

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Ethoxy-6-{(*E*)-[(4-methylphenyl)imino]methyl}phenol

Muhammad Ashraf Shaheen,^a M. Nawaz Tahir,^b* Rana Muhammad Irfan,^a Shahid Igbal^a and Saeed Ahmad^c

^aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and ^cDepartment of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 27 May 2012; accepted 30 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.064; wR factor = 0.181; data-to-parameter ratio = 14.6.

The asymmetric unit of the title compound, $C_{16}H_{17}NO_2$, contains two molecules in which the dihedral angles between the 3-ethoxy-2-hydroxybenzaldehyde and toluidine moieties are 16.87 (8) and 19.93 (6)°. *S*(6) rings are present in both molecules due to intramolecular $O-H\cdots$ N hydrogen bonds. In the crystal, one of the molecules is dimerized with an inversion-generated partner, due to two $C-H\cdots$ O interactions. This generates an $R_2^2(8)$ loop.

Related literature

For related crystal structures, see: Albayrak *et al.* (2010); Özek *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} C_{16}H_{17}NO_2\\ M_r = 255.31\\ \text{Monoclinic, } C2/c\\ a = 29.5126 \ (11) \text{ Å}\\ b = 6.8703 \ (3) \text{ Å}\\ c = 28.2167 \ (13) \text{ Å}\\ \beta = 102.986 \ (3)^\circ \end{array}$

 $V = 5574.9 (4) \text{ Å}^{3}$ Z = 16Mo K\alpha radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K $0.30 \times 0.25 \times 0.22 \text{ mm}$ 20559 measured reflections

 $R_{\rm int} = 0.083$

5040 independent reflections

2075 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.975, T_{max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	346 parameters
$wR(F^2) = 0.181$	H-atom parameters constrained
S = 0.98	$\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$
5040 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Table 1

H	lyd	rogen-	bond	geome	try	(A,	°)).
---	-----	--------	------	-------	-----	-----	----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots N1$ $03 - H3 \cdots N2$ $C24 - H24A \cdots O4^{i}$	0.82 0.82 0.96	1.86 1.86 2.59	2.584 (4) 2.585 (3) 3.470 (4)	147 147 153

Symmetry code: (i) -x + 1, -y, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6825).

References

- Albayrak, Ç., Koşar, B., Demir, S., Odabaşoĝlu, M. & Büyükgüngör, O. (2010). J. Mol. Struct. 963, 211–218.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Özek, A., Koşar, B., Albayrak, Ç. & Büyükgüngör, O. (2010). Acta Cryst. E66, 0684.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o2011 [doi:10.1107/S1600536812024798]

2-Ethoxy-6-{(E)-[(4-methylphenyl)imino]methyl}phenol

Muhammad Ashraf Shaheen, M. Nawaz Tahir, Rana Muhammad Irfan, Shahid Iqbal and Saeed Ahmad

Comment

The title compound (I), (Fig. 1) has been synthesized as a derivative for the complexation and other studies.

The crystal structures of 2-ethoxy-6-((phenylimino)methyl)phenol (Albayrak *et al.*, 2010) and (*E*)-2-ethoxy-6-[(4-eth-oxyphenyl)iminomethyl]phenol (Özek *et al.*, 2010) have been published which are related to the title compound (I).

In (I), two molecules in the asymmetric unit are present, which differ slightly from each other geometrically. In one molecule, the group A (C1—C9/O1/O2) of 3-ethoxy-2-hydroxybenzaldehyde and group B (N1/C10—C16) of toluidine moieties are planar with r. m. s. deviation of 0.0270 Å and 0.0105 Å, respectively. The dihedral angle between A/B is 19.93 (6)°. In second molecule, the similar groups C (C18—C25/O3/O4) and D (N2/C26—C32) are also planar with r. m. s. deviation of 0.0193 Å, respectively and the dihedral angle between C/D is 16.87 (8)°. In both molecules S(6) ring motif is present due to classical H–bonding of O—H…N type (Table 1, Fig. 2). The second molecule which is more planar is dimerized with itself from ethoxy groups with $R_2^2(8)$ ring motif due to C—H…O type of H–bonding (Table 1, Fig. 2).

Experimental

Equal molar ratio of 4-toluidine and 3-ethoxy-2-hydroxybenzaldehyde was refluxed in methanol for 2 h and orange prisms of (I) were obtained after 72 h by the slow evaporation at room temperature.

Refinement

The H-atoms were positioned geometrically at C—H = 0.93—0.97 and O—H = 0.82 Å, respectively and included in the refinement as riding with $U_{iso}(H) = xU_{eq}(C, O)$, where x = 1.5 for metyl H-atoms and x = 1.2 for all other H-atoms.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The partial packing, which shows that molecules form S(6) ring motif and one molecule is also dimerized with itself.

2-Ethoxy-6-{(*E*)-[(4-methylphenyl)imino]methyl}phenol

Crystal data	
$C_{16}H_{17}NO_2$ $M_r = 255.31$ Monoclinic, C2/c Hall symbol: -C 2yc a = 29.5126 (11) Å b = 6.8703 (3) Å c = 28.2167 (13) Å $\beta = 102.986 (3)^\circ$ $V = 5574.9 (4) \text{ Å}^3$ Z = 16	F(000) = 2176 $D_x = 1.217 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2075 reflections $\theta = 1.8-25.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K Prism, orange $0.30 \times 0.25 \times 0.22 \text{ mm}$
Data collection	
Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.10 pixels mm ⁻¹	ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{min} = 0.975, T_{max} = 0.985$ 20559 measured reflections

5040 independent reflections 2075 reflections with $I > 2\sigma(I)$ $R_{int} = 0.083$ $\theta_{max} = 25.3^{\circ}, \ \theta_{min} = 1.8^{\circ}$

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.064$ H-atom parameters constrained $wR(F^2) = 0.181$ $w = 1/[\sigma^2(F_o^2) + (0.071P)^2]$ S = 0.98where $P = (F_0^2 + 2F_c^2)/3$ 5040 reflections $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$ 346 parameters $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$ 0 restraints Primary atom site location: structure-invariant Extinction correction: SHELXL97 (Sheldrick. 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ direct methods Extinction coefficient: 0.0022 (8) Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $h = -35 \rightarrow 35$

 $l = -33 \rightarrow 33$

 $k = -8 \rightarrow 8$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.10580 (7)	0.6814 (3)	0.19524 (10)	0.0684 (10)	
O2	0.01761 (7)	0.6161 (3)	0.18973 (9)	0.0585 (10)	
N1	0.18746 (9)	0.5514 (5)	0.19299 (10)	0.0550 (11)	
C1	0.12297 (10)	0.3411 (5)	0.19135 (12)	0.0461 (12)	
C2	0.09199 (11)	0.4939 (5)	0.19246 (12)	0.0473 (14)	
C3	0.04488 (11)	0.4545 (5)	0.18944 (12)	0.0468 (12)	
C4	0.02948 (11)	0.2647 (5)	0.18598 (12)	0.0574 (16)	
C5	0.06006 (12)	0.1118 (5)	0.18585 (13)	0.0629 (17)	
C6	0.10630 (11)	0.1513 (5)	0.18828 (12)	0.0580 (16)	
C7	-0.03139 (10)	0.5835 (6)	0.18454 (13)	0.0620 (16)	
C8	-0.05326 (11)	0.7791 (6)	0.18882 (13)	0.0721 (16)	
C9	0.17137 (11)	0.3781 (5)	0.19224 (12)	0.0527 (16)	
C10	0.23446 (11)	0.5901 (6)	0.19178 (12)	0.0533 (14)	
C11	0.27089 (11)	0.4584 (6)	0.20317 (13)	0.0670 (16)	
C12	0.31500 (12)	0.5126 (7)	0.19954 (15)	0.0753 (18)	
C13	0.32467 (12)	0.6948 (7)	0.18545 (13)	0.0665 (19)	
C14	0.28869 (14)	0.8279 (7)	0.17494 (14)	0.0794 (17)	
C15	0.24410 (12)	0.7749 (6)	0.17846 (14)	0.0710 (16)	
C16	0.37347 (8)	0.7535 (4)	0.18219 (13)	0.097 (2)	
03	0.39693 (6)	0.0489 (3)	0.05775 (9)	0.0672 (10)	
04	0.48472 (7)	0.1144 (3)	0.06181 (8)	0.0594 (10)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N2	0.31507 (8)	0.1776 (4)	0.05970 (10)	0.0540 (11)
C17	0.37945 (10)	0.3890 (5)	0.06123 (12)	0.0470 (12)
C18	0.41055 (10)	0.2363 (5)	0.05998 (12)	0.0479 (12)
C19	0.45777 (11)	0.2768 (5)	0.06204 (12)	0.0493 (14)
C20	0.47255 (11)	0.4658 (6)	0.06428 (13)	0.0578 (16)
C21	0.44186 (12)	0.6194 (5)	0.06494 (13)	0.0636 (17)
C22	0.39611 (11)	0.5794 (5)	0.06345 (12)	0.0598 (16)
C23	0.53338 (10)	0.1477 (6)	0.06427 (14)	0.0652 (16)
C24	0.55535 (11)	-0.0499 (6)	0.06255 (14)	0.0765 (16)
C25	0.33127 (10)	0.3496 (5)	0.06107 (12)	0.0519 (16)
C26	0.26797 (10)	0.1379 (6)	0.06073 (12)	0.0520 (16)
C27	0.23819 (12)	0.2710 (6)	0.07524 (13)	0.0686 (16)
C28	0.19325 (13)	0.2127 (7)	0.07633 (14)	0.0766 (19)
C29	0.17740 (12)	0.0278 (7)	0.06428 (14)	0.0694 (18)
C30	0.20727 (12)	-0.1006 (6)	0.05007 (14)	0.0743 (17)
C31	0.25229 (11)	-0.0466 (6)	0.04814 (14)	0.0666 (16)
C32	0.12886 (12)	-0.0360 (7)	0.06682 (16)	0.101 (2)
H1	0.13371	0.68676	0.19605	0.1027*
H4	-0.00187	0.23879	0.18369	0.0689*
Н5	0.04949	-0.01611	0.18414	0.0755*
H6	0.12678	0.04878	0.18786	0.0694*
H7A	-0.03675	0.49650	0.20979	0.0740*
H7B	-0.04466	0.52550	0.15315	0.0740*
H8A	-0.04101	0.83189	0.22062	0.1082*
H8B	-0.08634	0.76427	0.18387	0.1082*
H8C	-0.04637	0.86579	0.16469	0.1082*
H9	0.19133	0.27337	0.19226	0.0633*
H11	0.26559	0.33328	0.21328	0.0803*
H12	0.33892	0.42183	0.20695	0.0901*
H14	0.29434	0.95355	0.16546	0.0954*
H15	0 22034	0.86659	0.17166	0.0848*
H16A	0.39353	0.75171	0.21409	0.1453*
H16B	0.37283	0.88227	0.16884	0.1453*
H16C	0.38490	0.66367	0.16157	0.1453*
НЗ	0.36940	0.04294	0.05871	0.1006*
H20	0.50366	0.49238	0.06538	0.0696*
H21	0.45232	0.74747	0.06637	0.0763*
H22	0.37562	0.68183	0.06394	0.0715*
H23A	0.54759	0.21451	0.09421	0.0781*
H23R	0.53738	0.21451	0.03703	0.0781*
H24A	0.54192	-0.11186	0.03213	0.1145*
H24R	0.54986	-0.12861	0.08882	0.1145*
H24C	0.58822	-0.03496	0.06560	0.1145*
H25	0.31139	0.03490	0.06200	0.0619*
H27	0.24816	0.30701	0.08407	0.0019
H28	0.27010	0.307/3	0.08558	0.0023
H30	0.17520	-0.2243	0.00350	0.0922
H31	0.17725	-0.13652	0.03824	0.0091
нэт Н32 л	0.27104	0.15052	0.03024	0.0790
11341	0.11700	0.00500	0.0011/	0.1313

supplementary materials

H32B	0.13071	-0.15157	0.08630	0.1515*
H32C	0.11102	-0.06260	0.03461	0.1515*

Atomic displacement parameters $(Å^2)$

	1 1					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0416 (14)	0.0433 (17)	0.122 (2)	-0.0037 (11)	0.0222 (14)	-0.0038 (15)
O2	0.0341 (14)	0.0511 (17)	0.0919 (19)	0.0002 (11)	0.0178 (11)	-0.0033 (14)
N1	0.0366 (17)	0.054 (2)	0.075 (2)	0.0002 (15)	0.0137 (13)	0.0008 (18)
C1	0.040 (2)	0.040 (2)	0.059 (2)	0.0006 (17)	0.0126 (15)	-0.0014 (18)
C2	0.041 (2)	0.038 (2)	0.063 (3)	-0.0057 (16)	0.0121 (15)	-0.0018 (18)
C3	0.043 (2)	0.038 (2)	0.060 (2)	-0.0002 (18)	0.0128 (15)	-0.0001 (19)
C4	0.044 (2)	0.052 (3)	0.077 (3)	-0.0044 (19)	0.0155 (17)	-0.004(2)
C5	0.057 (3)	0.042 (3)	0.090 (3)	-0.0063 (19)	0.017 (2)	-0.001 (2)
C6	0.052 (2)	0.047 (3)	0.076 (3)	0.0087 (18)	0.0163 (17)	-0.001 (2)
C7	0.035 (2)	0.076 (3)	0.077 (3)	0.0011 (18)	0.0166 (17)	0.006 (2)
C8	0.045 (2)	0.085 (3)	0.088 (3)	0.016 (2)	0.0186 (18)	0.003 (2)
C9	0.043 (2)	0.050 (3)	0.065 (3)	0.0067 (18)	0.0122 (16)	0.004 (2)
C10	0.041 (2)	0.061 (3)	0.059 (2)	-0.0005 (19)	0.0138 (16)	0.001 (2)
C11	0.046 (2)	0.066 (3)	0.090 (3)	0.000 (2)	0.0172 (19)	0.007 (2)
C12	0.042 (2)	0.088 (4)	0.097 (3)	0.003 (2)	0.018 (2)	-0.007 (3)
C13	0.049 (3)	0.093 (4)	0.060 (3)	-0.010 (2)	0.0175 (19)	-0.008 (3)
C14	0.063 (3)	0.087 (3)	0.089 (3)	-0.017 (3)	0.019 (2)	0.019 (3)
C15	0.051 (2)	0.070 (3)	0.092 (3)	-0.001 (2)	0.0161 (19)	0.014 (3)
C16	0.052 (2)	0.150 (5)	0.095 (3)	-0.025 (3)	0.031 (2)	-0.005 (3)
O3	0.0427 (14)	0.0433 (17)	0.119 (2)	-0.0046 (12)	0.0256 (12)	0.0009 (15)
04	0.0348 (14)	0.0553 (18)	0.0910 (19)	-0.0002 (11)	0.0202 (12)	-0.0012 (14)
N2	0.0412 (18)	0.048 (2)	0.073 (2)	-0.0004 (14)	0.0135 (13)	-0.0014 (17)
C17	0.038 (2)	0.039 (2)	0.064 (2)	0.0015 (16)	0.0112 (15)	0.0012 (19)
C18	0.042 (2)	0.042 (2)	0.061 (2)	-0.0069 (17)	0.0141 (16)	0.0009 (19)
C19	0.040 (2)	0.044 (3)	0.065 (2)	-0.0029 (18)	0.0142 (16)	-0.003 (2)
C20	0.045 (2)	0.051 (3)	0.077 (3)	-0.0080 (19)	0.0131 (17)	0.000 (2)
C21	0.060 (3)	0.044 (3)	0.087 (3)	-0.008 (2)	0.017 (2)	0.000 (2)
C22	0.053 (2)	0.047 (3)	0.079 (3)	0.0012 (19)	0.0142 (18)	0.003 (2)
C23	0.035 (2)	0.083 (3)	0.080 (3)	-0.0020 (19)	0.0182 (17)	0.007 (2)
C24	0.046 (2)	0.095 (3)	0.090 (3)	0.015 (2)	0.0184 (19)	-0.005 (3)
C25	0.041 (2)	0.047 (3)	0.067 (3)	0.0054 (17)	0.0106 (16)	0.001 (2)
C26	0.034 (2)	0.059 (3)	0.063 (3)	0.0003 (18)	0.0109 (16)	-0.004 (2)
C27	0.053 (2)	0.075 (3)	0.083 (3)	0.002 (2)	0.0261 (19)	-0.011 (2)
C28	0.048 (3)	0.101 (4)	0.087 (3)	0.006 (2)	0.028 (2)	-0.014 (3)
C29	0.043 (2)	0.103 (4)	0.065 (3)	-0.007 (2)	0.0181 (18)	0.000 (3)
C30	0.051 (3)	0.086 (3)	0.088 (3)	-0.017 (2)	0.020 (2)	-0.009 (3)
C31	0.049 (2)	0.067 (3)	0.088 (3)	-0.003 (2)	0.0244 (19)	-0.005 (2)
C32	0.052 (3)	0.158 (5)	0.101 (4)	-0.023 (3)	0.035 (2)	-0.003 (3)

Geometric parameters (Å, °)

01-C2	1.348 (4)	C12—H12	0.9300
O2—C3	1.372 (4)	C14—H14	0.9300
O2—C7	1.438 (4)	C15—H15	0.9300

O1—H1	0.8200	C16—H16C	0.9600
O3—C18	1.346 (4)	C16—H16A	0.9600
O4—C19	1.371 (4)	C16—H16B	0.9600
O4—C23	1.440 (4)	C17—C22	1.394 (5)
O3—H3	0.8200	C17—C25	1.447 (4)
N1—C9	1.280 (5)	C17—C18	1.400 (5)
N1—C10	1.420 (4)	C18—C19	1.409 (5)
N2—C25	1.272 (4)	C19—C20	1.367 (5)
N2—C26	1.423 (4)	C20—C21	1.394 (5)
C1—C6	1.390 (5)	C21—C22	1.369 (5)
C1—C2	1.397 (5)	C23—C24	1.510 (6)
C1—C9	1.446 (5)	C26—C31	1.369 (6)
C2—C3	1.400 (5)	C26—C27	1.392 (5)
C3—C4	1.377 (5)	C27—C28	1.392 (5)
C4—C5	1.386 (5)	C28—C29	1.370 (7)
C5—C6	1.378 (5)	C29—C32	1.515 (5)
C7—C8	1.507 (6)	C29—C30	1.369 (6)
C10—C15	1.372 (6)	C30—C31	1.392 (5)
C10—C11	1.387 (5)	С20—Н20	0.9300
C11—C12	1.380 (5)	C21—H21	0.9300
C12—C13	1.363 (7)	С22—Н22	0.9300
C13—C14	1.382 (6)	С23—Н23А	0.9700
C13—C16	1.518 (5)	С23—Н23В	0.9700
C14—C15	1.390 (6)	C24—H24A	0.9600
C4—H4	0.9300	C24—H24B	0.9600
С5—Н5	0.9300	C24—H24C	0.9600
С6—Н6	0.9300	С25—Н25	0.9300
C7—H7A	0.9700	С27—Н27	0.9300
С7—Н7В	0.9700	C28—H28	0.9300
C8—H8C	0.9600	С30—Н30	0.9300
C8—H8A	0.9600	C31—H31	0.9300
C8—H8B	0.9600	C32—H32A	0.9600
С9—Н9	0.9300	C32—H32B	0.9600
C11—H11	0.9300	C32—H32C	0.9600
C3—O2—C7	116.8 (3)	H16A—C16—H16B	109.00
C2—O1—H1	109.00	C13—C16—H16A	109.00
C19—O4—C23	116.3 (3)	C13—C16—H16B	109.00
С18—О3—Н3	110.00	C18—C17—C22	118.6 (3)
C9—N1—C10	122.3 (3)	C18—C17—C25	120.6 (3)
C25—N2—C26	122.7 (3)	C22—C17—C25	120.8 (3)
C2—C1—C6	118.8 (3)	O3—C18—C19	118.2 (3)
C2—C1—C9	121.1 (3)	C17—C18—C19	119.9 (3)
C6—C1—C9	120.1 (3)	O3—C18—C17	121.8 (3)
O1—C2—C3	118.1 (3)	O4—C19—C20	126.4 (3)
O1—C2—C1	121.9 (3)	C18—C19—C20	119.5 (3)
C1—C2—C3	120.0 (3)	O4—C19—C18	114.1 (3)
C2—C3—C4	119.7 (3)	C19—C20—C21	121.2 (3)
O2—C3—C4	125.6 (3)	C20—C21—C22	119.1 (3)

O2—C3—C2	114.8 (3)	C17—C22—C21	121.7 (3)
C3—C4—C5	120.9 (3)	O4—C23—C24	106.6 (3)
C4—C5—C6	119.3 (3)	N2—C25—C17	122.4 (3)
C1—C6—C5	121.4 (3)	N2—C26—C31	116.6 (3)
O2—C7—C8	107.0 (3)	C27—C26—C31	119.1 (3)
N1—C9—C1	121.7 (3)	N2—C26—C27	124.3 (3)
C11—C10—C15	118.0 (3)	C26—C27—C28	119.0 (4)
N1—C10—C15	116.3 (3)	C27—C28—C29	122.4 (4)
N1—C10—C11	125.7 (4)	C28—C29—C30	117.6 (4)
C10—C11—C12	120.1 (4)	C28—C29—C32	122.0 (4)
C11—C12—C13	122.2 (4)	C30—C29—C32	120.4 (4)
C12—C13—C14	118.0 (4)	C29—C30—C31	121.5 (4)
C14—C13—C16	120.3 (4)	C26—C31—C30	120.4 (3)
C12—C13—C16	121.7 (3)	C19—C20—H20	119.00
C13—C14—C15	120.4 (4)	C21—C20—H20	119.00
C10—C15—C14	121.3 (4)	C20—C21—H21	120.00
C5—C4—H4	120.00	C22—C21—H21	120.00
C3—C4—H4	120.00	C17—C22—H22	119.00
С6—С5—Н5	120.00	C21—C22—H22	119.00
С4—С5—Н5	120.00	O4—C23—H23A	110.00
С5—С6—Н6	119.00	O4—C23—H23B	110.00
С1—С6—Н6	119.00	C24—C23—H23A	110.00
O2—C7—H7B	110.00	C24—C23—H23B	110.00
H7A—C7—H7B	109.00	H23A—C23—H23B	109.00
С8—С7—Н7А	110.00	C23—C24—H24A	109.00
С8—С7—Н7В	110.00	C23—C24—H24B	109.00
O2—C7—H7A	110.00	C23—C24—H24C	109.00
H8A—C8—H8B	109.00	H24A—C24—H24B	109.00
H8A—C8—H8C	109.00	H24A—C24—H24C	109.00
H8B—C8—H8C	109.00	H24B—C24—H24C	109.00
С7—С8—Н8А	109.00	N2—C25—H25	119.00
С7—С8—Н8В	109.00	С17—С25—Н25	119.00
С7—С8—Н8С	109.00	С26—С27—Н27	120.00
N1—C9—H9	119.00	С28—С27—Н27	120.00
С1—С9—Н9	119.00	C27—C28—H28	119.00
C12—C11—H11	120.00	C29—C28—H28	119.00
C10—C11—H11	120.00	С29—С30—Н30	119.00
C13—C12—H12	119.00	С31—С30—Н30	119.00
C11—C12—H12	119.00	С26—С31—Н31	120.00
C13—C14—H14	120.00	С30—С31—Н31	120.00
C15—C14—H14	120.00	С29—С32—Н32А	109.00
C10—C15—H15	119.00	С29—С32—Н32В	109.00
C14—C15—H15	119.00	С29—С32—Н32С	109.00
C13—C16—H16C	109.00	H32A—C32—H32B	109.00
H16A—C16—H16C	109.00	H32A—C32—H32C	109.00
H16B—C16—H16C	109.00	H32B—C32—H32C	109.00
C7—O2—C3—C2	177.4 (3)	C10-C11-C12-C13	0.8 (6)
C7—O2—C3—C4	-1.9 (5)	C11—C12—C13—C14	0.5 (6)

C3—O2—C7—C8	176.8 (3)	C11—C12—C13—C16	179.2 (4)
C19—O4—C23—C24	-179.0 (3)	C16—C13—C14—C15	-179.3 (3)
C23—O4—C19—C20	0.1 (5)	C12—C13—C14—C15	-0.5 (6)
C23—O4—C19—C18	-179.5 (3)	C13—C14—C15—C10	-0.8 (6)
C9—N1—C10—C15	161.4 (3)	C22—C17—C18—O3	-179.9 (3)
C10—N1—C9—C1	-177.3 (3)	C22-C17-C18-C19	1.4 (5)
C9—N1—C10—C11	-19.1 (5)	C25—C17—C18—O3	1.2 (5)
C25—N2—C26—C31	165.7 (3)	C25-C17-C18-C19	-177.6 (3)
C25—N2—C26—C27	-16.7 (5)	C18—C17—C22—C21	-0.7 (5)
C26—N2—C25—C17	178.4 (3)	C25—C17—C22—C21	178.2 (3)
C9—C1—C2—O1	-1.2 (5)	C18—C17—C25—N2	-0.2 (5)
C9—C1—C2—C3	177.2 (3)	C22—C17—C25—N2	-179.1 (3)
C6—C1—C2—C3	-1.4 (5)	O3—C18—C19—O4	-0.4 (4)
C6-C1-C2-O1	-179.8 (3)	O3—C18—C19—C20	179.9 (3)
C2-C1-C9-N1	-1.6 (5)	C17—C18—C19—O4	178.4 (3)
C2-C1-C6-C5	0.7 (5)	C17—C18—C19—C20	-1.3 (5)
C9—C1—C6—C5	-178.0 (3)	O4—C19—C20—C21	-179.1 (3)
C6-C1-C9-N1	177.0 (3)	C18—C19—C20—C21	0.5 (5)
C1—C2—C3—O2	-178.5 (3)	C19—C20—C21—C22	0.2 (5)
O1—C2—C3—O2	-0.1 (4)	C20—C21—C22—C17	-0.1 (5)
O1—C2—C3—C4	179.3 (3)	N2-C26-C27-C28	-177.7 (3)
C1—C2—C3—C4	0.8 (5)	C31—C26—C27—C28	-0.3 (5)
O2—C3—C4—C5	179.8 (3)	N2-C26-C31-C30	177.3 (3)
C2—C3—C4—C5	0.5 (5)	C27—C26—C31—C30	-0.3 (6)
C3—C4—C5—C6	-1.3 (5)	C26—C27—C28—C29	1.0 (6)
C4—C5—C6—C1	0.7 (5)	C27—C28—C29—C30	-1.0 (6)
N1-C10-C15-C14	-178.5 (3)	C27—C28—C29—C32	178.4 (4)
C15—C10—C11—C12	-2.0 (5)	C28—C29—C30—C31	0.4 (6)
N1-C10-C11-C12	178.6 (3)	C32—C29—C30—C31	-179.0 (4)
C11—C10—C15—C14	2.0 (6)	C29—C30—C31—C26	0.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H··· A
01—H1…N1	0.82	1.86	2.584 (4)	147
O3—H3…N2	0.82	1.86	2.585 (3)	147
C24—H24 A ···O4 ⁱ	0.96	2.59	3.470 (4)	153

Symmetry code: (i) -x+1, -y, -z.