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Landmark detection in 2D 
bioimages for geometric 
morphometrics: a multi-resolution 
tree-based approach
Rémy Vandaele1, Jessica Aceto2, Marc Muller   2, Frédérique Péronnet   3, Vincent Debat4, 
Ching-Wei Wang5, Cheng-Ta Huang5, Sébastien Jodogne6, Philippe Martinive6, Pierre Geurts1 
& Raphaël Marée1

The detection of anatomical landmarks in bioimages is a necessary but tedious step for geometric 
morphometrics studies in many research domains. We propose variants of a multi-resolution tree-based 
approach to speed-up the detection of landmarks in bioimages. We extensively evaluate our method 
variants on three different datasets (cephalometric, zebrafish, and drosophila images). We identify 
the key method parameters (notably the multi-resolution) and report results with respect to human 
ground truths and existing methods. Our method achieves recognition performances competitive with 
current existing approaches while being generic and fast. The algorithms are integrated in the open-
source Cytomine software and we provide parameter configuration guidelines so that they can be easily 
exploited by end-users. Finally, datasets are readily available through a Cytomine server to foster future 
research.

Geometric morphometrics has become the dominant set of methods used to quantify size and shape of biological 
objects1. It involves the analysis of configurations of landmarks (i.e. discrete anatomical loci) among individu-
als and has been applied to a huge diversity of models and research questions, ranging from fossil humans2 or 
dinosaurs3 to butterfly wings4, zebrafish skeletogenesis5, or flower shapes6. Similarly, it can be applied in human 
medical imaging, e.g. cephalometry aims at analyzing human cranium for orthodontic diagnosis and treatment 
planning7,8. Typically, landmark positioning is first performed manually in individual two-dimensional images. 
Then, landmarks configurations are compared using, e.g., Procrustes superimposition9 and various multivar-
iate statistics can be applied to characterize landmark configuration variations - and thus shape changes - in 
large populations. As such studies could typically involve hundreds or even thousands of individuals and tens of 
landmarks, the need to manually position the landmarks prior to such analysis is a very limiting factor. There is 
therefore a strong need for (semi-)automated landmark detection methods in biology.

In computer vision, the problem of landmark localization has been extensively studied in faces10,11. Methods 
for face analysis can however not be easily transposed to biological images, because of their very different and 
variable nature. The small size of ground-truth datasets typically available in biology also requires to design more 
data-efficient approaches. In biology, the landmark structure is also very different than in face images. Indeed, the 
number of landmarks of interest is typically small (∼20 landmarks) and the images typically large 
(∼ ×1500 1500), which makes the landmarks more spaced apart than in face images. In the biomedical field, the 
problem of automatic landmark positioning has been addressed in cephalometry. Standard methods in this 
domain are based on the combination of template matching algorithms and prior knowledge information and 
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differ mainly in their feature extraction steps (see Kaur et al.12 for a review). More recently, several successful 
landmark detection algorithms have been proposed in this domain that are based on pixel classification or regres-
sion using machine learning techniques followed by global landmark structure refinement13–15. Because these 
approaches have been proposed in the literature to tackle specific applications, such as face analysis or cephalom-
etry, none of them was systematically evaluated on a broader range of biomedical applications.

In this paper, we study variants of a generic method for landmark detection that makes no specific assumption 
about the types of images to analyze and landmarks to detect. It is based on the extraction of multi-resolution 
features and the use of generic tree-based ensemble machine learning methods, namely (Extremely) Randomized 
Forests16,17. The choice of this latter family of machine learning tools is motivated by their many successful appli-
cations in computer vision in general and biomedical image analysis in particular18. Random decision forests 
have been exploited for example in various image classification tasks19–21, for organ segmentation in medical 
images15,22, but also for landmark detection in radiology13–15.

Our contributions in this paper are as follows:

•	 We propose a novel generic learning-based approach for landmark detection.
•	 We thoroughly study the effect of its parameters on three diverse bioimage datasets (for human cephalometric 

radiographs, zebrafish skeletogenesis, and Drosophila wing developmental studies). From this analysis, we 
derive guidelines for choosing these parameters on new problems.

•	 We compare our method with several landmark detection algorithms from the literature, both on the same 
three datasets and on two cephalometric challenges. These comparisons show that our approach yields com-
petitive results in terms of accuracy, with lighter models and lower prediction times.

•	 We provide an open-source implementation of these algorithms through the Cytomine platform23 that fur-
ther implements proofreading tools to combine automatic detection and manual refinements.

•	 As an important side contribution, we provide an easy access to the datasets used in this study with the hope 
that the landmark detection problem will gain more interest in bioimage informatics and machine learning 
research.

Methods
Materials.  We tested our method on three datasets summarized below. A more complete description is pre-
sented in the Supplementary Materials. An illustration of the landmarks is given in Fig. 1 with one image per 
dataset and their corresponding landmarks.

•	 CEPHA, a dataset of 100 lateral human cephalometric radiographs. This dataset has been previously 
described in Wang et al.24,25. 100 cephalometric X-ray images were collected from 100 patients aged from 6 to 
60 years old. Image resolution is 1935 by 2400 pixels. 19 landmarks were manually marked and reviewed by 
two experienced medical doctors for each image. Additional images were provided during two international 
challenges24,25. Some of the landmarks corresponds to visual edges (7, 8, 13) while some others corresponds 
to morphological locations with less visual information (1, 4, 19).

•	 DROSO, a dataset of 138 colored images of Drosophila wings.

Figure 1.  Sample image and corresponding landmarks for each dataset. CEPHA (left) with 19 landmarks, 
DROSO (top right) with 15 landmarks and ZEBRA (bottom right) with 25 landmarks.
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•	 ZEBRA, a dataset of 113 ventral views of head skeleton of zebrafish larvae. The image resolution is 2576 by 
1932 pixels. 25 landmarks were manually marked and reviewed by the same expert. Most landmarks of this 
dataset corresponds to locations with little visual information (1, 2, 5, 15, 18, …).

Algorithm description.  We tackle the problem of landmark detection with a supervised learning approach, 
i.e., we exploit manual image annotations (i.e. (x, y) positions of each landmark in several images) to train recog-
nition models for each landmark. These models are then used to predict each landmark position in new, unseen, 
images. Inspired by the work of Stern et al.26, we consider and compare two different learning methods for land-
mark detection: one based on pixel classification, and the other based on pixel distance regression. With the first 
one, a classification model is trained for each landmark separately to predict for each image pixel whether it cor-
responds to the position of the landmark or not. In the second method, a regression model is trained, also for each 
landmark separately, to predict for each image pixel its distance to the landmark. Regardless of the method (clas-
sification or regression), the models are trained from a learning sample composed of pixels extracted either in the 
close neighborhood of the landmark or at other randomly chosen positions within the training images. Notably, 
in this work, each pixel in the training sample is described by a vector of visual features at different resolutions. 
It allows to rely on local repeatable patterns and to disambiguate locally similar patterns using a wider context.

The different steps of the algorithm for a single landmark are explained in the following subsections. The 
whole procedure is repeated for each landmark separately.

Extraction and description of pixels.  Each observation in the training sample corresponds to a pixel at some 
position (x,y) in one of the training images. Each pixel is labeled by a discrete or a numerical output, depending 
on the chosen method (classification or regression), and it is described by several input features. We list below 
successively the output associated to each pixel respectively in the classification and in the regression method, the 
input features used to describe them, and the pixel sampling mechanism.

Classification output: In principle, only one position in each image corresponds to the landmark, which 
means that if N training images are available, only N positive examples will be available to train our pixel clas-
sification model. To extend the set of positive examples, we consider as positive examples all pixels that are at a 
pixel distance at most R from the landmark, where R is a method parameter. More precisely, if the landmark is at 
position (xl, yl) in an image, then the output class of a pixel at position (x, y) in the same image will be 1 if (x − xl)2 
+ (y − yl)2 ≤ R2, 0 otherwise.

Regression output: With the regression method, the output associated to each pixel is the euclidean distance 
between this pixel and the landmark position in the training image. If the landmark is at position (xl, yl) in an 
image, then the output value of a pixel at position (x, y) in the same image will be:

− + −x x y y( ) ( ) (1)l l
2 2

Multi-resolution input features: In contrast to current algorithms where single-resolution features are 
extracted14,15,26, in this work, we capture the context of the landmark at different scales and distances. A pixel at 
location (x, y) will be described by D multi-resolution square windows of resized height and width 2W + 1 cen-
tered at its position (x, y), where W is a method parameter.

To this goal, images are downsized to D different resolutions prior to the windows extraction and the D result-
ing feature vectors are concatenated. For our images of size m × n pixels, these resolutions will be:
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2 2
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Out of image pixel values are set to zero. The influence of the chosen resolutions is shown in Section Results. 
An example of these windows is shown in Fig. 2.

We considered five ways of describing the multi-resolution windows:

•	 RAW: the raw pixel values of each resized windows are concatenated into a single vector. This will give a pixel 
descriptor of D × (2W + 1)2 features.

•	 SUB: the differences between the raw pixel values of the resized windows and the raw value of the pixel 
located at the (x, y) position. The pixel descriptor will thus also be of size D × (2W + 1)2.

•	 SURF: each window is described by the extended SURF descriptor27, a descriptor previously proven to show 
robustness against rotations, scaling and noise. The extended SURF descriptor consisting of 128 features, a 
pixel will be described by 128 × D features.

•	 GAUSSIAN SUB: the differences between the raw pixel values of Ng pixels and the raw pixel value of the pixel 
located at the (x, y) position on each of the D resolutions, where Ng is a method parameter. The Ng pixels are 
chosen according to offsets from the (x, y) position. These offsets are chosen randomly according to the gauss-
ian distribution  σ(0, ), where σ is a user-defined parameter. In total, each pixel is represented by D × Ng 
features. Note that the window size W has no impact on this descriptor. Its role is taken by the parameter σ 
measuring the spread of the gaussian distribution.

•	 HAAR-LIKE: Nh Haar-Like features28 of random size and position are randomly extracted inside each of the 
D windows, leading to Nh × D features.

Gaussian sub features were proposed in Donner et al.14 and Haar-Like features were used in Lindner et al.29 to 
detect landmarks, in both cases however without multiple resolutions.
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Pixel sampling scheme at training: Training a model on all pixels from all training images will be practically 
unfeasible in most cases and we will thus have to construct our training set by sampling the pixels. Uniformly 
sampling pixels from the training images will give however a very unbalanced learning problem for both classi-
fication and regression methods. For example, with a radius R = 20 pixels, only 1256 observations correspond, 
in classification, to positive examples, and in regression, to pixels within a distance <20 to the landmark. This 
is very small compared to the whole size of the images (e.g., about 4,000,000 pixels for our images). To generate 
a more balanced training sample, we select π(R)/(s)2 pixels within a radius R to the landmark in each training 
image, where s is a user-defined spacing parameter allowing to control the number of pixels extracted. Pπ(R)/(s)2 
additional pixels are then randomly selected outside this radius, where P a user-defined parameter.

In practice, one can expect in many medical and biological applications that the same landmark will be located 
in close positions from one image to another (see Fig. 3 for an illustration on one of our datasets). At prediction 
stage, this information can be used to constrain the search for the landmark position to pixels that are not too far 
from the average position of the landmark in the training images. When this constraint is exploited at prediction 
stage, it is natural to avoid putting in the training sample pixels that are too far away from the landmark position. 
For this reason, we propose to select the Pπ(R)/(s)2 pixels outside the radius R uniformly at random within a 
radius Rmax > R centered at the landmark position (see Fig. 2 for an illustration).

This subsampling contrasts with Stern et al.26 where pixels were sampled in the whole image during the train-
ing and the prediction phase.

Robustness to rotations: To improve robustness to rotations, and also to artificially increase the representa-
tiveness of the training data, we propose to expand our training set by adding artificially rotated versions of the 
training images. More precisely, to the original training set, we add Nr new versions of each training image, each 
obtained by rotating this image by an angle randomly selected between [−α, α], where Nr and α are two method 
parameters. With this operation, the total size of the training set will thus be multiplied by Nr + 1.

Figure 2.  On the left, illustration of multi-resolution features representing one pixel (on the DROSO dataset, 
with D = 6 windows). The corresponding described pixel is located at the center of the windows (in blue). On 
the right, illustration of R and Rmax radius (on the ZEBRA dataset). Observations in the R radius are considered 
as landmarks (positive) for the classification approach. At training, PπR2 non-landmark observations are 
extracted in the [R, Rmax] radius.

Figure 3.  In red, the position of landmark 8 as observed in all the images of the ZEBRA dataset, overlaid on an 
image. In blue, the position of the corresponding 30,000 examples extracted during prediction according to our 
sampling strategy. In yellow, the real landmark position.
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In the experiments, we will show that the problem of robustness to rotations is not important on our three 
datasets because the deformations stay small. On other datasets with bigger rotations, we would suggest to ini-
tially use a 2D registration algorithm such as presented in Reddy et al.30 in order to roughly align the images 
between each other before analysis.

Classification and regression model training.  To train the pixel classifier or regressor, we will use the Extremely 
Randomized Trees algorithm17, a particular variant of Random Forests16. This method builds an ensemble of T 
fully developed decision or regression trees grown each from the original training sample (i.e., without boot-
strapping). At each node, the best split is selected among k features chosen at random, where k can take its value 
between 1 and m, with m the total number of features. For each of the k (continuous) features, a discretization 
threshold is selected at random within the range of variation of that feature in the subset of observations in the 
current tree node. The score of each pair of feature and threshold is computed and the best pair among the k is 
chosen to split the node. As a score measure, we use Gini index reduction for classification and variance reduction 
for regression.

Landmark prediction.  Let us denote by µ ∈l
2 and Σ ∈ ×

l
2 2 respectively the average and the covariance 

matrix of the landmark positions across the training images. To make prediction of the landmark position with 
our tree-based pixel classifier or regressor, we proceed as follows:

	 1.	 We randomly draw Np pixel positions from a multivariate normal distribution  µ Σ( , )l l .
	 2.	 We apply the classification or regression model on each of the resulting pixels.
	 3.	 The predictions for these pixels are then aggregated as follows to obtain the final predicted landmark 

position:

•	 Classification: the final position is taken as the median position among the pixels that are predicted as 
being the landmark with the highest confidence by the tree-based model (i.e, every pixels which receives 
the highest number of votes for the positive class from the T trees in the ensemble).

•	 Regression: the final position is taken as the median position among the pixels that are predicted as being 
the closest pixels to the real landmark position (i.e, every pixels for which the predicted distance to the 
landmark position is the smallest).

The subsampling scheme of the first step is illustrated in Fig. 3. Such subsampling allows to improve predictive 
performance by reducing the probability of generating spurious landmark predictions at irrelevant positions in 
the images. It also considerably speeds up the algorithm with respect to an exhaustive scan of all image pixels as 
it was performed in Stern et al.26.

Implementation Details.  Algorithms were implemented in Python using the scikit-learn library31 for its effi-
cient implementation of the Extremely Randomized Trees algorithm and the OpenCV library32. All algorithms 
were further integrated into the open-source Cytomine web software23 using its software template mechanisms. 
End-users interested to interact with a Cytomine web-server through its web interfaces can read the Cytomine 
user guide (http://www.cytomine.be/Cytomine_userguide.pdf) and documentation (http://doc.cytomine.be), 
where complete instructions for using Cytomine and our landmark detection algorithms are given.

Most of the results presented in this paper were obtained on several computer clusters. About 20000 cluster 
jobs were needed for the complete cross validation of our algorithm, which represents about 10000 hours of 
computing time.

Note that on a regular computer (8 × 2.8 Ghz, 8 Go RAM), our implementation takes approximately one min-
ute to build a model for a single landmark, and approximately one second to detect a single landmark on an image 
with Np = 50000. A typical model (R = 15, P = 2, T = 100, D = 5) with ±100 images takes two gigabytes of RAM. 
Reducing the values of these parameters can lead to significant speed-ups, but it can also lead to a significant 
decrease of accuracy (see section Results).

Results and Discussion
In this section, we will first study the behavior of our parameters through 10-fold cross validation. The goal of 
these experiments is to evaluate the influence of the method parameters and to use our three datasets in order to 
extract guidelines for their initial setting in future applications. We will then compare our results with existing 
algorithms. Finally, we will discuss the results and extract some guidelines for landmark detection on bioimage 
datasets.

Influence of the method parameters.  Experimental protocol.  On each dataset, we used 10-fold cross 
validation to evaluate the performance for a given set of parameter values. We tested each parameter in turn, with 
all other parameters fixed to the default values given in Table 1 for each dataset. While analysing each parameter 
individually does not give information about the interactions that might exist between these parameters, the goal 
of our experiments here is mainly to identify the most influential parameters, ie., those that need to be carefully 
tuned for optimal performance. For optimal performance, these interactions need to be taken into account how-
ever by tuning these parameters jointly, using for example grid-search as in the comparisons of the next section.

In our experiments, we consider the euclidean distance of the predicted landmark position to the real land-
mark position as an error criterion. While other criteria have been proposed in the literature for specific appli-
cations24, the euclidean distance has the advantage to be applicable to any datasets and to be easily interpretable.

http://www.cytomine.be/Cytomine_userguide.pdf
http://doc.cytomine.be
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Results.  Before discussing our findings, it is interesting to note that landmarks from the DROSO dataset are 
always detected with a significantly higher accuracy than landmarks from the two other datasets. This result is not 
surprising when looking at the sample images in Fig. 1. Indeed, landmarks from the DROSO dataset are clearly 
located at borders and intersections and are thus already easier to detect by human experts.

The influence of the radius R is presented in Fig. 4A. In classification, on CEPHA and ZEBRA, the higher R 
the better. On DROSO, where the landmarks are easy to detect, increasing R too much leads to a loss of accuracy. 
We explain this phenomenon by the fact that DROSO landmarks are intersections and edges, thus making the 
landmark position a highly informative position. Increasing R can thus only increase the confusion with close 
pixels. On the three datasets, a too small R has a negative impact on accuracy. This is probably due to a reduction 
in the number of the training examples. For CEPHA and ZEBRA, increasing R improves the accuracy. For these 
datasets, this increase allows to consider close well-defined structures and implicitly take into account the uncer-
tainty on the exact location of the landmark (due to variation with the manual annotations by human experts). 
The radius R has less impact in regression than in classification although the main trends are similar. Note that 
the regression approach is expected to be less impacted by R because of its continuous outputs while this directly 
affects the binary output in classification.

The influence of the radius Rmax is presented in Fig. 4B. In classification, we noticed quite similar effects on 
the three datasets: a small Rmax can lead to confusion at prediction time with pixels far from the landmark, while a 
large Rmax increases the probability of confusion with close pixels, because there will be proportionally less pixels 
close to the landmark in the training set. On ZEBRA and CEPHA, large values of Rmax work better, suggesting that 
there is more confusion with remote pixels. On DROSO, smaller values are preferable, suggesting there is more 
confusion with closer pixels. This parameter thus needs careful tuning although Rmax ∈ [200,300] seems to bring 
results close to the optimum. The main trends are similar in regression, however in this case the error clearly 
increases on all three datasets when Rmax is increased too much. This might be explained by the fact that increas-
ing Rmax directly increases the range of the output values (i.e., distances) considered during model training. This 
could have a negative impact on the prediction error for small distances that are the only predicted distances used 
to determine the final position of the landmark.

The influence of the ratio P is presented in Fig. 4C. In classification, increasing the ratio P of negative versus 
positive examples significantly improves the results on the DROSO dataset, while, even if it is positive, the impact 
is more subtle on CEPHA and ZEBRA. Actually, looking at the same curves for individual landmarks (results not 
shown), we notice that increasing P has a negative impact for some landmarks on these two datasets. On DROSO, 
because landmarks are easier to detect, increasing P will decrease the risk of confusion with pixels outside the R 
radius. On CEPHA and ZEBRA, giving more weights to pixels outside the radius R increases the chance not to 
detect as positive pixels inside the radius, which has a negative impact on accuracy. The trends are very similar in 
regression: on DROSO, the larger P, the better, while on CEPHA and ZEBRA, the optimum value is landmark 
dependent.

The influence of the number of trees T is presented in Fig. 4D. For both classification and regression, the 
impact of increasing the number of trees is always positive as expected. We can observe however that increasing 
the number of trees beyond 50 does not bring improvement.

The influences of the number of rotations Nr and the maximum value of the angle α are presented in Fig. 4E and F.  
The rotations do not seem to have an impact on the (average) error. This suggests that our pixel descriptors are 
robust enough to orientation changes in our three datasets. Additional information about the robustness of our 
pixel descriptors to rotations is supplied as Supplementary Material.

The influence of the number Np of pixels tested at prediction is presented in Fig. 4G. On our three datasets, 
we observe that Np should be at least 10,000 to reach convergence. This number is equivalent to a complete search 
in a window of size 100 × 100 (i.e respectively 0.77,0.21 and 0.2 of the full images on the DROSO, CEPHA and 
ZEBRA datasets). Increasing Np beyond 10,000 does not significantly improve the results.

The influence of the window size W is presented in Fig. 4H and I respectively for RAW and HAAR-LIKE 
features. For this parameter, we made a distinction between RAW and HAAR-LIKE features, because the size 
of W does not influence the size of the feature vector when using the latter type of features. Also note that when 
using GAUSSIAN SUB features, the algorithm is not influenced by this parameter. When using RAW features, 

Parameter Description Default Value

W The size of the multi-resolution window 8

R The distance to the landmark position determining the training pixel output class 15 (CEPHA)9 (DROSO)20 (ZEBRA)

s The spacing between the landmarks extracted inside the R radius 2

Rmax the maximal distance to the interest point to extract non-landmark observations 600 (CEPHA)300 (DROSO)1000 (ZEBRA)

P The ratio of negative versus positive examples sampled during training 1 (CEPHA)2 (DROSO)1 (ZEBRA)

Np The number of pixels randomly extracted during prediction 30000

Nr The number of rotated versions of each training images that are introduced in the dataset 3

α The maximal rotation angle (in degree) 30

D The number of resolutions introduced in the feature representation of each window 5

T The number of trees 50

F The feature type used to describe the windows RAW

Table 1.  Description and default values of our method’s parameters at validation.
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increasing W up to 8 seems to significantly improve the results for the classification and regression approaches. 
Then, the marginal improvement decreases and, for DROSO, becomes negative. While small windows do not 
contain enough information, larger ones could create an overfitting problem due to the quadratic increase in the 
number of features. Because this quadratic increase will also affect the computational cost of our problem, we did 
not consider higher values. When using HAAR-LIKE features, the size of W still needs to be kept small, higher 
resolution information being provided by the use of multi-resolution windows. Optimal W values are in this case 
included between 15 and 20. This experiment was performed using the same number of descriptors per pixels as 
when considering RAW feature descriptors (1536).

The influence of the window descriptor features F is analysed in Fig. 5. In this figure, we also added single 
resolution features SR in order to analyze the influence of our multi-resolution approach. The best resolution was 
validated among the six resolutions used by our pixel descriptor. The σ of GAUSSIAN SUB (SR) was validated 
among six values (10, 25, 50, 100, 200, 400). The W of HAAR-LIKE (SR) was validated among six values (8, 20, 
50, 100, 200, 400) and the W parameters used with other features was also validated among six values (8, 15, 20, 
25, 30, 40). The total number of features for HAAR-LIKE (SR) and GAUSSIAN SUB (SR) was set to be the same 
as the number of descriptors for RAW and SUB (1536 descriptors).

From Fig. 5, we can conclude that using multi-resolution features always improves the performances while 
only slightly increasing the prediction time (it takes about one second for the resizings of a 2576 × 1932 image in 
our python implementation when D = 5).

Subtracting the value of the central pixel (SUB, GAUSSIAN SUB) instead of using raw pixel (RAW) values has 
a positive impact on both CEPHA and ZEBRA, while it clearly has a negative impact on DROSO. This is most 
probably due to the particular nature of the landmarks on the DROSO dataset. Landmarks in this dataset mostly 
correspond to borders and intersections that are rendered more difficult to detect when centering the pixel values. 
The SURF descriptor always performs well when using multi-resolution windows, but is only significantly better 
on the DROSO dataset. The GAUSSIAN SUB descriptor obtains the worst results on the DROSO dataset, but 

Figure 4.  Influence of the parameters of our algorithm.
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the best on the CEPHA and ZEBRA datasets. This suggests this feature descriptor is only efficient for landmarks 
located in areas with low visual information. The opposite goes for the HAAR-LIKE pixel descriptor, which is the 
most efficient on the DROSO dataset.

From the results, we can also conclude that while RAW and SUB do not obtain the best results on any of 
the datasets, these basic descriptors always obtain good performances. This is interesting when considering 
GAUSSIAN SUB and HAAR-LIKE: while they obtain the best performances on a given dataset, they obtain the 
worse for another. Given their small prediction time, we thus think RAW and SUB can be used to reach good 
performances on any dataset.

The influence of the number of resolutions D is presented in Fig. 4. In both classification and regression 
and for all datasets, increasing D first leads to a strong reduction of the error. At some point however, the error 
starts increasing. In average over all landmarks, the best performance is obtained by using D = 6 on our datasets.

Comparison with other algorithms.  In this section, we compare the results obtained by our method with 
several landmark detection algorithms. Because there is no available implementation of these algorithms, these 
comparisons are divided in two parts. First, we compare our method with our own implementation of the algo-
rithms presented in Donner et al.14 and Lindner and Cootes15 on our three datasets, using only the original number 
of landmarks. Second, we present the results obtained by all algorithms on two cephalometry datasets used during 
international landmark detection challenges24,25.

Comparisons on our datasets.  We compared our algorithm with our own implementations of the algorithms 
presented in Donner et al.14 and Lindner and Cootes15. The algorithm presented in Lindner and Cootes15 (called 
LC in the rest of the paper) is divided in two phases: first, individual landmark offset regressors are trained. These 
landmark offset regressors are then used to build vote maps giving the likeliest position of the landmarks. In a 
second step, these vote maps are combined with a PCA based model of the landmark shapes in order to build an 
active shape model for which an optimal configuration can be found through an iterative process. In a related 
study, they further improved the method performances on cephalometric data by considering a larger dataset and 
evaluating the accuracy of two different experts annotating the images7. In Donner et al.’s paper14 (called DMBL 
in the rest of the paper), a three step approach is proposed: first, a random forest classifier is trained to classify 
pixels. For N landmarks, the classifier associates to each pixel one class among N + 1 classes: either the type of 
a landmark or the background. This first step will be used to build a probability map for each of the landmarks. 
These probability maps will be refined into a small number of candidates for each landmark by using landmark 
offset regressors. The final position of the landmarks will be chosen among the candidates of each landmark using 
a Markov Random Field based on the distances between the landmark positions.

We estimated the results obtained with these two methods and ours on each dataset and landmark. We divided 
our datasets into a training and a test set. For each dataset, the methods were tuned on the training set using 
10-fold cross validation. The models were then built using the complete training set and then evaluated on the 
test set. We chose to use half of the dataset images as learning set, and the other half as test set. For parameter 
exploration during CV, we used a grid search where some common parameters were fixed for a fair comparison: 
the number of trees, used in all methods, was fixed to 50. The number of descriptors for a pixel was also roughly 
fixed: our algorithm used 1536 features while LC and DMBL were set to use 1600. The tested values are presented 
in Table S1 of the Supplementary Material. The algorithms were all implemented in Python.

The results are presented in Fig. 6. We obtained the best results on each of the three datasets. On the DROSO 
dataset, that seems to be the easiest for all the algorithms, DMBL performs clearly worse than our algorithm and 
LC. We explain this by the feature engineering choice made in DMBL, whose pixel descriptors focus less on local 
appearance. On DROSO, our algorithm has only a small advantage compared to LC. However, our algorithm 

Figure 5.  Influence of the use of the window descriptor features using classification. Above: the mean error 
using each window descriptor on each dataset. Below: the time needed for extracting 10,000 observations using 
each window descriptor. Grey bars represent the results obtained by using only the best resolution found during 
a 10-cross validation process.
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obtains the best performances for 10 landmarks, LC 5, and DMBL 0. On the CEPHA dataset, LC seems to obtain 
worse results than our method and DMBL. From our observations, we suspect that our algorithm performs 
better due to unreliable landmark candidates for DMBL and the correction phase of LC, that imposes too much 
constraints on the possible shapes described by the landmar. On the ZEBRA dataset, the results of the three 
algorithms are really close, but our algorithm obtains the best averaged error. Our algorithm obtained the best 
performances for 12 landmarks, LC 6, and DMBL 7. We also suspect that the landmark structures are not defined 
well enough when using small training image datasets (69 images for DROSO, 50 for CEPHA and 57 for ZEBRA), 
thus making the refinement steps of LC and DMBL less useful.

Comparisons on the ISBI cephalometry challenges.  We considered a comparison with the preliminary version 
of our algorithm that was presented in the context of the 2014 ISBI challenge24,33. The goal of this challenge was 
to predict the position of each of the 19 cephalometric landmarks presented in Fig. 1 as accurately as possible. 
Here we focus on the comparison of our algorithm with the best results obtained during these two challenges. 
For the 2014 challenge, we compared our algorithm with its preliminary version that ranked second at the chal-
lenge, and with the challenge best performer, a method proposed by Ibragimov et al.13 (called ILPV in the rest 
of the paper). ILPV combines random forests with game-theoretic tools that take into account relations between 
landmark positions. To improve their performance at the challenge, ILPV furthermore manually created new 
landmarks that they incorporated in their training phase. The main difference between our preliminary and 
proposed method are the parametrization of the sampling at training and prediction, the use of rotations and the 
possibility to use SUB, HAAR-LIKE and GAUSSIAN SUB descriptors. We also compared our method with the 
2015 ISBI challenge two best performers: ILPV that ranked second, and LC that ranked first. In the context of this 
challenge, they also used 10 additional manually annotated landmarks in order to ensure the consistency of their 
active shape model optimization problem. Note that LC is one of the state-of-the-art algorithms we tested in the 
previous section (but without any addition of manual landmark annotations).

The landmark by landmark comparison between the three methods for both challenges is presented in Fig. 7. 
This comparison was performed according to the challenge rules: we used the initial training sets (different for 
each challenge) composed of 100 images for the 2014 challenge and 150 images for the 2015 challenge. We tuned 
the parameters by 10-fold internal CV on the training set, trained the final models with the optimal parameters 
found on the whole training set, then compared the predictions of the different methods on the test set composed 
of 100 new images for both challenges. For parameter tuning, we used the same grid search as in the previous 
section. For the first challenge, the global mean accuracy of the preliminary version of our algorithm is 21.84 pix-
els. ILPV obtains 18.989 and the method proposed in this paper 17.55. For most of the landmarks, we observed 
a clear improvement between the previous and the novel variants of our algorithm. This shows that in some 
cases, using multi-resolution raw pixel values can help to obtain a better accuracy. On 11 out of 19 landmarks, 
our method works also better than ILPV, while it is outperformed on 8 landmarks. Given ILPV requires some 
additional manual annotation effort to reach this performance, we believe that our results are very competitive. 
For the second challenge, the global mean accuracy of the first method (LC) is 16.74 pixels and the second (ILPV) 
18.46 pixels while we obtained a mean accuracy of 17.79 pixels. We obtained the best results for 3 landmarks, 
the second best results for 10 other landmarks. As we show in Fig. 7, it is clear that the differences are also small 
between the different methods. In comparison to these two other methods using additional landmarks to refine 
the landmarks shape, we think our algorithm, without additional annotation and refinement, is competitive with 
the state of the art.

Comparison of speed and memory consumption.  Table 2 compares the four algorithms in terms of training and 
prediction speed as well as memory occupation. In terms of memory occupation, at training, our algorithm will 
build N classification or regression mono-output models. These models will be built by extracting around N dif-
ferent datasets of pixels. LC will build N bi-output regression models as well as a PCA model. In our experiments, 
we extracted approximately the same number of pixels for this algorithm and ours. In DMBL, one classification 
model will be built for phase 1 and N bi-outputs regression models. In our experiments, each of these models 
were built using approximately the same number of pixels as in our algorithm. In addition, a Markov Random 
Field will be built. We did not reimplemented ILPV, but given its model features, we can reasonably estimate that 
a model would ask for approximately the same number of pixels than our algorithm. This means that, at training 

Figure 6.  Comparison of our algorithm with Lindner et al.15 (LC) and Donner et al.14 (DMBL) on our three 
datasets. Error bars corresponds to 95%.
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time, DMBL extracts the largest amount of pixels while the three other algorithms use approximately the same 
amount. At prediction, we showed we could already reach our best performances by extracting around 10,000 
pixels per landmark, while the number of pixels to extract will depend on image size for LC, DMBL and ILPV. 
DMBL extracts height × width × δ2 pixels, where the optimal δ we found was 0.5. LC extracts (height × width)/
(step2), and we found an optimal step of four. In the cephalometric challenge, ILPV extracts (height × width)/
(step2), where step = 3 for the cephalometric challenge. In addition, DMBL will need to keep probability maps of 
size N × height × width × δ2, LC’s vote maps of maximal size N × (height × width)/(step2) and ILPV probability 
maps of size N × (height × width)/(step2). Given the size of our images and the variance of the landmark posi-
tions, our algorithm uses a significantly smaller amount of memory than other methods on our three datasets. 
Note however that with smaller images or more variable landmark positions, the memory requirement and time 
consumption of our method might exceed those of LC and ILPV. In terms of speed, at training, DMBL will need 
to extract slightly more pixels than the other algorithms, and build one additional forest. LC, DMBL and ILPV 
are building additional models based on the landmarks coordinates. This is why our algorithm can be considered 
as faster than the other algorithms at training. However, if parallelization capacities are available, all the models 
can be built at the same time, and the same goes for the pixel extraction. In this context, the bottleneck will be 
the difficulty of the pixel extraction, which will make LC, ILPV that both use single resolution Haar-Like features 
and/or our algorithm if we use SURF features the slowest algorithm. At prediction, given that we extract less 
pixels and do not use an additional refinement step, our algorithm should be the fastest as long as we are not using 
SURF features. Another bottleneck comes from the refinement step(s) because these steps can not be parallelized 
between each other. This is still playing in favor of our algorithm which has no refinement step.

Figure 7.  Comparison with 2014 and 2015 ISBI Cephalometric X-Ray Challenge best results.

Our algorithm Lindner et al.7 Donner et al.14 Ibragimov et al.13

TRAINING

PIXEL EXTRACTION 
N datasets 
- 1 dataset ± 100,000 pixels 
Extraction can be parallelized 
MODEL BUILDING 
N single output classification OR 
regression forests 
ADDITIONAL OPERATIONS 
Each training image must be resized 
D-1 time(s) 
If HAAR-LIKE features are used, 
integral images need to be built

PIXEL EXTRACTION 
N datasets 
- 1 dataset ± 100,000 pixels 
Extraction can be parallelized 
MODEL BUILDING 
N double-output regression 
forests 
1 PCA model (using landmark 
coordinates) 
ADDITIONAL OPERATIONS 
Integral images need to be built

PIXEL EXTRACTION 
N + 1 datasets (1 phase 1 + N 
phase 2) 
- 1 dataset ± 100,000 pixels 
Extraction can be parallelized 
MODEL BUILDING 
1 classification forest (N + 1 classes) 
N double output regression forests

PIXEL EXTRACTION 
N datasets 
- 1 dataset ± 100,000 pixels 
Extraction can be parallelized 
MODEL BUILDING 
N classification forests (2 classes) 
1 gaussian model (fron coordinates) 
ADDITIONAL OPERATIONS 
Integral images need to be built

LANDMARK DETECTION 
(for 1 image)

PIXEL EXTRACTION 
Np pixels 
- Np << height × width (± 10–30,000) 
Extraction can be parallelized 
ADDITIONAL OPERATIONS 
Building of multi-resolution images 
Integral image (if HAAR-LIKE is used)

PIXEL EXTRACTION 
(height × width)/(step2) pixels 
Extraction can be parallelized 
ADDITIONAL OPERATIONS 
N vote maps are built 
Iterative active shape model 
optimization 
Integral image needs to be built

PIXEL EXTRACTION 
Phase 1: 
height × width × delta2 pixels 
(1–3 M) 
Phase 2: 
#Candidates × N × #iterations 
pixels (max.) 
(500–1000) 
Extraction can be parallelized (per 
phase) 
ADDITIONAL OPERATIONS 
N probability maps are built 
(size height × width × delta2) 
MRF optimization

PIXEL EXTRACTION 
height × width pixels 
Extraction can be parallelized 
ADDITIONAL OPERATIONS 
N probability maps are built 
(size height × width) 
GTF optimization 
Integral image needs to be built

PIXEL DESCRIPTOR RAW, SUB, SURF, HAAR-LIKE 
GAUSSIAN SUB HAAR-LIKE GAUSSIAN SUB HAAR-LIKE

LEARNING MODEL Extremely randomized trees 
(classification OR regression)

Random forests (regression) 
PCA model

Extremely Randomized Trees 
(classification and regression) 
Markov Random Field

Random forests (classification) 
Gaussian model

Table 2.  Comparison of the time and memory consumption of the algorithms. N is the number of landmarks.
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Guidelines.  In this section, we provide guidelines to end-users to choose the best method and parameters for 
their applications.

Method choice.  We showed that we could obtain good performances with our algorithm with respect to other 
landmark detection methods: while offering slightly better performances, our algorithm also creates lighter mod-
els and needs to extract less pixels during the prediction phase, thus offering a speed-up during prediction.

However, for datasets with a significantly higher number of landmarks (>40–50), we expect the algorithms of 
DMBL, LC and ILPV to bring better results than our own algorithm because they better exploit the global land-
mark structure for the localization of the landmarks. In this context, we would advise to use LC’s algorithm when 
landmarks are visually well defined locally, and DMBL otherwise.

Furthermore, our experiments showed that these algorithms could be improved by using some of our algo-
rithm’s specificities:

•	 Different types of pixel descriptors should be considered: our experiments showed that the performances of 
a given pixel descriptor can vary from one dataset to another given the type of landmarks. Moreover, even 
if it slightly increases computation time, multi-resolution feature extraction improves the performances. In 
the context of a new application, we think that the choice of the pixel descriptor should always be empirically 
assessed, if not per landmark, at least per dataset.

•	 In most biomedical applications, the deformation between the images will remain small. We showed that this 
information can be used to reduce the number of pixels to extract at prediction time, and thus speed up the 
prediction process.

Parameter setup.  Using our method, we recommend to use the classification approach as we showed it has a bet-
ter accuracy in almost all settings compared to the regression approach. In addition, it is typically less demanding 
in terms of computing time and memory, mainly because it leads to significantly smaller trees.

According to our experiments, only R, Rmax, and F have to be tuned to optimize performance. The optimal 
value of these parameters are expected to be related to the appearance of the landmarks and they might thus be 
tuned for each landmark individually. On landmarks well defined at borders or intersections, small R values can 
be used (R = 6 for example). Given R and Rmax are in pixel units, the range of variation of these parameters should 
also be adapted to the image resolution: at minimum, R must encompass the landmark possible locations, and 
Rmax the nearest visible structures. We advise to use HAAR-LIKE features in the context of landmarks located at 
borders or intersections, and GAUSSIAN SUB features otherwise. If low computing time is a key factor, RAW and 
SUB features could also be assessed. Because it requires more computation time (on a factor 10) than RAW or 
SUB, we can only advise the use of the SURF descriptor for small datasets or given high parallelization capacities.

We also recommend to adapt the value of Np to the variability of the position of the landmark in the training 
images. Indeed, given our sampling scheme at prediction, the more variable the position of the landmark, the 
more spread in the image will be the pixels tested to compute the final prediction. One should thus increase the 
number of tested pixels accordingly so as to ensure a fine enough coverage of the area where the landmark could 
be located. In our case, Np = 10,000 seems a good option to start with.

Other parameters can either be set to some reasonable default value (W = 8,D = 6) or be set to their max-
imum value given the available computational budget (T, P, Np, W). If computational resources are plentiful, 
a finer tuning of W and D and Np can bring some further improvement but according to our experiments this 
improvement is expected to be small in most cases.

We carried out our experiments on three very different problems, which gives some generality to the previous 
guidelines. Note however that on the three datasets, the deformations between the images are small, which for 
example allows to limit the region of interest within images where the landmark can be searched for. To cope with 
larger deformations, one could play with the value of some of the method parameters, e.g. increasing Nr, and Np. 
However, in order to increase the performance and reduce computing times, we recommend either to control 
image acquisition to avoid large deformations or, if this is not possible, to perform rigid registration between the 
images before further analysis.

Conclusion
Our results show that it is possible to accurately detect landmarks using a combination of randomized trees and 
pixel-based multi-resolution features. Given the small size of our datasets and the variance of the landmarks 
between the images, we think that these results are very satisfactory. The main advantages of our approach with 
respect to existing works are its efficiency, its independence to the number of landmarks, and its lower time 
and memory requirements. All evaluated algorithms are available through the open-source Cytomine platform23 
(see Supplementary Material for a description), which provide proofreading tools so that end-users can actually 
speed-up their annotation processes by focusing on difficult landmarks.

In terms of future works, we think that improving accuracy on our three specific landmark detection tasks 
mostly require using more data: for some landmarks, ±100 images does not seem to be enough to grasp the vari-
ability of the possible landmark visual representations. Moreover, it seems that some landmarks do not especially 
correspond to specific anatomical locations, but more to geometric positions or intersections (e.g. landmark 10 
on CEPHA dataset. See Fig. 1). This kind of landmark will thus naturally be incorrectly detected by our approach 
which exploits repeatable visual appearances without using global spatial information. We expect further accu-
racy improvement might be obtained by taking into account the relative positions and the global structure of the 
landmarks either directly during the training stage or as a post-processing during the prediction stage. Note that 
this structure is taken into account by current state of the art algorithms we compared ourselves with. However, 
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given that their accuracy is similar to ours despite this post-processing, more research seems to be needed to find 
methods more adapted to our datasets. Further improvement might also be brought by adding some parametri-
zation possibilities: for example, the windows could be fine tuned with different shapes at each of the different 
resolutions and D could be adapted to different ranges of image resolutions. Interestingly, as our datasets and 
source code are available through Cytomine23, we hope that other researchers will design new efficient landmark 
detection algorithms that can be plugged into the platform and compared with already implemented algorithms.

Finally, this algorithm can be extended and used as a first step to perform point-based 2D and 3D multimodal 
registration34, and also for geometric morphometrics in 3D35,36.
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