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ABSTRACT
Colorectal cancer (CRC) is a heterogeneous disease with different gene expression patterns. There 
are two major colorectal carcinogenesis pathways: conventional adenoma-carcinoma pathway and 
alternative serrated neoplasia pathway. Apart from the conventional pathway that is typically 
initiated by characteristic APC mutation and chromosomal instability, the serrated neoplasia path
way is mainly characterized by mutations of BRAF or KRAS, microsatellite instability (MSI), and CpG 
island methylator phenotype (CIMP). Despite the malignant potential of serrated lesions, they can 
be easily overlooked during endoscopy screening and even in pathological assessment due to its 
anatomical location, morphology, and histological features. It has been shown that environmental 
factors especially the gut microbial composition play a key role in CRC pathogenesis. Thus, the 
preferential localization of serrated lesions in specific intestine areas suggest that niche-specific 
microbiota composition might intertwined with host genetic perturbations during the develop
ment of serrated lesions. Although serrated lesions and conventional adenomas are biologically 
different, most studies have focused on conventional adenomas, while the pathophysiology and 
role of microorganisms in the development of serrated lesions remain elusive. In this review, we 
discuss on the role of gut microbiota in the serrated neoplasia pathway of colorectal carcinogenesis 
and its specific clinical and molecular features, and summarize the potential mechanisms involved.
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Introduction

Colorectal cancer (CRC) is the third most common 
cancer and the second leading death of cancer 
worldwide.1 In 2018, CRC was the most commonly 
diagnosed gastrointestinal cancer, constituting 10.2% 
and 9.2% cancer cases and deaths respectively 
worldwide.2 In the United States, CRC is estimated 
to make up 8.2% and 8.8% of total cancer incidence 
and mortality in 2020, respectively.3,4 Malignant 
changes in the intestinal tract are often developed 
from a focal dysplastic polypoid precursor, the ade
noma, which accumulates further genetic mutations 
and progresses following the adenoma-carcinoma 
sequence.5 Similar to conventional adenomas, ser
rated lesions in the colorectum have a potential to 
transform into malignant CRC,6 especially large ser
rated lesions that are located in the proximal colon.7

The development of CRC follows several distinct 
mechanistic pathways, including the adenoma–car
cinoma pathway and serrated neoplasia pathway.8 

While the conventional adenoma-carcinoma path
way is more common, a small subset of CRC occurs 
through the serrated pathway. In the past, these 
serrated lesions were considered as relatively 
benign lesions;9 however, emerging evidences sug
gested that certain sessile lesions are non- 
adenomatous precursors of malignant cancers.10,11 

In the fifth edition of the World Health 
Organization classification of digestive tumors, ses
sile serrated polyp/adenoma was renamed as ses
sile-serrated lesion (SSL). In the British 
pathological classification system, serrated lesions 
can be classified into several lesion types, including 
hyperplastic polyp (HP), SSL, SSL with dysplasia, 
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traditional-serrated adenoma (TSA) and mixed 
polyp.10 SSLs and TSAs have been recognized as 
important precancerous lesions of CRC.

Because of their indistinctive morphological and 
histological features, serrated lesions can be easily 
overlooked during colonoscopy and even in patholo
gical assessment. SSLs are typically flat or sessile under 
endoscopic visualization, and are occasionally covered 
by a mucus cap.10 Many CRCs derived from SSLs are 
located in the right side of the colon, with molecular 
features of BRAF mutation, high microsatellite 
instability (MSI), and CpG island methylator pheno
type (CIMP). These cancers are thought to account 
for a large proportion of interval cancers and may 
represent the main cause of cancer screening failure. 
Thus, it is important to study the serrated pathway to 
develop better management strategies for these 
cancers.

Various genetic and environmental factors con
tribute to colorectal carcinogenesis. Previous twin 
studies showed that the heritability of CRC is only 
around 12–35%,12 suggesting that environmental 
factors may play a greater role in sporadic CRC.8 

Certain environmental factors are associated with 
serrated colorectal neoplasia. Systematic reviews 
found that smoking, alcohol, and body mass index 
were more strongly associated with serrated polyps 
than conventional adenomas.13,14 A strong associa
tion between red meat consumption and risk of SSLs 
was also shown in a colonoscopy-based case–control 
study.15 These epidemiological findings could 
enhance our mechanistic understanding and help 
identify mitigating strategies for serrated neoplasia.

Furthermore, the microbiota has recently 
received increasing attention as a non-genetic fac
tor in colorectal neoplasia. Tens of trillion micro
organisms colonize the human gastrointestinal 
tract,16 to interact with our epithelial cell as part 
of the host–microbe interaction.17,18 Research in 
recent years showed that several bacteria is asso
ciated with CRC, including Fusobacterium nuclea
tum, Bacteroides fragilis, and other CRC-enriched 
bacteria,19 through different pro-inflammatory and 
pro-carcinogenic mechanisms.20 Despite this, the 
role of gut microbiota in the serrated neoplasia 
remains largely unknown.

In this article, we review the role of microbiota 
and molecular pathways pertinent to the formation 
of serrated neoplasm.

The serrated neoplasia pathway

Our knowledge on the molecular pathways of col
orectal adenomas and other precancerous lesions 
has increased substantially over the past few years. 
With the advent of molecular testing for MSI, RAS 
(KRAS, NRAS) and BRAF mutations, accurate and 
tailored treatment for advanced CRC is possible.21 

These tumor genetic insights have shed light on 
their precursor lesions as well. There are two main 
pathways of carcinogenesis: the conventional ade
noma-carcinoma pathway (also known as chromo
somal instability pathway) and the alternative 
serrated neoplasia pathway.22 Conventional adeno
mas are typically initiated by APC mutations, fol
lowed by RAS activation or loss of function 
mutations in TP53.22 In contrast, the serrated neo
plasia pathway is mainly characterized by muta
tions of BRAF or KRAS, chromosomal stability, 
and CIMP.22 Most CRC develop through the con
ventional adenoma-carcinoma pathway, while 
approximately 10–20% of CRC cases occur through 
the alternative serrated neoplasia pathway.22 

Autopsy studies showed that the prevalence of ser
rated lesion varies, but in general about 25% of 
adults have one or more serrated lesions.23 

Recently, a systematic review identified 74 relevant 
colonoscopy studies and found that SSL prevalence 
greatly varied by geographical regions, ranging 
from 2.6% in Asia to 10.5% in Australia.24

In 2007, Makinen evaluated three molecular 
alterations to help further subtype serrated 
lesions.25 By combining the RAS mutations, the 
degree of MSI, and the level of CIMP, two separate 
serrated pathways26 could be classified:11,27 (1) 
Sessile serrated pathway with BRAF mutation, 
MSI-H/L and CIMP-H, typical lesions being SSLs, 
and (2) Traditional serrated pathway with KRAS 
mutation, low-level MSI (MSI-L) or microsatellite 
stability (MSS), and CIMP-L, typical lesions being 
TSAs (Figure 1).

Further studies have investigated the anatomical 
locations of these colorectal lesions. Although Bufill 
et al. divided the colorectal tumor location at sple
nic flexure into proximal and distal colons in 
1990,28 the frequencies of the molecular signatures, 
including CIMP-H, high-level MSI (MSI-H), and 
BRAF mutations do not change abruptly at the 
splenic flexure.29 Instead, these frequencies 
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increased gradually from the rectum to ascending 
colon, followed by a relatively decrease in the 
cecum,29 challenging the common conception of 
discrete molecular features of proximal (right- 
sided) versus distal (left-sided) CRC30,31 (Figure 
1). Nevertheless, cecal cancers harbor a high fre
quency of KRAS mutations.29

Consensus molecular subtypes (CMSs)

CRC is a heterogeneous disease with distinctive gene 
expression patterns.32–38 In the genomic analysis of 
276 samples in the Cancer Genome Atlas Project, 
three-quarters among the hypermutated tumors had 
high MSI, usually with hypermethylation and MLH1 
silencing, were located in the right colon and were 
frequently associated with CIMP.38 Schlicker et al. 
first reported an epithelial-mesenchymal-transition 
(EMT) expression signature defined subgroup in 

2012.34 Subsequent molecular classifications of CRCs 
based on its stemness, Wnt pathway expression,35 and 
clinicopathological features36 have been proposed. 
Marisa et al. identified six molecular subtypes asso
ciated with distinct clinicopathological characteristics, 
molecular alterations, specific enrichments of super
vised gene expression signatures (stem cell pheno
type-like, normal-like, serrated colon cancer 
phenotype-like), and deregulated signaling 
pathways.37 Budinska et al. distinguished five different 
gene expression CRC subtypes, which are surface 
crypt-like, lower crypt-like, CIMP-H-like, mesenchy
mal, and mixed.32 A molecular classification asso
ciated with prognosis and chemotherapy response 
was developed by Roepman et al. in 2014, which 
consist of three major intrinsic subtypes (A-, B- and 
C-type) based on three tumor biological hallmarks: 
EMT, mismatch repair genes deficiency, and cellular 
proliferation.33 To better consolidate the biological 

Figure 1. The sessile (left) and traditional (right) serrated pathways. Frequently affected areas for colorectal tumors in each pathway are 
highlighted in red and the color depth represents the frequency of CIMP-H, MSI-H and BRAF/KRAS mutations in CRC. Abbreviations: 
MVHP, microvascular hyperplastic polyp; GCHP, goblet cell-rich hyperplastic polyps; SSL, sessile serrated lesion; TSA, traditional- 
serrated adenoma; MLH1, MutL homolog 1; MGMT, O-6-methylguanine-DNA methyltransferase; TSG, tumor suppressor genes; SSL-HGD, 
sessile serrated lesion with high-grade dysplasia; TSA-HGD, traditional-serrated adenoma with high-grade dysplasia; SAC, serrated 
adenocarcinoma; MSI-H, high-level microsatellite instability; MSI-L, low-level microsatellite instability; MSS, microsatellite stability; 
CIMP-H, high-level CpG island methylator phenotype; CIMP-L, low-level CpG island methylator phenotype.
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findings and enhance international communications, 
the consensus molecular subtypes (CMS) was pro
posed in 2015 to unify six independent transcrip
tome-based CRC subtyping strategies as 
abovementioned.32–37,39 The four subtypes with dis
tinguishing features include: CMS1 (MSI immune) 
tumors that are immunogenic, microsatellite unstable, 
and hyper-mutated; CMS2 (canonical) tumors that 
show WNT and MYC signaling activation; CMS3 
(metabolic) tumors that have metabolic dysregula
tion; and CMS4 (mesenchymal) tumors that have 
stromal infiltration, TGF-β activation, angiogenesis39 

(Figure 2). Samples with mixed features are transition 
phenotypes or may represent intra-tumoral 
heterogeneity.

This molecular scheme raised an immediate ques
tion to how the pathological precursor types are 
related to the cancer subtypes. To address this ques
tion, Fessler et al. investigated the role of premalignant 
lesions using organoid culture and found that SSLs 
overexpressed TGF-β signaling, a key molecular char
acteristic of CMS4 subtype of CRC.40 Besides, Chang 
et al. analyzed the transcriptomes of 311 sporadic and 
78 hereditary adenomatous and serrated lesions by a 
random forest classifier, and found that adenomatous 
polyps showed a highly similar transcriptomic profile 
to the CMS2 subtype, whereas the transcriptomic 
profiles of HP and SSL resemble that of the CMS1 
subtype. Together with their right-sided anatomic 
location and BRAF mutations,41 this suggests a strong 

relationship between serrated lesions and the CMS1 
subtype of CRC. Nevertheless, significant KRAS 
mutations were not observed probably because of 
the small number of precursor lesions resembling 
CMS3 in their study. The relationships between pre
malignant lesions (SSLs versus tubular adenomas42) 
and CMS3 tumors42,43 remain uncertain. 
Furthermore, a recent systematic review suggested 
tubulovillous adenomas with serrated features to be 
precursors of KRAS mutant tumors.44 Tsai et al. eval
uated the pathological and molecular features of 60 
TSAs with cytologic dysplasia and/or invasive carci
noma, and shown that tubulovillous adenoma with 
serrated features had higher frequencies of KRAS 
mutations than TSAs with serrated dysplasia.44,45 

Potential precursor lesions assigned to the CMSs 
based on the above research results are shown in 
Figure 2.

Gut microbiota in serrated lesions

Recent literature has provided evidence that micro
organisms can promote colorectal carcinogenesis.20 

Nevertheless, these studies have focused on CRC 
and premalignant polyps derived from the conven
tional pathway,20 and the role of microorganisms in 
the serrated neoplasia is less clear. Peters et al. com
pared the stool microbiota between conventional ade
noma and serrated lesions of 540 colonoscopy- 
screened adults by 16S rDNA gene sequencing and 

Figure 2. Consensus molecular subtypes (CMS) in CRC and their precursor lesions. Abbreviations: MSI, microsatellite instability; CIMP, 
CpG island methylator phenotype; SCNA, somatic copy number alterations.
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observed a significant depletion of Erysipelotrichi in 
33 SSL cases.46 The increase of this bacterial class is 
associated with impenetrable mucus layer in mice47 

and may play a protective role in SSL development. 
However, in a study from Iran, researchers analyzed 
the changes of fecal microbiota in patients with dif
ferent precursor lesions including serrated lesions (21 
HP and 16 SSL cases) and failed to observe significant 
differences in the microbiota.48 Similarly, a Korean 
study did not identify significant microbiota changes 
in rectal mucosae from healthy controls and patients 
with conventional adenoma, SSL, and CRC, 
respectively.49 However, both studies were limited 
by their small sample size. Thus, further studies with 
more samples could provide insight into the metage
nomic landscape of SSLs.

There is a close association between F. nucleatum 
and CRC progression,50 and high level of F. nuclea
tum was associated with poor survival in metastatic 
CRC.51 Yu et al. examined the invasive F. nucleatum 
using 16S rRNA fluorescence in situ hybridization 
(FISH) and observed significantly more invasive F. 
nucleatum in proximal HPs and SSLs than that of 
conventional adenomas.52 On the contrary, Ito et al. 
detected F. nucleatum by quantitative PCR in HPs, 
SSLs, TSAs, and non-serrated adenomas, and found 
that this bacterium was not significantly associated 
with lesion histology, but rather was associated with 
right-sided premalignant lesions with BRAF muta
tion, CIMP-high, and MSI.53 Because of these features 
pointing to serrated neoplasia,11,27 the existence of 
colorectal F. nucleatum may influence CRC progres
sion through serrated pathway. Another similar study  

by Park et al. compared the gut microbiota between 
tubular adenoma (TA) and SSLs and found that the 
relative abundance of Fusobacteria did not differ sig
nificantly between these patients.54 These two similar 
results suggested that Fusobacteria may contribute to 
carcinogenesis regardless of the molecular 
pathway.53,54 However, the small sample sizes and 
lack of multi-omics platforms have again limited 
these studies.

Furthermore, a study has associated CRC micro
biota with tumor CMS type and identified some bac
terial species specific to CMS155 characterized by MSI 
and immune activation.39 Given the connection 
between CMS1 and serrated neoplasia,41 these species 
might contribute to the serrated pathway of CRC 
development. In this study,55 16S rRNA analysis 
showed that the relative abundances of Fusobacteria 
and Bacteroidetes increased and the levels of 
Firmicutes and Proteobacteria decreased in CMS1. 
Species-level analysis showed that Fusobacterium 
hwasookii and Porphyromonas gingivalis are the 
most highly enriched species associated with CMS1, 
as well as oral pathogens such as F. nucleatum, 
Parvimonas micra, and Peptostreptococcus stomatis.

Lastly, there was a case report that human intest
inal spirochetosis may be responsible for colonic 
adenomas or HPs.4 In a retrospective case–control 
study, the rate of human intestinal spirochetosis 
infection was significantly higher in SSL at 52.6% 
(10/19) compared to controls at 8.1% (14/172), 
which suggested a possible association between 
human intestinal spirochetosis and SSL.56 

Nevertheless, this finding is yet to be validated in 

Table 1. Serrated pathways associated with molecular features in Fusobacterium nucleatum (Fn) high expression CRC tissues. + 
indicates Fn-high CRC tissues exhibiting more frequent molecular features than Fn-low/negative ones (P < .05); whereas – indicates no 
significant difference of serrated pathway associated molecular features between Fn-high and Fn-low/negative tissues. Abbreviations: 
FFPE, formalin-fixed paraffin-embedded; Fn-high, high amount of Fusobacterium nucleatum DNA in tissues; Fn-low, low amount of 
Fusobacterium nucleatum DNA in tissues; MSI-H, high-level microsatellite instability; CIMP-H, high-level CpG island methylator 
phenotype.

Authors Year Cohort Specimen Type Detection Method

Molecular Features in Fn-high Tissues

MLH1 Methylated MSI-H CIMP-H BRAF Mutation

Tahara et al.[63] 2014 United States Fresh-frozen tissue qPCR + + + -
Ito et al.[53] 2015 Japanese FFPE tissue qPCR + + + -
Mima et al.[60] 2015 United States FFPE tissue qPCR + + + -
Mima et al.[59] 2016 United States FFPE tissue qPCR + + + +
Nosho et al.[61] 2016 Japanese FFPE tissue qPCR / + / +
Park et al.[62] 2017 Korean FFPE tissue qPCR - + - +
de Carvalho et al.[57] 2019 Brazilian Fresh-frozen tissue 16S rDNA sequencing, qPCR + + / +
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larger studies preferably from more diverse 
populations.

Gut microbiota and specific molecular features

Many studies explored the microbial community of 
CRC samples in different cohorts, and established the 
associations of F. nucleatum with important clinical 
and molecular features.53,57–63 For instance, F. nucle
atum was shown to be significantly associated with 
MLH1 methylation,53,57,59,60,63 high-level 
MSI,53,57,59–63 high-level CIMP53,59,60,63 and BRAF 
mutation57,59,61,62 (Table 1). However, controversial 
data have been reported on whether KRAS mutations 
associated with F. nucleatum abundance.53,58–65 In a 
Brazilian study analyzing 43 fresh CRC tissues by 
qPCR and direct sequencing, Proenca et al. found 
that KRAS mutations occurred more frequently in F. 
nucleatum-infected CRC.64 Yamaoka et al. measured 
F. nucleatum copy numbers by droplet digital PCR 
and found a significant correlation between F. nucle
atum abundance and KRAS mutations.65 Higher 
abundance of intra-tumoral F. nucleatum was also 
reported in CRC with proximal tumor 
location,57,59,60 higher clinical stage (T3/T4),57,59,60 

poorer tumor differentiation,57,59,60 and worse 
survival.57,59,66 In addition, CIMP high cases were 
characterized by a high rate of mutations in MSI, 
BRAF67 and chromatin regulator genes, especially 
CHD7 and CHD8,68 and rarely KRAS and TP53 
mutations.67 F. nucleatum abundance was found to 
be associated with CHF7/8 mutation and TP53 wild- 
type status.63 KRAS mutation was also detected, but 
there was no statistical difference between the muta
tion state and F. nucleatum abundance.53,58–63

Besides F. nucleatum, correlations between other 
microbial species with the status of MLH1, BRAF, 
KRAS were also reported. Immunohistochemical ana
lysis indicated that KRAS and BRAF expressions were 
obvious in tumor with high abundance of F. nuclea
tum and Bacteroides fragilis, while tumors with MLH1 
mutation showed lower abundance of these species.66 

Moreover, a high abundance of F. nucleatum and B. 
fragilis were independent indicators of poor survival.66 

A positive correlation between Ruminococcus gnavus 
and KRAS mutation in aberrant crypt foci samples was 
also described, although this finding was only reported 
in one study with a limited sample size.69 As described 
previously, serrated neoplasia is characterized by high 

MLH1 deficiency, KRAS and BRAF mutation,6,11,25,27 

yet the association with F. nucleatum, B. fragilis, or R. 
gnavus remains unclear and needs to be explored in 
future studies.

Potential mechanisms of microbial dysbiosis in 
serrated neoplasm formation

The fact that serrated lesions are preferentially loca
lized in specific colonic locations43 suggested that non- 
genetic factors, such as niche-specific microbiota, may 
interplay with genetic perturbations to affect their 
development. To verify this hypothesis, Lira et al. 
have modeled a series of transgenic mice.70–73 Based 
on the immunohistochemical and immunoblot ana
lyses, they found that the EGFR signaling pathway is 
activated in human-serrated lesions.70 Activation of 
EGFR signaling by transgenic expression of the EGFR 
ligand heparin-binding epidermal growth factor-like 
growth factor (HBEGF) in mice intestine promotes 
the development of cecal-serrated lesions.70 It showed 
that host-specific microbiota was associated with ser
rated polys, and microbiota alteration induced by 
antibiotics or by embryo transfer rederivation sup
pressed the formation of serrated lesions in the 
cecum of HBEGF transgenic mice.72 The development 
of serrated lesions was associated with epithelial bar
rier breakdown, bacterial invasion, and overexpres
sion of several inflammatory factors.72,73 The release 
of IL1B from inflammatory macrophages stimulate 
subsets of cecal platelet-derived growth factor receptor 
alpha+ (PDGRFA+) fibroblasts during an early stage 
of serrated lesion development, resulting in upregula
tion of Matrix Metallopeptidase 3 (MMP3), which can 
promote inflammation and accelerate serrated lesion 
development by facilitating HBEGF/EGFR signaling.73 

Using 16S rDNA sequencing, the authors showed that 
the bacterial phylum of Verrucomicrobia was 
enriched, whereas Deferribacteres was decreased in 
the mouse cecal mucosa of serrated lesions compared 
to rederived HBUS mice.72

As discussed previously, F. nucleatum is an impor
tant bacterium in CRC and shows association with 
serrated neoplasia. F. nucleatum attaches and invades 
human epithelial cells via adhesion (FadA).74 Another 
virulence factor from F. nucleatum, an autotranspor
ter protein (Fap2), has been shown to promote CRC 
progression by suppressing immune cell activity.75 

Kostic et al. reported that F. nucleatum selectively 
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recruits myeloid-derived immune cells (MDSCs) in 
CRC.76 F. nucleatum increases the production of reac
tive oxygen species (ROS), 76,77 possibly by MDSCs 
recruit. Tumor-associated MDSCs promote carcino
genesis through oxidative metabolism, including the 
production of ROS in human CRC.78 ROS induction 
is correlated with DNA methylation.79 Interestingly, 
methylation could also occur in promoter regions of 
MLH1 gene and lead to MSI,61,80 which are the char
acters of sessile-serrated pathway.

Another mechanism for serrated neoplaia progres
sion related to F. nucleatum is a tumor immunosup
pressive microenvironment. F. nucleatum is 
associated with a lower density of CD3 + T cells in a 
US cohort,60 and F. nucleatum high MSI-H CRC was 
significantly associated with a high density of CD68 
+ tumor-infiltrating macrophages, a special subtype of 
MDSC.62 A study by Hamada et al. found that the 
presence of F. nucleatum in CRC tissues was 

associated with MSI, lower-level tumor-infiltrating 
lymphocytes (TIL), and poor clinical outcomes.81 

Therefore, F. nucleatum may promote immune eva
sion by suppressing anti-tumor immune responses in 
MSI-H CRC. Moreover, the F. nucleatum derived 
FadA can interact with E-cadherin to promote CRC 
cells proliferation.74 This may be relevant to serrated 
lesions, as altered expression and localization of 
E-cadherins and its associated β-catenin have been 
described in hyperplastic polyps and serrated 
adenomas.82 The change in E-cadherin expression 
may be related to epithelial remodeling and stratifica
tion implicated in serrated adenoma formation.

Finally, F. nucleatum can also impact serrated car
cinogenesis by generating a pro-inflammatory micro
environment. Lipopolysaccharide (LPS) is a virulence 
factor present on F. nucleatum, which is recognized by 
Toll-like receptors to activate the TLR4/MYD88 path
way, leading to nuclear factor-κB (NF-κB) activation64 

Figure 3. Potential mechanisms of gut microbiota dysbiosis on serrated neoplasm formation. F. nucleatum presents the virulence 
factors of FadA,74 Fap275 and LPS,64 mediating its invasion and the promotion of serrated tumors. F. nucleatum can increase cell 
proliferation by binding of FadA74 to E-cadherin to activate the Wnt/β-catenin pathway.74 The TLR4/MYD88 pathway is stimulated in 
response to LPS on F. nucleatum,64 activating NF-κB64 and resulting in a pro-inflammatory microenvironment.64,66,74,76,83,84 F. 
nucleatum modifies the tumor microenvironment by attracting MDSC76 and suppressing anti-tumoral immune responses.60,81 

MDSCs can produce ROS,76–78 inducing MLH1 methylation79 and leading to MSI.61,80 Other microorganisms, like spirochetes,4,56 may 
also participate in the serrated pathway of cancer formation. EGFR signaling activation was observed in human-serrated polyps70 and 
the role of gut microbiota was confirmed in transgenic HBUS mice.72,73 Subsets of cecal PDGFRA+ fibroblasts are activated by IL1B 
released from inflammatory macrophages during an early stage of serrated lesions development.73 Proinflammatory genes and MMP3 
are upregulated in activated fibroblasts, which can promote inflammation and SP development by facilitating HBEGF/EGFR signaling.73 

Abbreviations: Fap2, F. nucleatum autotransporter protein 2; LPS, lipopolysaccharide; FadA, F. nucleatum adhesin; NF-κB, nuclear factor- 
κB; MDSC, myeloid-derived immune cell; ROS, reactive oxygen species; MLH1, mutL homolog 1; MSI, microsatellite instability; EGFR, 
epidermal growth factor receptor; HBEGF, heparin-binding epidermal growth factor-like growth factor; PDGRFA+, platelet-derived growth 
factor receptor alphaþ positive; MMP3, matrix metallopeptidase 3.
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and release of inflammatory cytokines such as TNF-α, 
IL-6, IL-8, IL-18.64,66,74,76,83,84 IL8 was upregulated in 
MSI-H CRC.64 Inflammation reduces the enzymatic 
activity of mismatch repair (MMR) proteins and 
causes MLH1 silencing, leading to MSI.85 The poten
tial F. nucleatum associated mechanisms involved in 
the pathogenesis of serrated neoplasm is presented in 
Figure 3.

Conclusion and future perspectives

This review summarized the potential association 
between the gut microbiota and the serrated pathways 
and proposed putative mechanisms of how gut 
microorganisms might participate in colorectal carci
nogenesis. Although serrated lesions-derived CRC is 
not the most common type of CRC, its invasiveness 
and relatively favorable response to target therapy and 
immunotherapy render it a distinct patient group to 
be further studied. Most interval cancers in CRCs are 
proximal tumors with molecular features of MLH1 
methylation, MSI-H, CIMP-H and BRAF mutation, 
and these patients are often diagnosed at advanced 
stages, with poor prognosis and low survival rates. 
Early detection of these serrated lesions as premalig
nant precursors is essential for clinicians. Besides 
histological and molecular features, the gut micro
biota emerges as a critical environmental factor that 
should be studied to improve the tumor biology, 
diagnosis, and treatment response of this cancer sub
type. Further studies would be necessary to determine 
the exact role of the gut microbiota in the serrated 
neoplasia pathway with specific murine models, such 
as the BRAFV637E mutant mice,86,87 and to identify 
specific biomarkers for screening, diagnosis, prog
nosis, and prediction of serrated cancers.
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MGMT, O-6-methylguanine-DNA methyltransferase;
MLH1, MutL homolog 1;
MMP3, matrix metallopeptidase 3;
MMR, mismatch repair;
MSI, microsatellite instability;
MSI-H, high-level MSI;
MSI-L, low-level MSI;
MSS, microsatellite stability;
MVHP, microvascular hyperplastic polyp;
NF-κB, nuclear factor-κB;
PDGRFA+, platelet-derived growth factor receptor alphaþ 

positive;
ROS, reactive oxygen species;
SAC, serrated adenocarcinoma;
SSL, sessile serrated lesion;
SSL-HGD, sessile serrated lesion with high-grade dysplasia;
TIL, tumor-infiltrating lymphocytes;
TSA, traditional-serrated adenoma;
TSA-HGD, traditional-serrated adenoma with high-grade 

dysplasia;
TSG, tumor suppressor genes.
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