kilobase of transcript per

million mapped reads) and genomic data together with clin-

ical data of LUAD were downloaded from TCGA database

(https://cancergenome.nih.gov/) on April 1, 2020. Tran-

scriptomic data included 594 samples in total (59 normal

samples and 535 tumor samples). The LIMMA R package

was used to process the transcriptional data. Genes with

averaged expression values close to zero were deleted. For

the clinical analysis, samples with incomplete clinical

traits and samples with a survival time <90 days were

deleted, and a total of 456 LUAD samples were included

for analysis.

Exploration of VIPGs in LUAD

A list of 2498 immune genes were downloaded from the

open web version of the IMMPORT database (https://

IMMPORT.niaid.nih.gov). The differential immune genes

were compared between normal samples and tumor sam-

ples by using Wilcoxon’s test [false discovery rate (FDR) <
0.05; logFC = 1, where FC is fold change]. Prognostic

immune genes were first analyzed by univariate analysis

(P < 0.05). Then VIPGs were identified by stepwise multi-

variable Cox proportional regression model, which acts as

the independent prognostic factor for patients with LUAD.

Clinical impact of VIPGs model in LUAD

The VIPGs were subsequently incorporated into prognostic

models using their coefficients generated and expression

data (Riskscorei ¼∑n
i βi� expi). Each tumor sample was

ranked according to the risk value from small to large to

obtain the number of high-risk and low-risk patients. The

expression levels of VIPGs involved in the construction of

the model were displayed in the high- and low-risk score

groups [15]. Univariate and multivariate analyses, the Cox

risk proportional regression model were used as predictors

to determine which factors could be used as independent
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prognostic molecules [16]. The graphics were completed

using the survival R package.

TFs and immune gene-regulatory networks

The comprehensive list of tumor-related genes containing

318 TFs was obtained from the Cistrome Browser (http://c

istrome.org/). TFs were intersected with the differentially

expressed genes to identify the differentially expressed TFs.

Correlation tests were conducted for VIPGs and TF (Pear-

son’s correlation: R2 = 0.4, P < 0.05). CYTOSCAPE software

(3.7.2) (http://www.cytoscape.org/) was used to visualize

the regulatory relationship between prognostic immune

genes and TFs.

Immune clusters of LUAD based on the

independent prognostic genes

After the determination of VIPGs of LUAD, we used the

transcriptional expression data of VIPGs to explore the

immune clusters of LUAD. The R package ConsensusClus-

terPlus was used to generate the consensus matrix plot by

using the following parameters: 10 000 repeats and a maxi-

mum of six clusters. The 15 VIPGs were used for this clus-

tering analysis.

TME status of immune clusters

To evaluate the difference of TME in immune clusters, the

enrichment fraction of each sample was calculated using

single-sample Gene Set Enrichment Analysis (ssGSEA)

[17]. We downloaded 29 immune-related gene sets contain-

ing immune cell types and immune-related functions and

pathways from the literature. By calculating the distance of

each tumor sample, we compared immune cell types and

immune-related functions between low-immunity and high-

immunity subtypes and visualized the differences using the

pheatmap R package. Moreover, the ESTIMATE (Estima-

tion of STromal and Immune cells in MAlignant Tumor

tissues using Expression data) package was used to score

the stromal and immune cells within malignant tumor tis-

sues to predict the infiltration of nontumor lung cells.

According to the gene expression data, the fundamental

algorithm ESTIMATE is based on the ssGSEA. A stromal

score was used to estimate the presence of stroma in tumor

tissue, and the immune score was used to calculate the infil-

tration of immune cells in tumor tissue. As for the esti-

mated score, it combines the stromal score and immune

score to reflect the entire TME. Based on the immune clus-

ters established by the VIPGs, we combined the different

TMEs among the different immune statuses. In addition,

we also obtained and compared the expression of PD-1,

PD-L1 and CTLA4 from TCGA database.

Alteration of somatic mutation in immune

clusters of LUAD

The relevant somatic mutation data were obtained from

TCGA database by using TCGA mutation package. To

evaluate the intratumor heterogeneity of LUAD, we calcu-

lated mutant allele tumor heterogeneity of each patient by

the MAFTOOLS package. The tumor mutation burden was

then calculated based on the TCGA_MC3 maf files. The

landscape genomic alteration of LUAD was visualized by

the ONCOPRINT package.

GSEA between immune clusters of LUAD

To investigate the alteration of the gene set, we performed

the GSEA for the immune clusters. GSEA was analyzed by

using the Java GSEA implementation. The GSEA software

and the hallmark gene sets were freely available (https://

www.gsea-msigdb.org/gsea/index.jsp). The number of per-

mutations was set at 1000. The significance level of the

gene sets was set at the absolute Normalized Enrichment

Score (NES) > 1, Nominal (NOM) P < 0.05 and FDR

q < 0.25.

Statistical analysis

The Student’s t-test was used to determine whether prog-

nostic immune gene expression levels were correlated with

clinical traits in the dichotomous categories. A χ2 test was

used to test the statistical difference between categorical

variable data. Log rank and Cox regression analysis were

performed to determine the overall survival of patients and

classify patients into high-risk versus low-risk groups based

on median risk value. Factors that were analyzed included

survival time, survival status and risk value. In addition,

we calculated the sensitivity and specificity of our model

using a receiver operating characteristic (ROC) curve

(P < 0.05). The area under the ROC curve (AUC) was

used to evaluate the prognostic effect of the model. A two-

sided P value <0.05 was set as the threshold of statistical

significance. The analysis was conducted by using R VER-

SION 3.4.2 (2020-04, https://www.r-project.org/). The whole

workflow of the study design is shown in Fig. 1.

Results

Determination of VIPGs in LUAD

A total of 594 LUAD samples (tumor versus normal

samples) showed differential expression of genes. We

identified 5112 up-regulated and 1577 down-regulated

genes in these samples. Univariate analyses using the

expression levels of immune genes identified 52

immune genes that were significantly related to
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prognosis, which facilitated the construction of prog-

nostic immune gene models and regulatory networks.

The 52 prognostic immune genes obtained by univari-

ate analyses were used to establish a Cox proportional

prognostic immune gene model. Finally, the list of

prognostic genes was narrowed down to 15 immune

genes, which were defined as VIPGs (Table 1).

Clinical implication of VIPGs in patients with

LUAD

To evaluate the entire clinical significance of VIPGs

for patients with LUAD, we calculated the risk score

of patients and divided patients into high-risk and

low-risk groups. Survival time was measured using the

number of years and the number of patients between

the high- and low-risk groups (P < 0.0001). Kaplan–-
Meier curves indicated lower survival rates among the

high-risk patients compared with the low-risk patients

(P < 0.05; Fig. 2A). The 5-year survival rate of the

high-risk group was 18.81% [95% confidence interval

(CI): 15.51–30.7%] and 53.4% for the low-risk group

(95% CI: 42.7–66.8%). Multivariate analyses showed

riskScore [P < 0.001, hazard ratio(HR): 1.078, 95%

CI:1.052–1.105], clinical stages (P = 0.018, HR: 1.829,

95%CI:1.108–3.019) were the significant independent

prognostic factors for patients with LUAD (Fig. 2B).

The survival ROC revealed that AUC of riskScore

was 0.753, indicating a high level of reliability for the

immune gene prognostic model for predicting the 5-

year survival of patients with LUAD (Fig. 2C). We

also calculated the correlations between VIPGs and

clinical characteristics using the prognostic model.

Identifying differences in clinical traits of VIPGs will

help determine the molecular mechanisms of tumorige-

nesis and development.

Immune gene and TF regulatory network

All 70 TFs were differentially expressed; this finding

intersected with genes that were differentially expressed

genes between the tumor group and normal group. Of

Fig. 1. Workflow of the whole study design.
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Table 1. Independent prognostic value of VIPGs for patients with LUAD. Chr, chromosome.

Symbol Chromosome location Coefficient HR (95% CI)

S100A16 Chr 1: 153606886–153613145 0.0014 1.0013 (1.0001–1.0027)
CRABP1 Chr 15: 78340324–78348230 0.0035 1.0034 (1.0007–1.0062)
RBP2 Chr 3: 139452884–139480747 0.0611 1.0629 (1.0283–1.0988)
FGF2 Chr 4: 122826708–122898236 0.3117 1.3657 (1.1645–1.6016)
IGKV4-1 Chr 2: 88885397–88886153 -0.0004 0.9996 (0.9993–0.9999)
IGKV6D-41 Chr 2: 90069662–90070238 0.0231 1.0234 (1.0105–1.0364)
SEMA4B Chr 15: 90160604–90229679 0.0047 1.0047 (1.0010–1.0099)
FPR2 Chr 15: 51752026–51770526 −0.3051 0.7371 (0.5718–0.9501)
BDNF Chr 17: 27654893–27722058 0.225 1.2523 (1.0235–1.5323)
IL11 Chr 19: 55364389–55370463 0.1362 1.1459 (1.0346–1.2692)
INHA Chr 2: 219569162–219575713 0.0074 1.0074 (1.0021–1.0128)
ANGPTL4 Chr 19: 8363289–8374373 0.0054 1.0054 (1.0008–1.0101)
TNFRSF11A Chr 18: 62325287–62391292 0.2323 1.2615 (1.1391–1.3971)
VIPR1 Chr 3: 42489299–42537573 −0.135 0.8737 (0.7846–0.9730)
SHC3 Chr 9: 89005771–89178767 −0.2043 0.8152 (0.6694–0.9928)

Fig. 2. Clinical impact and TF regulatory networks of VIPGs for patients with LUAD. (A) Kaplan–Meier curves for the high- versus low-risk

groups. The survival rate of patients in the high-risk group was significantly lower than the low-risk group (P < 0.0001). (B) Forest plot

showing the risk score of the VIPGs could serve as an independent prognostic factor for patients with LUAD. (C) The survival ROC revealed

that the AUC of riskScore was 0.753, effectively predicting the 5-year survival for patients with LUAD. (D) The TF regulatory networks of

VIPGs. The circles represent immune genes, with red indicating high expression and green indicating low expression. The triangle

represents TFs, which are linked by red lines for positive regulation and green lines for negative regulation. TMB, Tumor Mutation Burden.
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these 70 TFs, 41 were up-regulated and 29 were down-

regulated. To find TFs that play a key role in regulating

the immune response, we used gene-regulatory network

ontology to identify affected body immune processes

and regulatory agencies [18]. Analysis of the regulatory

network of immune genes and TFs identified 31 TFs

related to prognostic immune genes. Only five TFs were

associated with prognostic immune gene models. The

regulatory networks of molecular interactions may play

a critical role in the transcriptional control of VIPGs

(Fig. 2D).

Construction of the immune subtypes

Based on the clinical implication of VIPGs in LUAD,

we then used the 15 VIPGs to cluster the patients with

LUAD into different subtypes. As Fig. 3 shows, a total

of four clusters were identified by the ConsensusClus-

terPlus. Then we divided the patients into the low-im-

munity (cluster 1: a total of 356 patients with LUAD)

and high-immunity subtypes (clusters 2–4: a total of

100 patients with LUAD) based on the immune score

derived from the ESTIMATE algorithm (Fig. 3A).

TME in different immune clusters

Immune cell infiltration was assessed by ssGSEA anal-

ysis using 29 immune gene sets with cluster 1 as the

low-immune group and clusters 2–4 as the high-im-

mune group. Among different immune cell types, the

immune activity of the high-immune group was higher

than that of the low-immune group (Fig. 3B). The

ESTIMATE algorithm was used to calculate the

immune score, stromal score and estimate score for

the tumor tissues of the expression profile [19]. We

concluded that the estimated score, stromal score and

immune score were higher among the low-immune

patients compared with the high-immune patients.

However, the purity of the tumors in the high-immune

group was lower compared with low-immune patients.

Furthermore, the estimated score of the high-immune

group was higher than that of the low-immune group

and was indirectly proportional to the tumor purity

(Fig. 4). In addition, the immune checkpoints CTLA4,

PD-1 and PD-L1 were up-regulated in the low-immu-

nity subtype, indicating the immunosuppression in the

low-immunity group (Fig. 5).

Fig. 3. Immune subtypes based on VIPGs and their relationship with the TME. (A) Immune clusters based on VIPGs for patients with

LUAD. A total of six clusters were generated by ConsensusClusterPlus, and the four-cluster model was used for further analysis. The

consensus matrix is sorted by consensus clusters, which are represented by the tree at the top of the heatmap. The colored rectangle

between the trees marked cluster membership. (B) Heatmaps showed the immune activity of different cell types in the low- immune

(cluster 1) and high- immune (cluster 2) groups.
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Fig. 4. Distribution of tumor purity, ESTIMATE score, immune score and stromal score in high- versus low-immunity groups. The estimated

score, stromal score, and immune score were higher among the high-immune patients compared with low-immune patients. However, the

purity of the tumors in the high-immune group was lower compared with low-immune patients. Furthermore, the estimated score of the

high-immune group was higher than that of the low-immune group and was indirectly proportional to the tumor purity. The Student’s t-test

was used to compare the difference between high- and low-immunity groups (*** P < 0.001).

Fig. 5. Boxplot of expression levels for the immune checkpoints in high- versus low-immunity groups. The immune checkpoints CTLA4, PD-

1 and PD-L1 were up-regulated in the low-immunity subtype, indicating the immunosuppression in the low-immunity group. The Student’s t-

test was used to compare the difference between high-immunity and low-immunity groups (*P < 0.05; *** P < 0.001).
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Genomic alteration of the patient in immune

clusters

Because the tumor somatic mutation is an important

factor for the treatment and survival of patients with

cancer, we then calculated the tumor burden and tumor

heterogeneity between the two immune clusters. Conse-

quently, the tumor mutation burden of the low-immu-

nity group was significantly lower than that in the high-

immunity group, while no statistically significant differ-

ence of the mutant allele heterogeneity (MATH) was

found in these two groups (Fig. 6A,B). In addition, the

top 10 mutated genes are shown in Fig. 6C.

GSEA for different immune clusters of LUAD

According to the immune clusters, we divided the

patients with LUAD into the low- and high-immunity

groups. As a result, none of the 50 gene sets was alter-

nated in low-immunity phenotype, and 42 gene sets

were up-regulated in high-immunity phenotype. Of the

results, 17 gene sets were significantly enriched at

FDR < 25%, and 13 gene sets were significantly

enriched at a nominal P < 5% (Table 2). Notably, the

several immune-related gene set enrichments were

related to the immune clusters, including interleukin-2

(IL-2)/STAT5 signaling, inflammatory response, IL-6/
Janus kinase(JAK)/signal transducer and activator of

transcription 3(STAT3) signaling, interferon-gamma

response and allograft rejection (Fig. 7). In addition,

the alternated cancer-related hallmark pathway was

also found, such as KRAS signaling up, epithelial–-
mesenchymal transition and phosphatidylinositol-3-ki-

nase (PI3K)/Akt and the mammalian target of

rapamycin (mTOR) signaling. These results might pro-

vide evidence for the treatment of patients with LUAD

with different immune clusters.

Clinical impact of immune clusters on patients

with LUAD

Finally, we also explored the clinical implication of

immune clusters in patients with LUAD by analyzing

the phenotype data. As result, the frequency of

patients with tumor stage I–II in the high-immunity

group was significantly higher than that in the low-im-

munity group, suggesting that the tumor growth might

be inhibited by high immunity (χ2 = 5.158, P = 0.023;

Table S1). In addition, we also analyzed the prognostic

Fig. 6. Somatic mutation of the immune cluster. (A) The heterogeneity of the mutant alleles in each patient was calculated by the "MAFTOOLS"

PACKAGE IN R VERSION 3.4.2 (2020-04). No statistically significant difference of the MATH was found in these two groups. (B) The tumor

mutation burden was calculated based on the TCGA_MC3 maf file. The tumor mutation burden of the low-immunity group was significantly

lower than that in the high-immunity group. (C) The landscape genome changes of LUAD were visualized by the Oncoprint R package. The

Student’s t-test was used to compare the difference between high- and low-immunity groups (**P < 0.01). ns, not significant.
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value of the immune subtypes for patients with

LUAD. As Fig. 8A shows, the overall survival period

of the high-immunity patients was higher than that of

low-immunity patients, with a log rank P value of

0.013. More importantly, the disease-specific survival

outcome of high-immunity patients was more favor-

able than with low-immunity patients (P = 0.0019;

Fig. 8B). These results suggested that high-immunity

Table 2. Significant gene set enrichment in the high-immunity group. ES, enrichment score; FWER, family-wise error rate; GS, gene set.

GS details Size ES NES

NOM

P-value

FDR

q-value

FWER

P-value

Rank at

max

HALLMARK_COMPLEMENT 195 −0.59 −1.96 0.000 0.056 0.053 4669

HALLMARK_ALLOGRAFT_REJECTION 195 −0.76 −1.90 0.000 0.041 0.081 2811

HALLMARK_PI3K_AKT_MTOR_SIGNALING 103 −0.39 −1.96 0.002 0.110 0.052 930

HALLMARK_IL2_STAT5_SIGNALING 194 −0.58 −1.94 0.002 0.045 0.063 3828

HALLMARK_INFLAMMATORY_RESPONSE 197 −0.66 −1.75 0.002 0.091 0.206 2669

HALLMARK_IL6_JAK_STAT3_SIGNALING 87 −0.65 −1.78 0.004 0.093 0.181 2767

HALLMARK_KRAS_SIGNALING_UP 193 −0.56 −1.70 0.004 0.091 0.278 4136

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 194 −0.66 −1.74 0.014 0.086 0.219 4669

HALLMARK_APOPTOSIS 158 −0.43 −1.68 0.018 0.091 0.303 3717

HALLMARK_UV_RESPONSE_UP 152 −0.36 −1.55 0.020 0.192 0.510 5528

HALLMARK_INTERFERON_GAMMA_RESPONSE 196 −0.63 −1.70 0.028 0.100 0.272 2841

HALLMARK_APICAL_SURFACE 43 −0.53 −1.51 0.030 0.178 0.577 3815

HALLMARK_HYPOXIA 190 −0.41 −1.54 0.034 0.187 0.524 4574

Fig. 7. GSEA for immune clusters of LUAD. The GSEA was performed for the immune clusters. The number of permutations was set at

1000. The significance level of the gene sets was set at |NES| > 1, NOM P < 0.05 and FDR q < 0.25. Notably, the several immune-related

gene sets were related to the immune clusters, including IL-2/STAT5 signaling, inflammatory response, IL-6/JAK/STAT3 signaling, and

interferon-gamma response and allograft rejection.
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patients achieved a better survival outcome than the

low-immunity ones.

Discussion

LUAD is the major subtype of lung cancer and one of

the leading causes of cancer deaths worldwide [20].

Due to the potential toxicity and side effects of some

drugs, patients often fail to obtain consistent therapeu-

tic efficacy from drugs. Furthermore, the application

of postoperative systemic adjuvant chemotherapy is

still controversial in clinical practice [21]. Therefore,

better prognostic tools for LUAD are necessary.

This study established a regulatory network of TFs

and a prognostic model for LUAD while combining clin-

ical factors to verify potential prognostic markers. TFs

recognize DNA sequences that control gene expression

and are important regulators of cellular function and

responses to environmental stimuli [22]. We found posi-

tive regulatory relationships between the following TFs

and immune genes: ETV1 and SCH3, as well as IRF4

and IGKV4-1. TFs that were positively regulated by the

immune gene VIPR1 included EPAS1, TCF21 and

CBX7. Studies have shown that the TF ETV1 [23]

increases the risk for carcinogenesis by increasing

NSCLC proliferation; furthermore, it is negatively corre-

lated with overall survival in patients with NSCLC. The

expression of ETV1 is higher within tumor cells com-

pared with normal tissues. In the study by Qian et al.

[24], IRF4 was confirmed to be an important regulator of

cell growth in NSCLC. In the study by Chen et al. [25],

IRF4 was associated with unfavorable outcomes among

patients with NSCLC. These findings may indicate that

IRF4 reflects the activity of tumor-infiltrating lympho-

cytes in tissue sections. Studies have shown that EPAS1

is associated with treatment resistance, metastasis and

poor clinical prognosis among patients with lung cancer

[26,27]. Furthermore, high levels of EPAS1 protein were

associated with poor prognosis in NSCLC [28,29]. The

low expression of TCF21 is an important factor for poor

prognosis of LUAD, but not lung squamous cell carci-

noma [30]. Also, CBX7 is significantly down-regulated in

lung cancer [31]. Therefore, we can use these TFs related

to LUAD prognosis for new therapeutic targets.

The combined analysis of prognostic biomarkers

and TME may provide insight into novel molecular

mechanisms and ways to improve the management of

immunotherapy patients [31,32]. In this study, 29 sets

of immune genes containing immune cell types and

immune-related functions and pathways were down-

loaded from the literature. These data were used to

study the relationship between 15 genes and TME

among patients with high versus low immune scores or

stromal score groups using the ESTIMATE algorithm.

Previous studies have reported that 9 out of the 15

immune genes associated with prognosis (S100A16,

CRABP1, RBP2, FGF2, FPR2, BDNF, ANGPTL4,

SEMA4B and VIPR1 [33–41]) are involved in the

pathogenesis of lung cancer. The remaining six genes

(IGKV4-1, IGKV6D-41, TNFRSF11A, INHA, IL11

and SCH3) have not been reported in the literature

and may be used as potential biomarkers for lung can-

cer research. Moreover, immune gene prognostic mod-

els for LUAD predict patient survival in combination

Fig. 8. Prognostic value of immune subtypes for patients with LUAD. (A) Overall survival. The overall survival period of high-immunity

patients was higher than that of the low-immunity patients (log rank P = 0.013). (B) Disease-free survival. The disease-specific survival

outcome of high-immunity patients was more favorable than in patients with low-immunity (log rank P = 0.0097).
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with clinical characteristics and TME. Because only

retrospective LUAD data from TCGA database were

analyzed, further validation of clinical samples is

needed. Although Seo et al. [14] have conducted the

article focused on the subtypes of NSCLC, there were

several differences between this previous study and our

work. First, the previous study constructed the subtype

based on 87 LUAD samples, which were compara-

tively few. Our study investigated the immune subtype

based on a total of 447 LUAD samples, of which the

results might be more stable. Second, the previous

study clustered the patients into different subtypes

based on the 1000 most variable genes identified by

Principal Component Analysis (PCA). We considered

whether these 1000 most variable genes could present

the most variable characteristics for the immune state,

or whether they might contribute more representative

characteristics to the other subtype. As we acknowl-

edge, theintratumor heterogeneity and mutant allele

tumor heterogeneity are the important factors for the

TME [42,43]; thus, we calculated their association with

the immune subtypes. More importantly, the tumor

mutation burden has proved to be a useful predictive

biomarker for immune therapy, which is strongly rele-

vant to the immune status [44]. What is more, our

work also investigated the enrichment of different sub-

types by GSEA instead of the methods used in the

previous study based only on the differentially

expressed genes [45]. Altogether, our work is radically

different from the previous study, which described the

immune subtypes of LUAD more comprehensively

and systematically.

Conclusions

In summary, this immune gene prognosis model identi-

fies new targets for the treatment of LUAD. We hope

that these immune subtypes will be a guide for deter-

mining the survival, prognosis, clinical diagnosis and

treatment of different LUAD immunophenotypes.
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