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Damage to the optic nerve and the death of associated retinal ganglion cells (RGCs) by
elevated intraocular pressure (IOP), also known as glaucoma, is responsible for visual
impairment and blindness in millions of people worldwide. The ocular hypertension (OHT)
and the deleterious mechanical forces it exerts at the back of the eye, at the level of the optic
nerve head/optic disc and lamina cribosa, is the only modifiable risk factor associated with
glaucoma that can be treated. The elevated IOP occurs due to the inability of accumulated
aqueous humor (AQH) to egress from the anterior chamber of the eye due to occlusion of the
major outflow pathway, the trabecular meshwork (TM) and Schlemm’s canal (SC). Several
different classes of pharmaceutical agents, surgical techniques and implantable devices
have been developed to lower and control IOP. First-line drugs to promote AQH outflow via
the uveoscleral outflow pathway include FP-receptor prostaglandin (PG) agonists (e.g.,
latanoprost, travoprost and tafluprost) and a novel non-PG EP2-receptor agonist
(omidenepag isopropyl, Eybelis

®
). TM/SC outflow enhancing drugs are also effective

ocular hypotensive agents (e.g., rho kinase inhibitors like ripasudil and netarsudil; and
latanoprostene bunod, a conjugate of a nitric oxide donor and latanoprost). One of the most
effective anterior chamber AQH microshunt devices is the Preserflo

®
microshunt which can

lower IOP down to 10–13mmHg. Other IOP-lowering drugs and devices on the horizon will
be also discussed. Additionally, since elevated IOP is only one of many risk factors for
development of glaucomatous optic neuropathy, a treatise of the role of inflammatory
neurodegeneration of the optic nerve and retinal ganglion cells and appropriate
neuroprotective strategies to mitigate this disease will also be reviewed and discussed.
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INTRODUCTION

Human and animals heavily rely on good vision to perform their
daily tasks and for survival, and indeed eyesight is undoubtedly
the most valuable of our precious senses. The eyes being windows
for the brain is apt since 80% of the external information reaching
the neural networks comes in from the visual system. Thus, visual
impairment in any form has a devastatingly negative impact on
most people whose greatest fear is blindness. Sadly, the World
Health Organization (WHO, 2019) reports that due to increasing
poverty, poor nutrition, pollution, smoking, reduction in natural
resources, diminishing supply of affordable basic hygiene and
healthcare products at a global level and lack of timely diagnosis,
the incidence of poor vision and blindness continues to rise.
Unsurprisingly, Africa, Asia and South America represent the
nations where this situation continues to worsen. However, ready
supply of rich foods and a rising tide of obesity in the developed
countries also is burdening healthcare systems and increasingly
causing a rise in ocular disorders and diseases. Development of
cataracts and other refractive errors such as myopia account for
the major causes of blindness on our planet. However, the
incidence of glaucoma, an optic neuropathy comprising several
different forms, is the second leading cause of blindness
worldwide affecting nearly 80 million patients and which is
expected to debilitate >112 million by 2040 (Tham et al.,
2014; Flaxman et al., 2017). More than 195 million suffer
from age-related macular degeneration (AMD; both wet and
dry forms) and 145 million from diabetic retinopathy.
Contextually, the estimated societal economic burden imposed
by visual impairment/blindness just in the United States is >$16
billion/annum when accounting for decreased quality of life,
disability, morbidity and lost overall productivity. With an
increasingly aging world population, ophthalmic disorders
represent a rising healthcare issue of huge proportions
worldwide (WHO, 2019).

ARCHITECTURE OF THE ANTERIOR
CHAMBER OF THE EYE

Before delving into the pathological basis of glaucoma, it is
necessary to describe the anatomical structures and the
functions of the visual axis. The mammalian eye is exposed to
the outside world somewhat unprotected although the eye socket
offers some protection. Similarly, the protective thick white
fibrous outer layer (sclera) of the eyeball affords the eye its
shape while insulating the interior components from possible
damage. The transparent cornea at the front of the eye consists of
five layers of different cell types and represents a specialized
scleral tissue (DelMonte and Kim, 2011). The conjunctiva is an
extension of the lateral parts of the cornea and sclera but it is
highly vascularized (unlike the cornea) and ends up as the tissue
lining the underside of the eyelids (Weingeist, 1973). Sitting
inside a capsular “pocket” and suspended by ligaments is the
lens inside the eye a few centimeters behind the corneal
endothelial cell layer. Suspended in front of the lens is the iris
that forms the pupil where the iris sphincter muscle contracts or

relaxes to regulate the amount of light passing to the lens. Just
lateral to the lens ligaments is the ciliary body (CB; Smith, 1973)
composed of the ciliary processes (CP)/ciliary epithelium (CE)
and the ciliary muscle (CM) which is attached to the lens to allow
accommodation (Figures 1A,B, 2A,B). The space between the
lens and the cornea is the anterior chamber of the eye which is
filled with a watery solution (aqueous humor [AQH]) which is
produced by the CP/CE of the CB (Civan and Macknight, 2004).
Together with the sclera and cornea (and the vitreous humor in
the posterior chamber behind the lens [see ahead]), the AQH
helps maintain the overall shape of the eyeball.

The AQH also nourishes the cells lining the ANC of the eye as
it percolates through the ANC to exit via the angular space
between cornea and iris via a filtration system, trabecular
meshwork (TM), that is connected to the Schlemm’s canal
(SC) that allows the AQH to pass into the veinous circulation
via series of complex plexi of smaller vessels (Figures 1A,B,
2A,B). Under normal physiological conditions the amount of
AQH produced (∼2 µL/hour) by the non-pigmented cells of the
CE equals the amount draining from the ANC, and thus
homeostasis is achieved. Recent single cell-based transcriptome
research has revealed that at least eight different types of cells
reside within the TM/SC outflow pathway and as many as seven
sub-types within the UVS pathway in human andmonkey eyes with
mice and pigs showing similar expression patterns (van Zyle et al.,
2020). The filtration area was comprised of two-types of TM cells
(expressing known marker genes such asMYOC, MGP and PDPN),
SC cells and residentmacrophages. However, the structural elements
of the TM were composed of Schwalbe’s line cells (TM-beam cells;
two-types expressing genemarkers FABP4 andTMEFFs) in the non-
filtering area of the TM around the juxtacanicular region. The
juxtacanicular cells differentially expressed various genes
including CH13L1, ANGPTL7, RSPO4, FMOD and NELL2.
Interestingly, SC cells displayed a profile made up of both
lymphatic endothelia and blood macrophages. Lastly, there were
differences in the genetic expression profiles of TM cell-types (e.g.,
MYOC, FOXC1, PITX2, CYP1B1, LOXL1, ANGPT1 and EFEMP1)
and SC cells (e.g., CAV1, CAV2, TEK, PRSS23, ANGPT2), with
differences extending to genes involving OHT-related high IOP vs
controls. Differences were also observed in RGCs genes which were
unrelated to elevated IOP. Therefore, the collective studies from
several groups highlight the fact IOP generation and regulation are
mediated by a complex array of cell-types in the outflow pathways,
and that these elements appear to be well conserved across multiple
species Liton et al., 2009; Liu et al., 2016; Kizhatil et al., 2014; Stamer
et al., 2015; Sathiyanathan et al., 2017; Carnes et al., 2018; Patel et al.,
2020; van Zyl et al., 2020).

Additional single-cell transcriptomic investigations of human
ANC cells revealed up to twelve distinct cell-types (Patel et al.,
2020). Of the TM cells, myoblastic and fibroblastic signatures
were obtained yielding a Schwann cell and macrophagic profile of
genes. In contrast, the SC cells exhibited a more lymphatic/blood
vasculature genetic signature (Patel et al., 2020). These features
correlate well with the ability of TM cells to contract/relax
(Wiederholt et al., 2000), and their ability to phagocytose
cellular debris, ECM and chemical agents (Alvarado et al.,
1981; Alvarado et al., 1984; Grierson and Howes, 1987;
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Matsumoto and Johnson, 1997; Sherwood and Richardson,
1988), and for the SC pathway cells to drain away the filtered
AQH to the veinous circulation (Thomson et al., 2014; Bernier-
Latmani and Petrova, 2017; Acott et al., 2020).

In contrast, the posterior segment of the eye behind the lens is
filled with a jelly-like material (vitreous humor [VH]), and this
chamber is substantially larger than the ANC. The VH, composed
of many different proteins and water, also helps in shaping the

FIGURE 1 |Outline of the basic overall anatomy of the human eye illustrating some of the key features discussed in the text. (A). In (B), the key elements of the AQH
synthetic machinery (ciliary procesess), and AQH outflow via the trabecular meshwork (TM conventional outflow) and via the uveoscleral pathway from the anterior
chamber are shown. Note: none of the elements shown are to scale.

FIGURE 2 | A pictorial view of the eye structures (A) with special reference to retinal architecture showing the various types of cells and their relative positions (B).
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eyeball and also provides much cushioning and protection to the
retina that lines the inside of sclera at the back of the eyeball, and
it probably is also involved in removing some of the waste
products of the retina. Just as the cornea at the front of the
eye is composed of many cell layers, the retina is highly complex
and contains many specialized cell-types.

ARCHITECTURE OF THE RETINA AND
OPTIC NERVE

Since glaucoma results from structural and functional failures at
multiple levels throughout the visual system, it is important to be
aware of the composition and organization of the various
components. In the rear of the human eyeball, the retina
contains many different types of cells that are also essentially
transparent such that light reaches the back of the eye and
penetrates to the deeper layers of the retina where the photo-
sensitive cells (photoreceptors; rods and cones) reside. Whilst
cones are concentrated in a central region of the retina called
fovea, the rods are mostly located in the peripheral regions of the
retina. Whereas the cones are specialized for high acuity tasks like
reading and color perception, rods are responsible for night vision
and respond best to dim light (Grossniklaus et al., 2015).

The jelly-like VH fills the majority of the posterior segment of
the eye. At the back of the eye, the VH is separated from the

retinal tissue by the inner limiting membrane. Next comes a
multilayered retinal nerve fiber layer (RNFL) composed of the
axons of the RGCs that converge at the optic nerve head (ONH)/
optic disc area (Herrera et al., 2019), pass through a delicate
tissue (lamina cribosa; LC; Daguman and Delfin, 2018; Figures
3A,B) at and behind ONH and are bundled together to form the
optic nerve that exits the eyeball. Behind the RGCs (Russo et al.,
2016; Detwiler 2018) are several layers of interneurons
comprising bipolar, amacrine and horizontal cells followed
by the photo-sensitive photoreceptors (rods and cones) and
then the retinal pigment epithelial (RPE) cells (Figures 1A,B,
2A,B) (Vecino et al., 2016; Grünert and Martin, 2020). Muller
glial cells run the full length of the retina anteriorally from the
RPE cells to the RGCs. The RPE cells are seperated from the
capillaries of the choroidal circulation by the outer limiting
membrane (Bruch’s membrane) (Figures 1A,B, 2A,B). Each
optic nerve travels to the optic chiasm and crosses over to reach
the contralateral area of the thalamic brain nuclei. The latter
process the information and send it on to the visual cortex
thereby conveying the visual signal information from the RGCs
to the brain.

The retina is a high energy-demand tissue and it receives
nutrients and oxygen from the retinal arteries and the choroid
(Kiel 2010; Ansari and Nadeem, 2016). The blood supply to the
eye originates from the internal carotid artery as the ophthalmic
artery whose branches include the central retinal artery, the short

FIGURE 3 | This figure depicts the effects of ANC fluid pressure (IOP) being radiated out to all parts of the eyeball. In OHT the elevated IOP (A) grossly and
deleteriously affects the weak areas of the posterior globe at the level of the ONH/LC. The normal structural integrity of the LC and ONH area yields a small optic cup to
optic disc ratio (B). When the LC/ONH tissues are damaged due to mechanical stress-induced remodeling, the LC area becomes excavated and the optic cup enlarges
leading to a significantly increased cup to disc ratio (C). Additionally, the RGC axons are reduced and the retinal vasculature becomes displaced and causes
potential ischemic conditions in the retina.
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and long posterior ciliary arteries, and the anterior ciliary arteries.
The central retinal artery (CRA) bends many times before
reaching the optic disc and it, together with the short
posterior ciliary arteries provide blood supply to the retina.
The CRA travels in or beside the optic nerve as it enters the
sclera at the back of the eye, and from where it then branches out
to supply the layers of the inner retina which are closest to the
inner limiting membrane/VH. The central retinal vein and vortex
veins collect the venous blood (Kiel 2010; Ansari and Nadeem,
2016). The latter veins merge with the inferior and superior
ophthalmic veins that drain into the pterygoid venous plexus and
the facial vein. The retinal venules and veins merge into the
central retinal vein (CRV) which exits the eye with the optic nerve
parallel and counter-current to the CRA (Kiel, 2010; Ansari and
Nadeem, 2016) (Figure 4A).

The dura, arachnoid and the pial membrane sheaths
encase the optic nerve (Anderson, 1973) which is
composed of three zones referenced relative to the LC.
While collaterals from the choroid and retinal circulation
supply the prelaminar zone (i.e., inside the eye relative to the
LC), short posterior ciliary and pial arteries supply the
laminar zone. Lastly, the post laminar zone is supplied by
the pial arteries. Venous drainage occurs via the CRV and the
pial vein (Kiel, 2010; Ansari and Nadeem, 2016) (Figure 4A).
For the optic nerve vessels, the laminar zone marks the
transition from exposure to the IOP to the cerebral fluid
pressure (intracranial fluid pressure; ICFP) within the optic
nerve sheath.

THE PHYSIOLOGICAL ASPECTS OF VISION

Much joy and happiness comes to us through our eyes as we
appreciate the beauty around us, especially the display mother
nature arranges for us. It is no wonder then that eyesight is so
precious.

At a macrolevel, vision occurs when light entering the cornea
passes through the pupil and is focused by the lens onto the
retinal photoreceptors. Here, many complex biochemical and
electrical signals are created and processed as neurotransmitters
are released at synapses and they activate receptors/ion-channels
to relay the information within 0.1–0.2 milliseconds. Thus, as the
photoreceptors absorb the light, Na+-channels are closed to allow
intracellular levels of Na+ ions to build-up and the cell membrane
potential becomes positive. Now, the Ca2+-channels are closed,
and inhibitory transmitter levels are decreased which removes the
inhibition and the bipolar cells are stimulated/excited creating an
actional potential in the RGCs which are sent down their axons to
the thalamic brain nuclei. Defects in themembrane repolarization
process and locally produced endothelin impairs axonal transport
and deprives RGCs of neurotrophin support from the brain
(Stokely et al., 2002; Fischer et al., 2019).

The RGCs are separated from the VH by a thin transparent
inner limiting membrane. Neurons in the inner two retinal layers
exhibit complex receptive fields that allow them to detect small
changes in contrast reflecting shadows or edges of objects. The
RGCs collect all this array of information, including color, and
transmit it to the brain down their axons, which are bundled

FIGURE 4 | The detailed anatomical location and distribution of ocular blood vessels (A), and the interplay between the resident cells in the retina and blood-borne
immune cells infiltrating into the retina (B) under GON conditions are shown. The activated microglia and astrocytes elaborate various injurious cytokines and up-regulate
TLRs resulting in inflammatory neurodegeneration.
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together to form the optic nerve. The optic nerves from each eye
cross over at the optic chiasm as they traverse to the first brain
relay station, the lateral geniculate nucleus (LGN) of the thalamus
(Liang et al., 2018; Masri et al., 2020). The optic nerve also
provides input to the pretectum (that controls pupillary response
to light) and to the superior colliculus (SC) which is responsible
for moving the eyes in response to ambulatory signals. The
information about the image is passed from the thalamus to
the visual cortex for final decoding and visual perception (Kravitz
et al., 2013). Signal transmission from the retina to the brain
occurs in approximately 0.15 s, and information transfer happens
at roughly 10 million bits per second and vision occurs.

As described above, most optic nerve projections from the
retina traverse to the LGN which sorts retinal signals into
parallel streams containing color, structure, motion and
contrast. Since the LGN is also structurally layered, its top
four parvocellular layers handle color and fine structure,
while the bottom two magnocellular layers process contrast
and motion. Not surprisingly, the primary visual cortex is also
highly organized to receive LGN inputs to maintain fidelity and
complexity of the information being sent to it. The LGN
magnocellular and parvocellular layer cells send long axons
to the ancient part of the brain comprised of the primary visual
cortex (PVC) (Masri et al., 2020). Here in the V1 region of the
PVC, the cells are arranged in complex ways which permit the
visual system to assign the objects being perceived in a spatially
precise manner. Specifically, these V1-PVC cells are organized
so that a direct mapping of RGCs is essentially and precisely
imprinted in the visual cortex on a point-by-point basis in a
columnar pattern of connections alternating between the left
and right eyes. This allows the V1 area of PVC to position
objects perceptually in the horizontal and vertical axes. Rapid
comparison of the signal inputs from the two eyes by V1-PVC
cells allows perception of depth of vision thereby rendering the
images into three-dimensions. As V1 cells sharpen the lines and
edges of images, the cells of V2 region of PVC refine the
coloration of the object images. Color and form perception
in V3 and V4 regions of PVC, inferior temporal lobe recognition
of face and object, and motion and spatial awareness in the
parietal lobe of the cortex cover the majority of the permutations
of visual perception. The above illustrates how intricate and yet
efficient and strong the visual system is in so many animals and
humans. Such is the wonderous tale of light entering the eye and
the miracle of seeing the outside world around us. It is therefore
imperative that we do not take sight for granted and do
everything possible to preserve and cherish it. By actively
researching into the causes of vision loss and finding suitable
treatment modalities, we can all try to give the gift of sight to
those unfortunate people in our communities who are afflicted
with visual impairment.

VARIOUS FORMS OF GLAUCOMA

Focusing on the ANC of the eye will now permit a detailed
description and discussion about ocular hypertension (OHT) and
glaucoma. This ocular disease is represented by a group of

pathological conditions which all culminate in the death of
RGCs and eventual loss of much of their axonal connections
to the brain structures mentioned above (Weinreb and Khaw,
2004; Quigley, 2011; Weinreb et al., 2014; Jonas et al., 2017;
Sharif, 2017; Bhandari et al., 2019). The disease is most often
associated with elevated intraocular pressure (IOP), and results in
gradual loss of peripheral vision in the early stages, with eventual
impact on central vision before irreversible blindness if left
undiagnosed and untreated. Sadly >50% of the patients who
eventually learn about their glaucoma were unaware of their
ocular condition WHO, 2019). Diagnostic imaging includes
stereoscopic photos and optical coherence tomography (OCT)
of the optic nerve for characteristic structural changes at the
retinal nerve fiber layer (RNFL), while visual field testing helps to
detect functional changes in vision (Quigley, 2011; Weinreb et al.,
2014; Jonas et al., 2017; Sharif, 2017; WHO, 2019; Burton et al.,
2021).

Many different forms of glaucoma are known (Zukerman
et al., 2020). The most common form is primary open-angle
glaucoma (POAG) where the angle between the cornea and the
iris is normal but the drainage of the AQH via the TM/SC outflow
pathway is slowed down or is blocked, and where the uveoscleral
(UVS) outflow pathway is poorly operational and results in
elevated intraocular pressure (IOP). In primary closed-angle
glaucoma (PACG; Sun et al., 2017; Chan et al., 2019; Wang
et al., 2019), the iris is displaced and it obstructs the AQH egress
from the ANC to rapidly raise IOP (Gazzard et al., 2003) (Figures
1A,B). Both these forms of glaucoma cause OHT by elevating the
IOP which then damages the retina and the optic nerve at the
back of the eye. In normotensive glaucoma (NTG; Mallick et al.,
2016), which is very common in Japan, the eye pressure is in the
normal range (14–21 mmHg) but the patient continues to lose
vision due to other deleterious factors (Collaborative Normal-
Tension Glaucoma Study Group, 1998a; Collaborative Normal-
Tension Glaucoma Study Group, 1998b). In some newborn
children the ANC eye pressure is abnormally elevated and this
leads to congenital glaucoma.

Secondary glaucomas, as the name implies, occurs due to an
ocular insult or due to another medical problem such as ANC
inflammation (causing uveitic glaucoma) or due to steroid-
induced accumulation of complexed extracellular matrix
proteins in the TM that prevent AQH efflux, for example.
Neovascular glaucoma occurs when abnormal growth of new
blood vessels obstructs the AQH drainage pathways in the ANC
and it is usually caused by diabetes or high blood pressure.
Pigment dispersion syndrome (pigmentary glaucoma) results
from aberrantly released melanin granules from the iris which
then occlude the AQH drainage pathways thereby causing OHT.
Myopic young white men are prone to pigment dispersion
syndrome than other people. The most well known animal
model of pigmentary glaucoma is the DBA/2J mouse and its
variants (Williams et al., 2013; Cooper et al., 2016; Harder et al.,
2020). Lastly, there is exfoliation glaucoma that occurs in some
patients who have exfoliation syndrome (Ritch et al., 2003;
Anderson et al., 2018), a disorder that causes detachment of
cells and other debris from the ANC to clog the TM/SC which
blocks AQH fluid from draining, thereby raising the IOP. Recent
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research shows that exfoliation glaucoma may have a genetic
linkage to disease (Aung et al., 2018).

Inflammatory and immunogenic elements produce cardinal
signs and symptoms of uveitis, including in uveitic glaucoma
(Kwon et al., 2017). Anterior uveitis includes inflammation of the
iris and ciliary body within the ANC of the eye and can account
for up to 90% of all uveitic episodes reported by patients and
healthcare professionals. This disorder can be episodic or chronic
in nature. Intermediate uveitis, also known as pars planitis,
consists of vitritis—vitreous cavity cell inflammation due to
deposition of inflammatory cells in the vitreous. Regardless,
combined uveitic disease is the 3rd largest cause of blindness
worldwide, and glaucoma associated with uveitis is a very serious
disease requiring immediate attention since the IOP can rise
suddenly and to a high magnitude (Kwon et al., 2017).

The elevated IOP caused by uveitis and the IOP-spikes
associated within these acute or chronic episodes of
intraocular inflammation can cause rapid damage to the optic
nerve unless the high IOP is reduced quickly and thenmaintained
at a relatively low level (Siddique et al., 2013). As mentioned
above, since systemic inflammation and abnormal immune
responses can greatly contribute to uveitic glaucoma, the
patient requires attention by both an ophthalmologist and a
rheumotologist. Glaucoma surgery is usually required to
rapidly reduce the elevated IOP, coupled with
immunosuppression and/or treatment with corticosteroids to
prevent visual impairment and eventual vision loss. Non-
infectious posterior uveitis, which is rarer than the anterior
uveal uveitis, can now be treated using intravitreal injection of
sirolimus, an immunosuppresant that inhibits the mammalian
target of rapmycin (mTOR) (Nguyen et al., 2011). Such treatment
modalities may be useful for treating uveitic glaucoma once the
initially high IOP has been reduced somewhat. Likewise, in a form
of pigmentary glaucoma model (DBA/2J mouse model), it
appears that lengthening of the nodes of Ranvier in the optic
nerve and redistribution of Na+-channel precede axonal transport
deficits and eye-brain signaling (Pease et al., 2000; Ito and Di
Polo, 2017; Crish and Calkins, 2011; Crish et al., 2010; Crish et al.,
2013), features that parallel changes seen early on in multiple
sclerosis (MS) axonopathy (Smith et al., 2018; McGrady et al.,
2020). These deficits could be abrogated by a week of systemic
immunosuppressant therapy with fingolimod, a sphingosine-1-
phosphate receptor agonist, a drug that is used in relapsing-
remitting multiple sclerosis disease, thus offering another
therapeutic approach to combat optic nerve damage due to
pigment accumulation in the ANC of the eye that prevents
AQH drainage and results in OHT. Mycophenolate, sustained
release corticosteroids (Borkar et al., 2017), other
pharmacological agents, trabeculectomy and AQH drainage
shunts (Kwon et al., 2017), along with new generation
biologics (Thomas et al., 2019) provide much hope for
patients who succumb to non-infectious posterior uveitis, and
uveitis-associated OHT/glaucoma (Kesav et al., 2020).

If we focus on the two chief forms of glaucoma impacted by
direct features and events in the ANC of the eye, we can
summarize the major risk factors associated with POAG and
PACG. Thus, decades of research have concluded that POAG

risks factors include: elevated IOP (ocular hypertension, OHT),
low intracranial fluid pressure, low retinal perfusion, advanced
age, African-Caribbean-Latin American ancestry, family history
of glaucoma, thin corneas, myopia, diabetes, high blood pressure
and low diastolic pressure. PACG occurs suddenly when the iris is
displaced and blocks the AQH drainage pathway causing a rapid
elevation of IOP, perhaps as high as 70 mmHg. Its clinical
manifestations include nausea, blurred vision, ocular pain,
cloudy corneas and halos around lights. The risk factors linked
to PACG include: advanced age, shallow ANC angles, Asian-
Eskimo ancestry, family history of PACG, hyperopia and female
gender.

Several clinical trials conducted in the late 1900s early 2000s
revealed that lowering of the IOP is highly beneficial and directly
slows down and can prevent glaucoma progression in most forms
of glaucoma (GLT, 1995; Collaborative Normal-Tension
Glaucoma Study Group, 1998a; Collaborative Normal-Tension
Glaucoma Study Group, 1998b; AGIS, 2001; Lichter et al., 2001;
Heijl et al., 2002; Kass et al., 2002; Gordon et al., 2002; Leske et al.,
2007). Consequently, clinical medicine has focused on lowering
and controlling IOP to help preserve sight of patients with
glaucoma and these aspects will be discussed ahead. However,
glaucoma etiology is complex and a number of
pathophysiological events converge to induce RGC death and
RGC axonal loss: elevated IOP (OHT), retinal ischemia, oxidative
stress in the TM/SC and retina, neurotrophin and energy
deprivation, and toxicity due to locally elevated levels of
glutamate, endothelin, cytokines, nitric oxide (and perhaps
carbon monoxide), and proteases (Bucolo and Drago, 2011; Fu
and Sretavan, 2012; Evangelho et al., 2019) (Figure 4B). These
aspects will be discussed below.

ACCUMULATED AQUEOUS HUMOR
DYNAMICS IN THE ANTERIOR CHAMBER
(ANC) RELATED TO PRIMARY
OPEN-ANGLE GLAUCOMA

Since OHT due to excess AQH accumulation in the ANC is the
root cause of POAG, this requires a detailed appraisal. As
mentioned earlier, the CE (mainly non-pigmented ciliary
epithelial cells [NPCECs]) of the CP within the CB generate
the clear AQH fluid by passive diffusion, ultrafiltration and
secretion, with the latter being the predominant event
(reviewed by Civan and Macknight, 2004). Since the ANC is
avascular, the AQH flowing through the ANC has very important
functions that provide a nurturing (provision of O2, glucose and
growth factors) and a stable environment (achieved by balancing
nutrient provision and removal of waste products) for the cells/
tissue lining the ANC (Kaufman, 2020). As shown in Figure 1B,
POAG begins most frequently with an imbalance of AQH
production by the CE and its drainage from the ANC of the
eye via the conventional (TM/SC) and unconventional
(uveoscleral, UVS) outflow pathways (Acott et al., 2020; Wang
et al., 2020). TM outflow of AQH accounts for 70–90% and UVS
outflow for 10–30% of total AQH drainage from the ANC.
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Research has shown that TM/SC-mediated AQH efflux is
pressure-dependent, and that IOP is mainly due to the back-
pressure generated due to blockage of this system (Acott et al.,
2020; Wang et al., 2020). Since AQH ultimately exits the eye via
collector channels of the TM/SC system and empties into the
intrascleral venous plexus, deep-scleral plexus, and into episcleral
vessels and thus the veinous circulation, the total resistance
within this collective group of channels/plexi/blood vessels
causes the elevation of IOP (Thomson et al., 2014; Kaufman,
2020). A closer look at the TM/SC structures (Abu-Hassan et al.,
2014; Figures 5A,B) illustrates that several different cell-types
coexist and that the majority of the resistance to AQH outflow
from the conventional system occurs at the innermost uveal
region, the middle corneal scleral region and the outermost
juxtacanalicular tissue which essentially becomes obstructed
during development of OHT/POAG.

Under normal circumstances, especially in young eyes, the
TM cells are abundant and actively phagocytose cellular debris
and other accumulating substances such as collagen and
fibronectin within the extracellular matrix (ECM; De Groef
et al., 2016) to keep the AQH flow constant as the TM filters
the AQH in a relatively passive manner. The SC endothelial cells
appear to actively transport AQH by generating pores across their
surfaces, and perhaps via aquaporins, thereby helping AQH exit
the ANC (Acott et al., 2020; Wang et al., 2020). During aging and
due to other local deleterious events and processes and ECM
accumulation, the number of TM cells decreases as does their
remaining phagocytic/autophagic activity (Alvarado et al., 1981;
Alvarado et al., 1984; Grierson and Howes, 1987; Matsumoto and

Johnson, 1997; Sherwood and Richardson, 1988). Thus, in
normal eyes, AQH generation is maintained at a constant rate
and a stable IOP is achieved by changes in regulation of AQH
outflow/alteration of resistance in the outflow pathway. Normal
average IOP is 15 mmHg and >90% of human subject have IOPs
between 10 and 21 mmHg. However, in POAG, it is the AQH
outflow pathway that is compromised (due to ECM/cellular
debris accumulation due to increased transforming growth
factor-β (TGF-β) (Tripathi et al., 1994; Hasenbach et al., 2016;
Rao and Stubbs, 2021), aberrant cross-linking of ECM which
stiffens the TM cells (Yemanyi et al., 2020), possible defects in the
SC pore/aquaporin system (Wang et al., 2020), increased
resistance at the SC due to angiopoietin/Tie-2 pathway defects
(Thomson et al., 2014; Thomson et al., 2019; Bernier-Latmani
and Petrova, 2017) and the IOP continues to rise due to the
constant addition of AQH to the ANC from the CB. It is
estimated that the veinous blood vessel component of the
AQH drainage system accounts for <25–50% of total outflow
resistance whereas the juxtacanalicular region of the TM/SC area
is the major contributor providing >50–75% of total outflow
resistance in POAG. However, the resistive impact of distal AQH
drainage vessels on IOP probably increases due to their
constriction under pathological conditions due to bloodborne
and/or AQH-borne vasoconstrictor mediators such as reactive O2

species, thromboxane and endothelin. Even though TM/SC cells,
which have endothelial cell morphology and physiology, appear
to show an upregulated nitric oxide (NO) synthase and release the
vasodilator gaseous transmitter NO under pressure to
compensate for the increased resistance (Schneemann et al.,

FIGURE 5 | This figure shows the ANC and the location of the TM and SC relative to the cornea, iris and the ciliary body (A), and the more detailed juxtaposed
cellular features of the TM and the SC in relation to the AQH flow (B).
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2003), these measures may be insufficient to decrease the IOP and
these elements may overall be substantially down-regulated in
glaucomatous ANC. Furthermore, there may be a deficiency of
MMPs being released locally around the TM/SC resulting in
aberrantly diminished tissue remodeling and ECM accumulation
(De Groef et al., 2016). Also, as the IOP changes during the day
and night, IOP spikes and general fluctuations are more common
in glaucomatous eyes than in normotensive eyes (Bengtsson et al.,
2007; Caprioli and Coleman, 2008; Siddique et al., 2013; Kim and
Caprioli, 2018). It is believed that such irregular eye pressure
changes are highly detrimental to the visual system, and since
they occur mostly at night, it is imperative that these IOP
fluctuations (Jasien et al., 2019) are diminished as much as
possible in order to de-stress the vulnerable elements of the
retina/optic nerve at the back of the eye in the quest to
protect the RGCs and their axons from this glaucomatous
optic neuropathy (GON) (Sharif, 2017, 2018a,b) (Figure 6).

RETINAL/OPTIC NERVE COMPONENTS
PARTICIPATING IN GLAUCOMA
PATHOGENESIS
As noted above, even though the AQH dynamics imbalance in the
anterior segment of the eye is responsible for onset of POAG/

PACG, the whole visual system saccumbs to the overall disease.
Again, in order to better understand how glaucomatous damage
occurs, it is important to be aware of the anatomy of the retina
and the optic nerve.

The retina is a highly specialized structure that possesses a
diverse population of cells ranging from photoreceptors,
interneurons, retinal ganglion cells (RGC; both pigmented and
non-pigmented; Cruz-Martín et al., 2014; Sanes and Masland,
2015; Baden et al., 2016; Russo et al., 2016; Detwiler, 2018) and
contain three sub-types of glial cells which serve a diverse range of
functions. Glial cells were thought to be mainly structural
components of the retina (Figures 2A,B). However, cell
profiling has revealed distinct physiological and morphological
differences amongst them. Indeed, microglia, Muller cells
(Bringmann et al., 2006) and astrocytes are not passive
bystanders in the etiology of GON. Astrocytes are star-shaped
and appear similar to microglia though they are significantly
larger than the latter cells. Astrocytes are fairly stable in their
quiscient state and are homeostatic in their role, maintaining
blood-brain/blood-retina barriers, regulating blood flow,
recycling neurotransmitters, and maintaining synaptic
connections (Liu and Neufeld, 2003; Hernandez et al., 2008;
Williams et al., 2017c). Astrocytes perform these roles through
contacts with capillaries, neuronal cell bodies and RGC axonal
bundles in the rear of the retina and at the optic nerve level.

FIGURE 6 | The interplay between the biomechanical fluid pressure-induced stress from the ANC due to elevated IOP, the etiological elements (e.g., reduced
axonal transport and ischemia), and the final pathological features and end-points observed in POAG and other forms of glaucoma at the retinal/LC/ONH and brain levels
are depicted here.
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Sensing trauma or injury as from elevated IOP-induced
deformation of the ONH, astrocytes release glial fibrillary acid
protein (GFAP) (Inman and Horner, 2007). This results in the
formation of a scar that attempts to isolate the site of injury.
Additionally, the astrocytes chronically release various cytokines
which upregulate different genes and proteins needed in
summoning help and repairing the surrounding tissue (Liu
and Neufeld, 2003; Hernandez et al., 2008; Williams et al.,
2017c) (Figure 6).

Muller cells appear to be the true benefactor cells of the retina
and they are exclusive to the retina, being quite populous
(Bringmann et al., 2006). Their cell bodies are located in the
inner nuclear layer, but they extend their processes throughout
the retinal layers to ensure contact with the majority of the
resident cell-types they serve (Figure 2B). Under normal
circumstances, Muller glia retain their morphology and
physiology helping to maintain a stable local cellular
environment in the retina in terms of provision of nutrients,
maintaining ionic strength and pH (Reichenbach and
Bringmann, 2013; Goldman, 2014; Lust and Wittbrodt, 2018).
These cells also provide neurotrophins to neurons and
phagocytose local debris. They also ingest and recycle unused
local neurotransmitters and toxic waste, and they support and
maintain rods, cones and RPE cells. As with astrocytes, Muller
glia change their morphology and functions in the wake of
deleterious conditions within the retina such as hypoxia or
inflammation. They then begin releasing GFAP and upregulate
Toll-like-receptors (TLRs), and start secreting cytokines and
chemokines thereby signaling trauma to the eye surveillance
system(s) (Reichenbach and Bringmann, 2013; Goldman, 2014;
Lust and Wittbrodt, 2018).

Microglia represent the CNS-related macrophages that are
quiet surveyors of the local extracellular environment (Chen et al.,
2002) (Figure 4B). Beginning as monocytes, they enter the CNS
during early development and differentiate into resident
microglia that spread out throughout the brain, spinal cord
and the retina/optic nerve. They check on the health of the
neighboring cells as they move around. In the visual system,
these quiscent microglia become activated when they sense
ischemia, pathogenic infection, aberrant cell death in the
retina, at the ONH and/or the optic nerve (Neufeld, 1999),
and along with disturbances of the synaptic connections
within the brain relay nuclei (Lam et al., 2009; Ebneter et al.,
2010). The activated microglia (Yuan and Neufeld, 2000; Yuan
and Neufeld, 2001) now release nitric oxide (NO) (Neufeld, et al.,
1997), cytokines and chemokines which cause local vasodilation
and allow monocytes to infiltrate and transform into more
reactive glia thereby amplifying the inflammatory/
immunological response to injury/trauma in the visual axis
(Neufeld, 1999; Chen et al., 2002; Bosco et al., 2008; Bosco
et al., 2011; Wei et al., 2019; Rashid et al., 2019) (Figure 4B).
TLRs, major histocompatibility complex (MHC) recognition
molecules and complement activation also ensues (Borucki
et al., 2020).

Oligodendrocytes and Schwann cells represent additional
neuroglia relevant to the retinal-brain axis. The function of the
Schwann cells is to produce layers of insulating myelin that

encases each RGC axon, and provision of nutritients and
structural support to the Schwann cells and the axons befalls
on the oligodendrocytes (Fitzner et al., 2011). In this manner,
each RGC axon becomes myelinated, except in a small area
directly adjacent to the back of the eyeball where the axons
exit the rear of the eyeball. Bundling of the RGC axons results in
the formation of the optic nerve that crosses over at the optic
chiasm and travels on to the brain thalamic relay stations. This
unmylenated area of the optic nerve, together with the ONH at
the LC, and also the spaces in between the thicker myelin
segments along the optic nerve (nodes of Ranvier) are the
most delicate components within the visual system and
contribute to optic neuropathy/optic neuritis (Bastakis et al.,
2019). They are susceptible to injury from intrinsic and
extrinsic damaging factors and insults, including the stress and
strain brought on by the mechanical forces of elevated IOP in
POAG/PACG, especially IOP spikes (Siddique et al., 2013; Pan
et al., 2014; Tan et al., 2018; Sherman and Cafiero-Chin, 2019).
Lastly, other important retinal cells include amacrine and
horizontal cells which modulate communication between
photoreceptor- and the major neural cell-types, including
bipolar-cells and RGCs of which many types exist (Ou et al.,
2016; Vecino et al., 2016; Grünert and Martin, 2020). Early-stage
OHT alters the electrical transmission of signals from the RGS to
the thalamus (Bhandari et al., 2019), and this deficit increases
over time (Trivedi et al., 2019).

OCULAR HYPERTENSION/PRIMARY
OPEN-ANGLE GLAUCOMA AND FACTORS
INVOLVED IN RETINAL/OPTIC NERVE
DAMAGE

Globally, the predominant form of glaucoma is POAG (currently
∼54 million suffering) which represents ∼75% of all forms of
glaucoma. Primary closed-angle glaucoma (PACG) has the
second highest occurrence (∼23 million patients).
Unfortunately, Asian and African nations have the highest
number of POAG and PCG patients, greatly outnumbering
those afflicted with these glaucoma forms in Europe and
North America. Close to 5 million patients are projected to
have POAG in North America by 2040.

Akin to most chronic diseases, POAG has a age-related
occurrence with patients being diagnosed with this disease
almost exponentially between age 40 to age 80 in almost all
geographical locations. POAG is asymptomatic, the patient feels
no pain and is oblivious to the disease development since other
warning signs are all absent. This “silent thief of sight” makes its
detection and diagnosis difficult, and it is estimated that 50% of
future POAG patients remain undiagnosed. Additionally, during
early stages of POAG/PCG/NTG, the patient does not notice
much change in the vision and the brain compensates (Bham
et al., 2020) for losses of RGCs that have already occurred and are
happening (Weinreb et al., 2014; Jonas et al., 2017; Sharif, 2017;
Sharif, N. A. 2018). However, as the conditions progress, a
tipping-point is reached where the patient notices loss of
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peripheral (lateral) vision and objects observed appear
incomplete and/or become blurry and/or infrequent double
vision occurs (Crabb, 2016). Sadly, this signals the demise of
>400k RGCs and their axons in the affected eye of the patient
(Calkins andHorner, 2012). Ophthalmic examination of the POAG/
PCG afflicted patient, including optical coherence tomography
(OCT) (Quigley et al., 1989) and visual field tests (Harwerth and
Quigley, 2006; Sasaoka et al., 2008; Sponsel et al., 2014), reveal that
significant damage has occurred at the ONH (Burgoyne et al., 2005)
causing increased optic disc cupping (Downs et al., 2011), that the
retinal nerve fiber layer (RNFL) has thinned (due to RGC axon loss)
(Harwerth and Quigley, 2006; Soto et al., 2011; Yu et al., 2015; Tu
et al., 2019); and scotomas (dead zones) developed in the visual field
(Harwerth and Quigley, 2006; Sasaoka et al., 2008; Sponsel et al.,
2014). The level of IOP increase is well correlated with optic nerve
damage (Chauhan and Drance, 1992; Guo et al., 2005; Yohannan
and Boland, 2017; Torres and Hatanaka, 2019) and decrease in
retinal function (Parisi, 2003; Kasi et al., 2019; Torres and Hatanaka,
2019; Turkey et al., 2019). The patient’s vision loss begins to
accelerate and immediate treatment is required to retard further
visual impairment (Karaca et al., 2020). Initially the patient is
prescribed topical ocular eyedrops containing medicine (usually a
prostaglandin analog (Hellberg et al., 2001, 2002) but it may be beta-
blocker like timolol, betaxolol or levobetaxolol to lower the IOP in
the ANC of the eye (Weinreb et al., 2014). If the patient is
unresponsive or the IOP is poorly controlled, the physician will
switch patient to another type of IOP-lowering drug and may resort
to adjunctive therapies to achieve the desired IOP reduction using
fixed-dose combination products (Hollo et al., 2014). Lasering of the
TMmay be necessary to create holes for the AQH to egress from the
blocked TM system (Weinreb et al., 2014; Jonas et al., 2017). Surgery
may be necessary to implant an AQH shunt (Sehi et al., 2010;
Pahlitzsch et al., 2017; Sadruddin et al., 2019) that drains the AQH
from the ANC of the eye. Finally, if all fails the patient will undergo
direct physical surgery to literally create a hole and a flap (bleb) to
drain the fluid from the ANC (Bhandari et al., 1997; Vinod and
Gedde, 2021). These and newer treatment modalities to treat POAG
will be discussed later once the etiological aspects of POAG and
GON are described in more detail.

So, even though GON eventually results from the demise of the
RGCs and the elimination of the RGC-axonal connections to the brain,
in most instances the disease really begins in the ANC. How the afore-
mentioned cascade of events operates in OHT/POAG/NTG can be
described as follows based on our current understanding. The aging
processes and cellular dysfunctions brought on by mitochondrial
defects (Wentz-Hunter and Ueda, 2002; He et al., 2008; Izzotti
et al., 2011) causing energy deficiency within TM cells lead to their
senescence. Thus, a reduced TM cell population is left to perform the
AQH filtration and cleansing (Alvarado et al., 1981; Alvarado et al.,
1984; Grierson andHowes, 1987; Caballero et al., 2004; Babizhayev and
Yegorov, 2011). Additionally, the phagocytic (Sherwood and
Richardson, 1988; Matsumoto and Johnson, 1997; Zhou et al.,
1999) and autophagic activities (Munemasa and Kitaoka, 2015;
Porter et al., 2015; Stothert et al., 2016; Hirt and Liton, 2017) of the
remaining TM cells is also substantially reduced resulting in a build-up
of ECM(Teixeira et al., 2015; Shen et al., 2020) and other cellular debris
within the corneoiridial angle of the ANC of the eye (Gabelt et al.,

2005). The reduced perfusion of the ANC (Johnson, 1996) causes an
accumulation of cellular waste products and oxidized proteins like
lipofucin, ceramide and other lipid metabolites (Aljohani et al., 2013),
reactive O2 species (ROS; He et al., 2008), elevated levels of
homocysteine and reduced anti-oxidants (You et al., 2018), elevated
endothelin (Zhao et al., 2020), IL-6 and TGF-β1 in the AQH (Liton
et al., 2009; Perera et al., 2016). Furthermore, miR-29b is down-
regulated which increases ECM secretion (Luna et al., 2012), and
additional ATP is screted (Li et al., 2012), along with stimulation of
activation factor-4 all of which increase endoplasmic reticulum stress in
the TM cells (He et al., 2008; Izzotti et al., 2011; Kasetti et al., 2017)
causing TM cell death (Kasetti et al., 2020; Zhao et al., 2020; Ying et al.,
2021). Additionally, damaged or dying TM cells release numerous
deleterious compounds (e.g., nestin, A-kinase anchor protein, actin-
related protein 2/3 complex, numerousmiRNAs that negatively impact
the ANC) which increase cell aging, TM cell apoptosis and ECM
deposition (Izzotti et al., 2011) thus exacerbating the issues in theANC.
Additionally, as mentioned earlier, increased resistance at the SC
(Stamer et al., 2015; Wang et al., 2020) and distal veinous drainage
plexi resulting from upregulation of the angiopoietin/Tie-2 pathway
(Thomson et al., 2014; Thomson et al., 2019; Bernier-Latmani and
Petrova, 2017) also contributes to the overall OHT and eventual RGC
death (Figure 6).

In certain cases, topical ocular dexamethasome treatment for
ocular surface or ANC inflammation causes protein complexing
(Yemanyi et al., 2020) and formation of cross-linked actin networks
(Bermudez et al., 2017) and results in steroid-induced glaucoma.
Moreover, there’s evidence that accumulation of mutant myocilin
(Kasetti et al., 2016; Kasetti et al., 2021) and amyloid proteins (Orwig
et al., 2012), and IL-6-induced release of TGF-β1, which promotes
ECM deposition in the ANC (Liton et al., 2009) and causes secretion
of endothelin (Von Zee et al., 2012), causes IOP elevation.
Glaucomatous mutant myocilin suppresses autophay and
activates the IL-1/NFκB inflammatory cascade within TM cells
and some of them die (Itakura et al., 2015; Lynch et al., 2018).
All these processes coupled with other deleterious events in the TM/
SC reduces the flexibility of these structures (Borrás and Comes,
2009; Liu et al., 2016; Borrás, 2017; Wang et al., 2017) thereby
reducing their strength and capacity to filter and drain the AQH
from the ANC. The compromized mechanoelasticity (Overby et al.,
2014; Pang, 2021) of the TM/SC structures causes adverse gene
expression (Vittal et al., 2005) and further restricts AQH outflow
drainage (Acott et al., 2020). The resultant elevation of IOP and IOP
spikes (Asrani et al., 2000), as the eye tries to regain homeostasis,
starts to expand the eyeball as the fluidic pressure distorts the ocular
structural components throughout the eye, beginning at the cornea
and being transmitted to the rear of the eyeball (Gottanka et al.,
1997). This mechanical distortion severely stresses the fragile ONH
(Hernandez et al., 1989; Burgoyne et al., 2005; Downs et al., 2011; Xu
et al., 2014; Park et al., 2015; Quillen et al., 2020) and the LC (Lee
et al., 2013; Daguman and Delfin, 2018) at the back of the eye where
the optic nerve leaves the eyeball. Scleral stiffining at the level of the
ONH/LC (Coudrillier et al., 2016) prevents the latter tissues from
being able to absorb the pressure created by increased IOP and local
inflammation ensues. As the eye seeks to normalize the ocular
physiology, IOP spikes (Asrani et al., 2000) are generated and
these are even worse than the initial OHT, causing constriction of
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the optic nerve axons at the LC (Hollander et al., 1995) and thusmore
damage to the ONH/LC tissues (Coudrillier et al., 2016). Mechanical
pressure-sensitive (MP-S) cell-types such as LC cells, ONH astrocytes
and peripapillary scleral cells detect the increased IOP, and perhaps
also the lower intracranial fluid pressure behind the eyeball (ICFP;
Berdahl et al., 2008;Wostyn et al., 2015; Jóhannesson et al., 2018; Price
et al., 2020). Stretch-linked ion-channels (e.g., TRPV-1 and TRPV-4)
are also aberrantly activated in these stressed cells (Ryskamp et al.,
2016). Either due to presence of amyloid and/or tau-derived pore-
forming peptides (Last and Miranker, 2013; Camilleri et al., 2020;
Farrugia et al., 2020; Vassallo, 2021), or high levels of TGF-β2, or
independent of these, mitochondral dysfunction ensues resulting in
oxidative stress and excess intracellular Ca2+-accumulation stresses the
LC cells (McElnea et al., 2011) and the local microglia are activated
(Bosco et al., 2008; Bosco et al., 2011; Gauthier and Liu, 2016). The
latter releaseMMPS, proteases, and other inflammatory cytokines and
chemokines (Ha et al., 2015) which then cause remodelling of the
tissue thereby weakening the LC structure. These events cause the
optic nerve and the associated blood vessels to bend resulting in
vasocontriction/ischemia and reducing axonal flow which eventually
kills the RGCs (Martin et al., 2006). As mentioned above, similar
changes occur in the ANC where TM, and perhaps the juxtacanicular
cells adjoined to the SC cells, become oxidatively stressed under
pressure and due to accumulated TGF-β2 (Tripathi et al., 1994;
Rao and Stubbs, 2021) and release detrimental factors such as
reactive oxygen molecules, endothelin, and copious amounts of
NO (and perhaps carbon monoxide [CO]; Bucolo and Drago,
2011) that have toxic effects on the surrounding cells, probably
damaging them or killing some of them. During such distress the
compromised TM/SC cells also release more TGF-β1/2 that remodels
the TM and excerbates the situation causing further increases in
resistance to AQHoutflow, contributing to IOP elevation in the ANC.
This vicious cycle continues at the front and back of the eye and any
potential regeneration of axons is suppressed by intracellular kinases
and transcription factors (e.g., Chintala et al., 2015; Apara et al., 2017).

The pressure-induced TRPV-channel activation within RGCs
and their axons at the ONH begins disrupting their ionic balance
which rapidly drains their energy and leakage of cellular constituents
such as oxidized proteins, ATP, glutamate, and other substances into
the extracellular space ensues. The oxidative stress generates and
causes accumulation of extracellular lipofusin, an intralysosomal, non-
degradable auto-fluorescent macromolecule which reduces autophagy
and clearance of the debris (McElnea et al., 2014). ONH microglia
become activated and start releasing pro-inflammatory cytokines,
matrix metalloproteases (MMPs)/proteases, and vasodilatory and
other toxic substances such as NO (Cho et al., 2011). The
upregulated cytokines (e.g., interleukin-1 [IL-1], IL-6, IL-8, tumor
neurosis factor [TNFα]) andNO/CO at the ONH induce vasodilation
and edema at theONH/LC region andwithin the optic nerve (Figures
3A,B). Attracted by the cytokines and chemokines, monocytes and
leukocytes surge into the retina and optic nerve, further amplifying the
inflammatory cascade with resultant damage. Additionally, the LC
tissue is weakend by theMMP-induced degradation of the supporting
ECM. The weight of the RGC axons and the associated retinal blood
vessels bends and further distorts the structures at theONH/LCwhich
leads to ischemia/hypoxia and oxidative stress (Neufeld et al., 2002;
Nguyen et al., 2011), local release of endothelin causing further

vasoconstriction thereby reducing retinal perfusion, and the vicious
cycle continues unabated (Prassana et al., 2011). Adding insult to
injury, the increased tortoucity of the RGC axons causes disruption of
the axonal transport of growth factors and mitochondria from the
brain back to the RGC bodies (Dengler-Crish et al., 2014; Fahy et al.,
2016). The inflammatory and immunologic insults on the optic nerve
components induces a dislocation of the RGC axonal terminal
connections to the thalamic LGN and pretectal regions of the
brain (Dai et al., 2012; Ghaffarieh and Levin, 2012; Fujishiro et al.,
2020) with ensuing retrograde atrophy of the RGC axons and
neuronal loss in the LGN (Yucel et al., 2000; Yucel et al., 2001;
Gupta et al., 2007). Dropout of RGC axons thins the optic nerve and
the RNFL at the ONH. This cascade of events negatively impacts the
neurones in the brain and the retina. The decline in retinal-LGN-
superior collicular connectivity results in C1q/C3, MAC and GFAP
accumulation in the thalamus and visual cortex where the neurones
also begin to die. RGCs whose axons had been disconnected from the
LGN/pretectum spiral into apoptotic demise as their energy and
trophic support diminishes and then stops. The dying RGCs
empty their intracellular contents (e.g., ATP, glutamate and
DAMPs) into the extracellular space. The microglia and astroctyes
detect these distress signals and begin the cellular clearance
mechanisms using proteases to prune RGC dendrites and activate
the phagocytic/autophagic removal of dead retinal neurones. Glia fill
the spaces where the RGCs and interneurones resided and patient’s
vision in that region is lost. Cerebral neuronal plasticity compensates
for such early losses of RGCs (Bham et al., 2020). Even though these
events occur over many years, the unrelenting chronic retinal and
brain inflammation/immune response cascades rob the OHT/POAG/
PACGpatient of additional peripheral vision asmore andmore RGCs
die. With only 600k RGCs left of the original million, the pateint now
notices significant visual disturbances amounting to diminished visual
acuity, contrast sensitivity, occasional double-vision and a narrower
visual field. This is a critical point in the patient’s journey living with
OHT/POAG/PACG where diagnosis and treatment initiation are
paramount in order to preserve eyesight in the affected eye. AQH
drainage from the ANC of the eye is now urgently needed at this stage
by pharmaceutical and/or surgical intervention.

Acute inflammation signals the need to initiate damage
limitation and beginning of the protective remedial process
once the body experiences stress, trauma or injury. However,
the local and pan-immune system is activated when a chronic
microbial infection and/or inflammation sets in. Numerous cell-
types mediate the inflammatory and immunogenic response
during the initial phase and progression of the infection(s).
Historically, bacterial and viral infections led to the
development of the mammalian immune system (Rowan and
Taylor, 2018; Flemming, 2018; Tang et al., 2020). Subsequent
adaptation of this system has permitted the sensing of cellular
stress and the clearance of dead or dying cells in order recycle
cellular components to conserve energy, aid neurogensis and to
epigenetically increase survival. Consequently, the host defense
mechanism became responsiveness to structural characteristics found
in pathogens known as pathogen-associated molecular patterns
(PAMPs) which microbes express (Rowan and Taylor, 2018;
Flemming, 2018; Tang et al., 2020). Astrocytes and microglia
possess such signal responsive mechanisms, and they also detect
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damage-associated molecular patterns (DAMPs, e.g., heat-shock
proteins [HSPs], uric acid, αβ-crystallin and double-stranded
DNA) which stressed and/or injured cells release to alert the
surveillance system (Howell et al., 2007; Soto and Howell, 2014).
Thus, pattern recognition receptors (PRRs; e.g., TLRs; Luo et al., 2010;
Poyomtip, 2019) on microglia and astrocytes recognize PAMPs and
DAMPs and initiate and mediate the inflammatory response within
the stressed tissue (Zhou et al., 2005; Vernazza et al., 2020;
Parsadaniantz et al., 2020) (Figure 4B) Upon activation, TLRs
signal transduction initiates recruiting and stimulation of mitogen-
activated protein kinase (MAPK) and kinase IκB (Luo et al., 2010;
Poyomtip, 2019) which then help elaborate numerous transcription
factors (e.g., NK-κ-B, AP-1, interferon-regulator factor). The latter
encode and cause the production and release of inflammatory
cytokines and chemokines (Yuan and Neufeld, 2000; Tezel et al.,
2010; Ha et al., 2015;Wilson et al., 2015).Mannose receptor (activated
by C-type lectin), purinergic receptors (e.g., P2XR7; activated by ATP
released during RGC stress/lysis) (Resta et al., 2007; Hu et al., 2010;
Sakamoto et al., 2015), the multiprotein unit complexes called the
inflammasome, and scavenger receptor (that eliminates leaked lipids
and oxidized proteins) are other important PRRs (Howell et al., 2007;
Soto and Howell, 2014). The latter collectively enhance inflammation
via caspase activation (and thus production of inflammatory cytokines
after inflammasome activation by ATP/TLR-4/amyloid-derived
peptides) (Chi et al., 2014; Yerramothu et al., 2018). These events,
along with activation by mannose residues and antigen-antibody
complexes, trigger the complement cascade (Duce et al., 2006; Stasi
et al., 2006), themost ancient elemental aspect of the innate immunity
system. C1q and C3 components of the complement system, together
with the deposition of the membrane attack complex (MAC), destroy
the vulnerable cells in the injured/traumatized tissue through cell lysis
(Stasi et al., 2006; Howell et al., 2011; Howell et al., 2013; Howell et al.,
2014; Williams et al., 2016) (Figure 4B). Activated microglial and
astrocytic-derived cytokines and chemokines chemotactically recruit
monocytes and leukocytes from the dilated vasculature to the site of
injury, and the inflammatory response is amplified further (Yuan and
Neufeld, 2000; Tezel, 2011; Tezel, 2013; Tezel et al., 2010; Ha et al.,
2015; Wilson et al., 2015). Defects in the cellular debris clearance
mechanism(s), autophagy, exacerbate the situation and probably cause
further cellular demise (Chintala 2006; Deng et al., 2013; Lin and
Kuang, 2014; Munemasa and Kitaoka, 2015; Adornetto et al., 2020).
Stress and hypoxia-induced glutamate release and newly
generated reactive oxygen species contribute further to the
neurotoxicity within the retina and ONH area (Ju et al.,
2008; Januschowski et al., 2015).

The classic debate of which happens first, failed function or failed
structure is a complex one. Regardless, structural changes within the
optic nerve and retina precede the functional visual deficits resulting
from chronic OHT, POAG/PACG and NTG. Temporally, the lag
period between onset of OHT and glaucoma diagnosis contributes
heavily to visual deficits, and thus preservation of vision requires the
earliest possible diagnosis of these asymptomatic diseases. The strong
correlation between structural damage throughout the visual system
and eyesight deficits of animals and humans with glaucoma has been
confirmed by numerous investigators (Quigley et al., 1989; Burgoyne
et al., 2005; Weinreb and Lindsey, 2005; Harwerth and Quigley, 2006;
Sasaoka et al., 2008; Downs et al., 2011; Struebing and Geisert, 2015;

Torres and Hatanaka, 2019). Similarly, many studies have
demonstrated a progessive optic nerve damage due to increasing
IOP in OHT animal eyes (e.g., Figure 7A), and indeed several clinical
trials have demonstrated that IOP reduction delays glaucoma
progression (reviewed in Weinreb et al., 2014) (Figure 7B). The
multiplicity of factors and events mediating the pathogenesis of OHT/
POAG/PACG/NTG appear to be reproduced to a large extent in
animal models of these ocular disorders as described above.

One intriguing possibility that has some experimental support is
that GON has an autoimmunogenic component in addition to the
IOP-induced component (Wax and Tezel, 2009; Tezel, 2011; Tezel,
2013; Wax 2011; Geyer and Levo, 2020). Thus, significantly altered
antibody directed against ocular cells/tissues were detected in serum,
AQHand retinal samples of glaucoma patients, observations that were
reproduced in IOP-independent animal models of glaucoma. As IgG
autoantibodies switch-on the complement system, C1q/C3 andMAC
complexes were found in retinas of OHT rodents, OHT primates in
glaucoma patients. Similarly, anti-heat-shock-protein (HSPs)
antibodies to HSP-27 and HSP-60 were found in sera of glaucoma
and NTG patients (Wax, 2011; Grus et al., 2006; Grus et al., 2008).
Additionally, high circulating levels of antibodies to glutathione-S-
transferase, gamma-enolase and alpha-fodrin were also detected in
these patients (Kremmer et al., 2001; Joachim et al., 2005; Joachim
et al., 2007; Joachim et al., 2008; Joachim et al., 2012; Joachim et al.,
2014; Grus et al., 2006; Grus et al., 2008). Even though the latter
autoantibodies are pathogenic, others like beta-crystallin and vimentin
are protective, and these appear to be down-regulated in GON.
Antibodies to myelin basic protein and IgG-antibodies were found
in the retinas of POAG, NTG and pseudoexfoliation glaucoma
patients suggesting that a generalized autoimmune response against
visual cell/tissue components can occur (Joachim et al., 2007a,b; Grus
et al., 2008; Hammam et al., 2008). Clearly, much more research is
needed to find and confirm such etiological aspects of the immune
response in OHT and various forms of glaucoma (Gramlich et al.,
2013; Joachim et al., 2014; Gramlich et al., 2016; Joachim et al., 2013;
Skonieczna and Grabska-Liberek, 2014; Beutgen et al., 2019).
Nevertheless, it is clear that age-related and/or pathological events
occurring at the ANC-level (i.e., OHT) and at the LC/ONH-level
cause progressive loss of RGCs and their axons, resulting in thinning
of the RNFL and reduced connectivity to the brain, which leads to
visual impairment and can cause blindness unless treatment(s) are
started for the patient (Figure 8).

TREATMENT OPTIONS FOR OCULAR
HYPERTENSION AND PRIMARY
OPEN-ANGLE GLAUCOMA/PRIMARY
CLOSED-ANGLE GLAUCOMA/NTG

Several pioneering clinical trials in the early 2000s and animal
models of OHT/glaucoma have provided compelling evidence
that elevated IOP/OHT is a principle root cause of several forms
of glaucoma. Consequently, a multipronged approach has been
adopted to address this aspect of the disease. Thus, reducing IOP
with ocular hypotensive drugs, removal of excess AQH from the
ANC of the eye with microshunts and/or surgically promoting
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AQH drainage from the ANC of the eye of OHT/POAG/NTG
patients slows down disease progression and preserve sight by
reducing the death of RGCs and their axons (reviewed inWeinreb
et al., 2014; Zhang et al., 2019).

Pharmaceutical and Cellular Therapeutics
to Lower Intraocular Pressure
The muscarinic receptor agonists acetyl choline and pilocarpine
were the earliest therapeutical drugs used to lower IOP to treat
glaucoma towards the end of the 19th century. Indeed, use of

sympathetic and parasympathetic nervous system transmitters
and new drug analogs continued for this purpose for a few
decades including approval for adrenaline (1920), carbachol
(1932), acecledine (1960), propanolol (1967), and clonidine
(1972). However, many of these drugs were relatively non-
selective for the family of receptors through which they
imparted their ocular hypotensive activity. While more potent
and slightly longer acting beta-adrenoceptor antagonists were
soon discovered and approved for glaucoma treatment (e.g.,
timolol in 1978; carteolol in 1982, levobunolol in 1985), it was
only thereafter that receptor selectivity began to be addressed.

FIGURE 7 | The correlation between increasing IOP and RGC loss/optic nerve damage (A), and the ability of IOP-lowering drug treatment to slow down the GON/
glaucoma progression (B) are shown in here.

FIGURE 8 | The relationship between OHT, GON, RGC and RGC axonal loss, RNFL thinning and visual impairment over time is pictorially shown here. The insets
depict the optic disc and the visual field as the GON progresses.
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Thus, betaxolol (β-1-receptor selective antagonist approved in
1985; e.g., Sharif and Xu, 2004; Sharif et al., 2001) and
apraclonidine (α2-receptor-selective agonist approved in 1987;
brimonidine approved in 1997) were FDA-approved. New
classess of ocular hypotensive drugs then emerged including
carbonic anhydrase inhibitors (dorzolamide approved in 1994;
brinzolamide approved in 1998) and FP-receptor-selective
prostaglandin analog agonists including latanoprost (approved
in 1996) and travoprost/bimatoprost (approved in 2001; see
Hellberg et al., 2001; Hellberg et al., 2002; Sharif et al., 2002a;
Sharif et al., 2002b) (Figure 9). Combination products were
additionally approved to gain more efficacy including
dorzolamide and timolol (approved in 1998) and brimonidine
and timolol (approved in 2007). Newer drugs including a
conjugate of latanoprost and an NO-donor (latanoprostene
bunod, approved 2017; Cavet et al., 2014), two rho kinase
inhibitors (ripasudil [approved in Japan 2014]; netarsudil
[approved in US in 2017]) and a novel non-prostaglandin
EP2-receptor-selective agonist (omidenepag isopropyl;
approved in Japan 2018) are the most recently introduced
drugs to lower and control IOP (Table 1; Duggan 2018;
Kirihara et al., 2018a; Kirihara et al., 2018b; Fuwa et al., 2018;
Fuwa et al., 2021; Ferro Desideri et al., 2019; Aihara et al., 2020a;
Aihara et al., 2020b; Sharif et al., 2020) (Figure 9). Interestingly,
some drugs like brimonidine and betaxolol, not only lower IOP
but are also neuroprotective, at least in animal models of IOP-
dependent and IOP-independent glaucomatous damage (e.g.,
Rusciano et al., 2017; Conti et al., 2021).

Today, first-line topical ocularly (t.o.) administered
therapeutics utilized to lower and maintain IOP include
several FP-receptor prostaglandin (PG) agonists such as
latanoprost, travoprost, tafluprost and bimatoprost which all
enhance UVSC outflow of AQH in POAG/NTG patients and
are used once-daily (Table 1) (Sharif et al., 1999; Hellberg et al.,
2001; Hellberg et al., 2002; Weinreb et al., 2014; Jonas et al., 2017;
Sharif, 2017; Sharif, N. A. 2018; Sharif, 2020a). Recent evidence
also suggests that the latter compounds also engage the
conventional TM-based outflow of the AQH (Toris et al.,
2008) by activating the FP-receptors located on the TM cells
(Sharif et al., 2003b) to enhance TM/SC outflow. Percent IOP
reductions from baseline are usually greater when the patient’s
IOP is higher, and the PG analog agonist drugs provide 26–37%
IOP lowering in OHT/POAG patients. For instance, travoprost
0.004% t. o. dosed once in the evening at bedtime yielded
7.1–8.4 mmHg IOP lowering from baseline at 8am-4pm the
next day in OHT/POAG patients followed for up to 12 weeks
(Hellberg et al., 2002) (Figure 9).

TM outflow promoting drugs include the muscarinic receptor
agonist pilocarpine (Osterlin et al., 1994; Toris et al., 2001), rho
kinase (ROCK) inhibitors such as Y-27632 (Honjo et al., 2001),
ripasudil (Futakuchi et al., 2020) and netarsudil (Lin et al., 2018;
Serle et al., 2018) and NO-producing drugs (e.g., latanoprostene
bunod; Cavet et al., 2014). While pilocarpine and FP-receptor
agonists lower IOP by promoting the release of MPPs from the
TM/CM cells to help digest some of the ECM and thereby create
holes for AQH to leave the ANC. Due to their lower efficacy, these
drugs are t. o. dosed at least twice-daily (ROCK inhibitors) and ≥

4-times-daily for pilocarpine. Ripasudil for instance lowered IOP
in various forms of glaucoma by 19.4–23.4% from baseline
followed over 1–6 months, while netarsudil yielded 23–24%
reduction of IOP with OHT/POAG patients followed for
3 months (Futakuchi et al., 2020). The mechanism of action of
the ROCK inhibitors is by way of relaxing the TM/CM and allow
the larger surface area of the TM to efflux the AQH.

Last but not least, there are pharmaceutical agents that slow
down the production of AQH in order to decrease IOP (see
Table 1). Such AQH inflow inhibitor drugs (e.g., beta-blockers
[timolol (e.g., 18.7–21.5% IOP-lowering]; betaxolol and
levobetaxolol (Sharif et al., 2001; Sharif and Xu, 2004;
Quaranta et al., 2007)), carbonic anhydrase inhibitors
(brinzolamide; 17.8–18.5%), and alpha-2-adrenergic agonists
(brimonidine; apraclonidine) are not very potent or highly
efficacious but are effective enough to be used either alone
(usually at least twice-daily) or in conjunction with other IOP-
lowering drugs in fixed-dose combination products (Nakamura
et al., 2009; Hollo et al., 2014; Tanihara et al., 2015; Lusthaus and
Goldberg, 2017; Asrani et al., 2020). For example, fixed-dose
tafluprost + timolol reduced IOP up to 40% (>13 mmHg) while
netarsudil + latanoprost reduced IOP by 58.4%. Simbrinza
(brinzolamide + brimonidine) is a novel and unique
combination product that does not contain a beta-blocker and
is best suited to treat patients that have pulmonary or cardiac
issues. A recently approved ocular hypotensive drug,
latanoprostene bunod (a conjugate of an FP-receptor agonist
and a NO-donor) induces AQH outflow through both TM/SC
andUVS pathways to decrease IOP (Cavet et al., 2014) (Figure 9).

Even though the health authority-approved ocular
hypotensive drugs described above are effective at reducing
IOP they all have various types of ocular, and in some cases,
systemic side-effects (Table 1). Notably and for instance
muscarinic agonists such as pilocarpine and carbachol cause
browe ache, miosis, sweating, bronchospasm and diarrhea.
Alpha-2-receptor agonists like brimonidine (Cantor, 2006)
cause hyperemia, ocular allergy, contact dermatitis, apnea,
hypotension and lose their IOP-lowering efficacy upon
repeated dosing due to tachyphylaxis. Beta-blocker drugs like
timolol cause side-effects like punctate keratitis, corneal
anesthesia, bronchospasms, increased heart block, hypotension,
and depression. Carbonic anhydrase inhibitors cause corneal/
ocular surface irritation/hypermia, abdominal discomfort,
aplastic anemia and slight weight loss. FP-prostgalndin
agonists increase some hyperemia, iridial and periorbital skin
darkening, deepening of the upper eyelid sulcus, eyelash
thickening and growth in a multi-direction manner which is
undesirable.

Despite introduction of pharmaceutical/surgical and device
treatment modalities into clinical management of OHT/
glaucoma, more potent, more efficacious, more tolerable novel
drugs that possess longer duration of action and/or have reduced
side-effects and/or offer unique mechanisms of action are still
being sought. Recent research has yielded new ocular hypotensive
molecules of varying effectiveness based on animal models of
OHT/glaucoma including using rodents, rabbits, dogs and
monkeys (e.g., Table 2) (Weinreb et al., 2014; Donegan and

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 72924915

Sharif Glaucoma and Neuroprotection Therapeutics

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Lieberman, 2016; Dikopf et al., 2017; Sharif, 2017; Sharif, 2018a;
Sharif, 2018b). Some examples of new IOP-lowering therapeutics
in early-stage research and development include the following:
PG agonist possessing DP and EP2-receptor activities (e.g., AL-
6598; Hellberg et al., 2002; Sharif et al., 2004); a dual agonist
acting at FP and EP3 receptors (ONO-9054; Yamane et al., 2015);
hydrogen sulfide donors (Salvi et al., 2016), melatonin receptor
agonists (Alkozi et al., 2020), dopamine agonists (Bucolo et al.,
2019), serotonin receptor-2A agonists (e.g., AL-34662 and
cabergoline; Sharif et al., 2007; Sharif et al., 2009; Feng et al.,
2007; May et al., 2015; Furlotti et al., 2018; Figure 10), adenosine
A3 and other purinergic agonists (Galvao et al., 2015; Jacob et al.,
2018), enantiomeric beta-blockers such as levobetaxolol (Sharif
et al., 2001; Sharif and Xu, 2004; Quaranta et al., 2007), soluble
guanylate cyclase activators (Dismuke et al., 2009), non-peptidic
bradykinin receptor-2 agonists (Sharif et al., 2014a; Sharif et al.,
2014b; Figure 10), constrained C-type natriuretic peptide
mimetics (Savinainen et al., 2019), pigment epithelium-derived
factor inhibitors (Rogers et al., 2013); K+-channel activators (Roy
Chowdhury et al., 2017), autotaxin inhibitors (Honjo et al., 2018;
Nagano et al., 2019; Nakamura et al., 2021; Figure 10),
angiotensin (1–7) (Foureaux et al., 2013; Vaajanen et al.,
2008), cannabinoid receptor agonists (Panahi et al., 2017),
LIM kinase inhibitors (Goodwin et al., 2014), ligands for

calcium voltage-gated channel auxiliary subunit alpha2delta 1
gene (Cacna2d1) target (Ibrahim et al., 2019), H3-histamine
receptor antagonists (Lanzi et al., 2019), siRNA inhibitor
against β-adrenoceptor (Gonzalez et al., 2014), melatonin
(Martínez-Águila et al., 2016), digoxin-based Na+/K+-ATPase
inhibitor drugs (Katz et al., 2016), K+-channel activators
(Figure 10), TRPV4-channel inhibitors (Figure 10),
aquaporin-1 inhibitors (Patil et al., 2016), and novel non-PG
EP2-receptor agonists such as omidenepag isopropyl (Kirihara
et al., 2018a; Kirihara et al., 2018b; Sharif et al., 2020), with latter
actually having a dual mechanism of action and effectively
lowering and controlling IOP in OHT/POAG patients (Aihara
et al., 2020a). Next generation IOP-lowering drugs, that perhaps
also possess neuroprotective activity, include FP-receptor PG-
conjugates utilizing a number of different classess of ocular
hypotensive drugs (Ellis D. et al., 2017). Recent glaucoma
genetic studies (Aung and Khor, 2016; Aung et al., 2018;
Choquet et al., 2020), and use of anti-sense oligonucleotide
technology to suppress production of the damaging cytokine
TGF-β2 (Fattal and Bochot, 2006; Pfeiffer et al., 2017) offer some
hope of ameliorating pathologies of glaucoma. Other novel
approaches to treat POAG involve using SC activators (e.g.,
AKB-9778) which inhibit vascular endothelial protein tyrosine
phosphatase (VE-PTP) to activate tyrosine kinase with

FIGURE 9 | The chemical structures of some key pharmaceutical agents used to treat POAG are depicted. Many of the drugs have been approved by world health
authorities for managing POAG.
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TABLE 1 | Selected health authority-approved IOP-lowering agents and their properties.

Brand name
of drug
& year
of clinical
Introduction/
FDA or
EMEA or
Japan approval
(where known)

Generic name
& drug

type. (IOP
reduction achieved

in OHT/POAG
patients)

Dosage type
(%, w/v)

Topical ocular
dosing frequency

Mechanism of
action to
lower IOP

Some Side-Effects/Adverse
reactions

Approved enhancers of conventional outflow (TM/SC pathway) of AQH to lower IOP

Isopto carpine
(1974); Pilopine

Pilocarpine (muscarinic
receptor agonist)

1, 2, 4%; 4% Gel 1 drop 2-4-times daily; single
application of gel across
the eye

Enhances conventional
(TM) outflow of AQH

Brow-ache, miosis;
accommodative change, eye
irritation, eye pain, blurred vision,
and/or visual impairment, potential
tachycardia

Isopto Carbachol Carbachol (muscarinic
receptor agonist)

1.5, 3% solution 1–2 drops up to 3-times daily Enhances conventional
(TM) outflow of AQH

Brow-ache, miosis,
accommodative change, eye
irritation, eye pain, blurred vision,
and/or visual impairment, potential
tachycardia

Glanatec (2014
Japan)

Ripasudil (Rho kinase
[ROCK] inhibitor)
(3.5–4.5 mmHg IOP
reduction)

0.4% solution Enhances conventional
(TM) outflow of AQH

Conjunctival hyperemia, allergic
conjunctivitis, blepharitis, punctate
keratitis

Rhopressa (2017) Netarsudil (Rho kinase
[ROCK] inhibitor) (5 mmHg
IOP reduction)

0.02% solution 1 drop daily Enhances conventional
(TM) outflow of AQH; also
decreases episcleral
veinous pressure

Conjunctival hyperemia, corneal
verticillata, instillation site pain, and
conjunctival hemorrhage

Approved Inhibitors of AQH Production to Lower IOP

Timoptic (1978)
Timoptic-XE Gel

Timolol (beta-adrenoceptor
antagonist)

0.25%, 0.5%
solution or gel-
forming solution

1 drop 1-2-times daily Reduces production of
AQH from CB

Signs and symptoms of ocular
irritation, (e.g. burning, stinging,
itching, tearing, redness),
conjunctivitis, blepharitis, keratitis,
dry eyes, decreased corneal
sensitivity, blurred vision, corneal
erosion. Visual disturbance,
including refractive changes

Betoptic (1985) Betaxolol (beta-1-selective
adrenoceptor antagonist)

0.25%
suspension; 0.5%
solution

1 drop 2-times daily; 1–2
drops twice daily

Reduces production of
AQH from CB

Transient ocular discomfort,
Decreased corneal sensitivity,
erythema, itching sensation,
corneal punctate keratitis,
anisocoria, blurred vision, foreign
body sensation, tearing, dryness
of eyes, inflammation, discharge,
ocular pain, decreased visual
acuity, crusty lashes and
photophobia; Bradycardia, heart
block; Pulmonary distress
characterized by dyspnoea,
bronchospasm, thickened
bronchial secretions, asthma and
respiratory failure; Insomnia,
dizziness, vertigo, headaches,
depression, lethargy

Alphagan
(1996)

Brimonidine (2–6 mmHg IOP
reduction)

0.15%, 0.2%
solution

1 drop 3-times daily Reduces production of
AQH from CB and
enhances UVS AQH
outflow

Allergic conjunctivitis, conjunctival
hyperemia, and eye pruritis; local
ocular hypersensitivity; blurred
vision, burning sensation of eyes,
drowsiness, eye headache,
stinging of eyes, foreign body
sensation
(Continued on following page)
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TABLE 1 | (Continued) Selected health authority-approved IOP-lowering agents and their properties.

Brand name
of drug
& year
of clinical
Introduction/
FDA or
EMEA or
Japan approval
(where known)

Generic name
& drug

type. (IOP
reduction achieved

in OHT/POAG
patients)

Dosage type
(%, w/v)

Topical ocular
dosing frequency

Mechanism of
action to
lower IOP

Some Side-Effects/Adverse
reactions

Iopidine (1987) Apraclonidine 0.5% solution 1–2 drops 3-times daily Reduces production of
AQH from CB

Hyperemia (redness), itching,
tearing of the eye, Blurred vision or
change in vision, chest pain,
clumsiness or unsteadiness,
depression, dizziness, eye
discharge, irritation, or pain,
irregular heartbeat

Trusopt (1994) Dorzolamide (carbonic
anhydrase inhibitor

2% solution 1 drop 3-times daily Reduces AQH generation
by the CB

Transient bitter taste and
superficial punctate keratitis, eye
irritation, burning, stinging, and
ocular discomfort; blurred vision,
excessive tearing, dry eyes, and
increased sensitivity to light

Azopt (1998) Brinzolamide (carbonic
anhydrase inhibitor

1% suspension 1 drop 3-times daily Reduces AQH generation
by the CB

Temporary blurred vision, bitter/
sour/unusual taste, dry eyes,
temporary discomfort, itching,
redness of the eye, foreign body
sensation, eye discharge, and
headache

Approved Stimulators of UVS Outflow of AQH to Lower IOP

Xalatan (1996) Latanoprost (FP-
prostaglandin receptor-
selective agonist

0.005% solution 1 drop at bedtime Enhances AQH outflow via
the UVS pathway and
some via TM/SC pathway

Blurred vision, burning, stinging,
itching, hyperemia, foreign body
sensation, changes in eyelash
number/color/length/thickness,
iridial darkening, (pigmentation),
periocular skin darkening,
deepening of eyelid sulcus (loss of
periorbital fat), dry eye, eyelid
crusting and discomfort,
increased sensitivity to light

Travatan (2001) Travoprost (FP-
prostaglandin receptor-
selective agonist

0.004% solution 1 drop at bedtime Enhances AQH outflow via
the UVS pathway and
some via TM/SC pathway

Blurred vision, burning, stinging,
itching, hyperemia, foreign body
sensation, changes in eyelash
number/color/length/thickness,
iridial darkening, (pigmentation),
periocular skin darkening,
deepening of eyelid sulcus (loss of
periorbital fat), dry eye, eyelid
crusting and discomfort,
increased sensitivity to light

Lumigan (2001) Bimatoprost (FP-
prostaglandin receptor-

selective agonist

0.03% solution 1 drop at bedtime Enhances AQH outflow via
the UVS pathway and

some via TM/SC pathway

Increased conjunctival hyperemia,
darkening of eyelids, increased
thickening and number of
eyelashes, dry eye, eye irritation,
eye itching
Hirsutism (a condition of hair
growth on parts of the body
normally without hair)

Taflotan (2008
Japan)

Tafluprost (FP-prostaglandin
receptor-selective agonist

0.0015% solution 1 drop at bedtime Enhances AQH outflow via
the UVS pathway and

some via TM/SC pathway

Ocular surface burning, stinging,
irritation, hyperemia, foreign body
sensation, dry eyes, watering

eyes, iridial darkening, periocular
skin darkening, abnormal eyelash
growth, and increased sensitivity

to light

Zioptan (2012
United States)

(Continued on following page)
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immunoglobulin-like and EGF-like domains 2 (Tie2) (Li et al.,
2020); enhancers of autophagy such a rapamycin or tat-beclin
(He et al., 2019; Zhu et al., 2020; Kasetti et al., 2021); delivering

mitochondrial-targeted anti-oxidants (Chen et al., 2011; Rao
et al., 2019); and by rejuvenating dying TM cells using stem
cell-derived secretomes to lower and control IOP (Harrell et al.,

TABLE 1 | (Continued) Selected health authority-approved IOP-lowering agents and their properties.

Brand name
of drug
& year
of clinical
Introduction/
FDA or
EMEA or
Japan approval
(where known)

Generic name
& drug

type. (IOP
reduction achieved

in OHT/POAG
patients)

Dosage type
(%, w/v)

Topical ocular
dosing frequency

Mechanism of
action to
lower IOP

Some Side-Effects/Adverse
reactions

Rescula (2000) Unoprostone (FP-
prostaglandin receptor
agonist

0.15% solution 1 drop twice daily Enhances AQH outflow via
the UVS pathway and
some via TM/SC pathway

Eye burning, stinging, dry eyes,
itching, increased length of
eyelashes, and injection; iridial
darkening, blepharitis, cataract,
conjunctivitis, corneal lesion,
discharge from the eye, eye
hemorrhage, eye pain, keratitis,
irritation, and photophobia

Eybelis (2018
Japan)

Omidenepag Isopropyl
(EP2-receptor selective non-
prostaglandin agonist

0.002% solution 1 drop daily Enhances AQH outflow via
the UVS pathway and via
TM/SC pathway

Transient conjunctival hyperemia,
corneal thickening

Some Approved Combination Products for Lowering IOP

Cosopt (1998) Dorzolamide + timolol 2% + 0.5% 1 drop 2-times daily Reduce AQH production
from CB

Combination of side-effects from
both drugs

Combigan
(2007)

Brimonidine + timolol 0.2% + 0.5% 1 drop every 12 h Reduce AQH production
from CB

Combination of side-effects from
both drugs

Simbrinza
(2013)

Brinzolamide + Brimonidine 1% + 0.2% 1 drop 3-times daily Reduce AQH production
from CB

Combination of side-effects from
both drugs

Roclatan
(2019)

Netarsudil + Latanoprost 0.02% + 0.005% 1 drop daily Enhancement of AQH
outflow via TM/SC and
UVS pathways

Combination of side-effects from
both drugs

Xalacom Latanoprost + timolol 0.005% + 0.5% 1 drop daily Enhancement of AQH
outflow and by inhibiting
AQH production

Combination of side-effects from
both drugs

Duotrav Travoprost + timolol 0.004% + 0.5% 1 drop daily Enhancement of AQH
outflow and by inhibiting
AQH production

Combination of side-effects from
both drugs

Ganfort Bimatoprost + timolol 0.03% + 0.5% 1 drop daily Enhancement of AQH
outflow and by inhibiting
AQH production

Combination of side-effects from
both drugs

Taflotan +
timolol

Taflotan + timolol
(>13 mmHg IOP reduction;
40% lowering)

0.0015% + 0.5% 1 drop daily Enhancement of AQH
outflow and by inhibiting
AQH production

Combination of side-effects from
both drugs

Other Products for Lowering IOP

Vyzulta (2017) Latanoprostene Bunod
(conjugate of latanoprost
and an NO-donor agent)

0.024% solution 1 drop at bedtime Enhances AQH outflow via
the UVS pathway and via
TM/SC pathway

Eye discomfort/irritation,
hyperemia, temporary blurred
vision, increase in eyelash number/
length/thickness and darkening of
the eyelashes/eyelids and iris

Durysta Implant
(2020)

Intracamerally injected
sustained-delivery
biodegradable polymer
containing bimatoprost

Not applicable Once implanted into the ANC
of the eye (intracameral
injection), the drug elutes off
the implant over 6-months

Enhances AQH outflow via
the UVS pathway and via
TM/SC pathway

Conjunctival hyperemia, foreign
body sensation, eye pain,
photophobia, conjunctival
hemorrhage dry eye, eye irritation
increased IOP, corneal endothelial
cell loss, vision blurred, iritis,
headache
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TABLE 2 | Some examples of recently discovered IOP-lowering agents and their potential mechanisms of actions in various animal models of OHT.

Compound classes Investigative agent Reported or potential
mechanism(s) of action

(MOA)

Conventional Outflow (via TM
pathway) Promotors

Inhibitors of chloride transport Ticrynafen; Ethacrynic acid; Indacrinone Inhibition of Na+-K+-Cl--transporter activity in the TM changes
cell shape and volume and thus AQH efflux is increased

Kinase inhibitors Chelerythrine; Staurosporin; LIM-K inhibitors (e.g., LX7101); Myosin-II
ATPase inhibitor: Blebbistatin. Src kinase inhibitor

Modification of actomyosin contractility that leads to changes in
actin cytoskeleton of TM and this leads to AQH efflux; direct
relaxation of the TM may also be involved

Rho Kinase Inhibitors Fasudil; Y-27632; AMA0076; ITRI-E-212 Modification of actomyosin contractility that leads to changes in
actin cytoskeleton of TM and this leads to AQH efflux; direct
relaxation of the TM may also be involved

Marine macrolids Latrunculins A and B; Bumetanide; Swinholide Promote sequestration of actin monomers and dimers in TM;
cause cell TM shape change and thus AH efflux

Guanylate cyclase activators Natriuretic peptides and constrained cyclic peptides: ANP; CNP;
TAK-639

Type-A and type-B receptor activation leads to cGMP
production, TM relaxation and AQH efflux via TM.

NO Donors Sodium nitroprusside; Hydralazine; 3-morpholinosyndnonimine; (S)-
nitrosoacetylpenicillamine; NCX-125

NO activates intracellular soluble guanylate cyclase to increase
cGMP production, TM relaxation and AQH efflux via TM.

Soluble guanylate cyclase
activators

IWP-953; MGV354 These compounds directly activate intracellular soluble
guanylate cyclase to increase cGMP production, TM relaxation
and AQH efflux via TM.

κ-opioid receptor agonists Bremazocine; Dynorphin Release natriuretic peptides and thus raise cGMP in TM leading
to its relaxation and thus AQH efflux

Cannabinoid receptor agonists WIN55212-2; CP55940; SR141716A Receptor stimulation opens BKC-channels and relaxes TM
which then causes AQH efflux via TM and SC

Serotonin-2 receptor
antagonists

BVT-28949; Ketanserin and its analogs Unknown and unverifiable mechanism(s) of action (may block
beta-adrenergic receptors indirectly?)

Releasers of MMP & AP-1 t-butylhydroquinone (t-BHQ); β-naphthoflavone Local production of MMPs; ECM degradation; stimulation of
AQH efflux via TM/SC

Autotaxin/Lysophosphatidic
acid inhibitors

Aiprenon Promotion of AQH egress from TM/SC pathway

Uveoslceral Outflow promotors (via CM bundles and sclera)

EP2- and EP4- PG-receptor
agonists

AL-6598; Butaprost; ONO-AE1-259–01; PF-04217329; PF-
04475270

Receptor activation increases cAMP that relaxes CM & TM; EP2

agonists also cause release of MMPs that breakdown ECM
(“clog”) around CM bundles and within sclera thus causing UVS
outflow of AQH

Serotonin-2 (5HT-2) receptor
agonists

(R)-DOI; α-methyl-5HT; AL-34662 Contraction/relaxation of CM and TM by activation of 5HT2
receptors. May also release MMPs and/or PGs or other local
mediators that promote CM remodeling and thus promote UVS
outflow

Bradykinin B2-receptor
agonists

Bradykinin; FR-190997; BKA278 B2-receptor activation causes PI hydrolysis production of IPs
and DAG; cause PG release and release of MMPs that digest
ECM and this promote UVS outflow in cynomolgus monkey;
conventional outflow also stimulated in isolated bovine/porcine
anterior eye segments [177,178]

Dual pharmacophore PGs FP/EP3 receptor agonist (ONO-954) Promote UVSC outflow
Inflow inhibitors (reduce AQH
production)
Chloride channels inhibitors 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) Ion flux of CP NPE cells causes reduction of AQH formation
Na+-K+-ATPase inhibitors Ouabain; Digoxin analogs Ciliary process Na+-K+-ATPase inhibited leading to inhibition of

AQH production
Dopamine receptor agonists PD128907; CHF1035; CHF1024; SDZ GLC-756; (S)-(-)-3-

hydroxyphenyl)-N-n-propylpiperidine (3-PPP)
Inhibit release of NE & prevent AQH production; may also
release natriuretic peptides

Na+-K+-ATPase inhibitors Ouabain; Digoxin analogs Ciliary process Na+-K+-ATPase inhibited leading to inhibition of
AQH production

Aquaporin Inhibitors Various aromatic sulfonamides and dihydrobenzofurans Inhibit release of NE & prevent AQH production

Other IOP-lowering agents

Mas receptor stimulator DIZE via ACE-2 activation Prevent ECM (including TGFβ) accumulation (outflow
stimulation ?)

(Continued on following page)
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2019). Additionally, perhaps exploitation of the newly discovered
tunneling nanotubes to revive TM cells may offer some benefits in
the future (Keller et al., 2017). Trace elements such a selenium,
zinc, manganese and iron either alone or in combination with
other drugs may also be useful in combating elevated IOP and
glaucoma (Kamińska et al., 2021). Since the afore-mentioned
compounds and technologies are at an early discovery stage, it is
hoped that at least some of them will continue to be of clinical
interest and will meet the necessary target product profile criteria
to enter clinical trials in due course.

Over the last 4-decades it has become evident that due to the
various side-effects mentioned above, and due to the fact that
most of the glaucoma patients are elderly, routine administration
of their eyedrops is either forgotten, or is reduced or purposely
missed (Newman-Casey et al., 2015). Mitigation efforts dealing
with compliance isssues has resulted in development of several

different technologies to safely and durably help deliver the IOP-
lowering drugs to the patients target eye tissues (Shouchane-Blum
et al., 2019). Some of the technologies include sustained release of
IOP-lowering drugs from liposomes and nanoparticles cross-
linked collagen shields (Monem et al., 2000; Agban et al.,
2016) or just nanocarrier-based formulations (Natarajan et al.,
2014; Wong et al., 2014), and via gel/microspheres (Fedorchak
et al., 2017), from punctal plugs (Perera et al., 2016), via
biodegradable polymers intracamerally injected into the ANC
(Navratil et al., 2014; Lee et al., 2019) (Table 1), elution from
contact lenses (Ciolino et al., 2016), from intravitreal injections of
polycaprolactone drug delivery implant (Kim et al., 2018), and
from silicone rings that are placed around the eyeball (Brandt
et al., 2016; Lewis et al., 2017).

In terms of novel techniques and tools to better lower and
control IOP involve the following experimental regimen: use of

TABLE 2 | (Continued) Some examples of recently discovered IOP-lowering agents and their potential mechanisms of actions in various animal models of OHT.

Compound classes Investigative agent Reported or potential
mechanism(s) of action

(MOA)

Angiotensin-II receptor
antagonists

CS-088 Various mechanisms of action; not robust IOP-lowering

Ca2+-channel inhibitors Lomerazine; Nivaldipine; nifedipine; Nimodipine; Verapamil;
Brovincamine; Iganidipine

Enhance retinal blood flow; some may lower IOP; work well in
normal tension glaucoma patients

Alpha-adrenergic receptor
antagonists

Oxymetazoline; 5-methylurapidil; Ketanserin Workmostly via outflowmechanism but this needs to be defined

ATP-sensitive K+-channel
activators

Cromakalim; Levocromakalim; CKPL1 Purported MOA involving episcleral veinous pressure
modulation

FIGURE 10 | Chemical structures of some of the emerging ocular hypotensive agents are shown. The diversity of the chemical classes of compounds working
through receptors, channels and enzymes is readily apparent.
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AAV-vectors delivering genes to TM and/or corneal endothelial
cells and/or using aptmers to initiate local production/release of
MMPs into the TM to digest collagen and other occluding
proteins to promote AQH outflow hold great promise (Borrás,
2017; O’Callaghan et al., 2017; Fattal et al., 2018); CRISPR-Cas9-
based treatment against misfolded myocilin in the ANC (Jain
et al., 2017) and its use to delete aquaporin-1 in the CB (Wu et al.,
2020); the potential delivery and intercollation of new TM cells
induced from induced pluripotent stem cells into the existing TM
structure to enhance the local phagocytic capability and capacity
may be possible with some potential success (Ding et al., 2014;
Sun et al., 2017; Zhu et al., 2016, 2017); the nonsurgical reduction
of IOP after suprachoroidal injection of hyaluronic acid hydrogel
for IOP control (Chae et al., 2020), and epigenetically
rejuvenating the ANC cells of the TM and SC (Lu et al.,
2020). Additionally, antioxidants can be used to enhance
viability of TM cells in the ANC (Ammar et al., 2012),
especially since oxidative stress (Rao and Stubbs, 2021)
damages the DNA of the TM cells of POAG patients (Saccà
et al., 2005; Abu-Amero et al., 2006). Senolytic drugs are also
useful including quercetin, venetoclax, imatinib (El-Nimri et al.,
2020).

The strong correlation between elevated IOP in the ANC of
the eye, the IOP spikes, and glaucoma, and the reduction of GON
damage by IOP reduction has been clearly demonstrated
clinically in OHT/POAG patients (CNTGSG, 1998; AGIS
Investigators, 2000; Heijl et al., 2002; Kass et al., 2002; Gordon
et al., 2002; Leske et al., 2007; Medeiros et al., 2008; Musch et al.,
2011; Figure 7). The current pharmacotherapies aim to decrease
IOP by 20–50% and several classess of drugs are available for
managing and reducing the progression of glaucoma, in
particluar POAG, by enhancing AQH outflow and by
inhibiting its formation. Due to the side-effect profiles of
existing ocular hypotensive therapies discussed above, new and
improved drugs to treat glaucoma are still needed.

Laser-Treatments to Reduce Intraocular
Pressure
Unfortunately for those OHT and POAG patients whose elevated
IOPs remain uncontrolled despite maximal adjunctive eyedrop-
based pharmaceutical therapy, laser- or surgical-based treatment
needs to be deployed (Conlon et al., 2017; Geffen et al., 2017;
Pahlitzsch et al., 2017; Garg and Gazzard, 2018; Lusthaus and
Goldberg, 2019). For treating PACG for instance, surgical
iridectomy (removing a part of the iris) has been replaced by
Nd:YAG laser iridotomy, because it greatly reduces the possibility
of suprachoroidal hemorrhage occurance. Laser peripheral
iridotomy is used to quickly make tiny holes in the iris to help
AQH to escape from the ANC in order to lower IOP. Likewise,
selective laser trabeculoplasty (SLT) to open up the TM is a very
helpful and safe procedure (Garg and Gazzard, 2018; Lusthaus
and Goldberg, 2019). In SLT, a Nd:YAG laser is used to selectively
target melanocytes and other cellular debris in the TM and thus
less damage is exerted on the TM cells themselves. The exact
mechanism by which SLT functions is not completely understood
but mild inflammation created by the laser appears to release

MMPs from the surrounding tissues which help clear the
filtration system and promote AQH outflow from the ANC
and thus lower IOP. Unfortunately, the latter technique often
has to be repeated to lower and maintain the IOP below a
threshold needed to preserve vision.

Surgical Procedures to Lower Intraocular
Pressure
One of the most well known and utilized surgical procedure to
lower IOP is so-called filration surgery (Pahlitzsch et al., 2017;
Conlon et al., 2017; Lusthaus and Goldberg, 2019). Here, a
surgical anterior sclerotomy is conducted to create an AQH
drainage pathway from the ANC to the ocular surface (usually
under the conjunctiva) via a “bleb” to permit the lowering of IOP.
Trabeculectomy involves removal of a portion of the TM to help
remove AQH from the ANC. Bleb-forming procedures include ab
externo trabeculectomy, cutting from the exterior of the eye to
reach SC, TM and the ANC (Pahlitzsch et al., 2017; Conlon et al.,
2017; Lusthaus and Goldberg, 2019) (Figure 11). Non-
penetrating trabeculectomy is an ab externo (from the
exterior) surgical process expose the SC via a large and deep
scleral flap. The inner wall of SC is stripped off after surgically
exposing the canal. Deep sclerectomy is a filtering surgery where
the internal wall of SC is excised allowing subconjunctival
filtration without actually entering the ANC. In order to
prevent wound adhesion after deep scleral excision and to
maintain good filtering results, it is sometimes performed with
a variety of biocompatible spacers or devices, such as a collagen
wick and collagen matrix. Viscocanalostomy involves injection of
a viscoelastic substance into the SC in order to open up the canal
and the AQH collector channels to help drain the AQH from the
ANC to lower IOP (Conlon et al., 2017; Pahlitzsch et al., 2017;
Lusthaus and Goldberg, 2019). Surgical/laser goniotomy involves
severing the fibers of the TM to permit AQH to drain more freely
from the ANC. A cyclogoniotomy is a surgical procedure for
producing a cyclodialysis, in which the ciliary body is cut from its
attachment at the scleral spur under gonioscopic control in order
to reduce the production of AQH.

Canaloplasty involves making an incision into the eye to gain
access to SC similar to viscocanalostomy. Here, a microcatheter is
inserted into the canal around the iris to enlarge the main and
smaller collector drainage channels. Upon removal of the catheter
a suture is placed within the canal and tightened in order to open
the SC and thus reduce the resistance and enhance outflow of
AQH. This technique is much safer than traditional
trabeculectomy since a bleb is not created and risk of infection
and hypotony is eliminated (Conlon et al., 2017; Pahlitzsch et al.,
2017; Lusthaus and Goldberg, 2019). Canaloplasty combined
with cataract surgery is useful in gaining additive lowering of
IOP in patients where both procedures are possible. Other
surgical procedures for enhancing AQH dynamics to lower
IOP include: trabeculopuncture using a Nd:YAG laser to
punch small holes in the TM; goniocurretage process which
permits removal of damaged or pathological TM tissue from
inside the ANC; cyclodialysis, which separates the CB from the
sclera to form a conduit between the suprachoroidal space and
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the ANC. Lastly, procedures that decrease production of AQH
include destruction of some of the ciliary epithelial cells of the CB
by cyclocryotherapy (using a freezing probe) or via
cyclophotocoagulation using a transscleral laser procedure
(Conlon et al., 2017; Pahlitzsch et al., 2017; Lusthaus and
Goldberg, 2019).

Minimally Invasive Glaucoma Surgeries-
Based Devices for Lowering Intraocular
Pressure
As described above, moderate-to-severe and refractory OHT/
glaucoma can be treated using trabeculectomy and tube shunt
surgery procedures, the most commonly utilized surgical
techniques to-date. However, these incisional surgeries have
significant safety and other issues and require significant post-
operative medical care, including a continued high dependence
on t. o. medications and the fact that these operations have to be
frequently repeated to keep the outflow pathways opened. Micro-
invasive glaucoma surgeries (MIGS; Ansari, 2017; Pillunat et al.,
2017; Pahlitzsch et al., 2017; Ittoop et al., 2019; Nichani et al.,
2020), or minimally invasive glaucoma surgery (Figure 12),
represent a novel platform of surgical techniques and implants
that overcome many of the latter issues and are highly effective in
reducing and controlling IOP with a significantly reduced
dependance on t. o. ocular hypotensive drugs. MIGS lower
and control IOP by either increasing AQH outflow by
circumventing the TM, or via accessing the subconjunctival
AQH drainage pathway, or enhancing UVS-outflow through
the suprachoroidal spaces (Conlon et al., 2017).

Several MIGS procedures and associated AQH-shunt implants
have entered into clinical management of OHT/glaucoma but
they differ in terms of the technique (ab interno vs ab externo)
utilized to insert the device and the type of microshunt that is
utilized to drain the AQH from the ANC to lower IOP.
Additionally, the target patient population, whether a bleb is
used, the overall IOP-reduction achieved, ocular advere-events
observed, and the relative need for t. o. drugs post-operation to
maintain IOP help differentiate between the various MIGS
available today. Since only modest reductions in IOP have

been achieved with most MIGS procedures thus far, there
remained an unmet medical need for a MIGS treatment to
deal with moderate-to-severe and refractory glaucoma (Conlon
et al., 2017). Therefore, the invention of a synthetic, elastomeric
biomaterial (poly [styrene-block-isobutyleneblock-styrene];
SIBS) that is thermoplastic and resists biodegradation, helped
in the development of a novel and unique SIBS-based AQH
drainage device known as the PRESERFLO® MicroShunt
(formerly termed the InnFocus MicroShunt) (Sadruddin et al.,
2019). This MicroShunt is an ab externo subconjunctival
glaucoma AQH drainage device that facilitates AQH outflow
to a bleb where the fluid is reabsorbed and sent into the veinous
circulation thereby providing substantial IOP reduction. The
average clinically useful % reductions in IOP (50–55%)
achieved and maintained IOPs in the range of
10.7–11.9 mmHg over 3-years have been reported for
PRESERFLO® Microshunt (Figures 12–14). This MIGS-based
implant device has therefore demonstrated a high efficacy
(without hypotony) in enhancing AQh efflux from the ANC
and thereby lowering and controlling IOP in reducing OHT/
POAG patients (Sadruddin et al., 2019) (Figures 12–14).

DRUG DISCOVERY RESEARCH FOR
OCULAR HYPERTENSION/INTRAOCULAR
PRESSURE-LOWERING DRUGS
In order to provide a perspective of the drug discovery processes
involved in finding suitable ocular hypotensive drugs a brief
outline of the in vitro assays and in vivo animal models used
in such endeavors will be provided next.

Assays and Techniques Used for Screening
of Potential Ocular Hypotensive
Compounds
Majority of the health authority approved drugs to treat a
multitude of diseases that beset animals and humans exert
their effects by modulating activity of cellular targets such as
enzymes, receptors, ion-channels and transporters. Organic

FIGURE 11 | The technique of trabeculectomy to allow the excess AQH to leave the ANC to reduce IOP is shown in relation to other ANC ocular tissues (A), and
how a patient’s eye looks after the surgery and the position of the bleb/flap (B).
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compounds, both naturally occuring (e.g., cyclosporin for dry eye;
Daull et al., 2021) and synthetic drugs (e.g., olopatadine for ocular
allergies (Sharif, 2020a,b); travoprost/tafluprost (Sharif et al.,
1999; Hellberg et al., 2001, 2002) and omidenepag isopropyl

ester (Kirihara et al., 2018a; Aihara et al., 2020a) to treat OHT/
glaucoma), peptides (e.g., angiotensin-II and bradykinin; Sharif,
2015), antibodies (avastin; ranibizumab; aflibercept; Asahi et al.,
2021) and most recently gene-therapy-based (aptamers; Fattal

FIGURE 12 | This montage depicts the various sustained ocular hypotensive drug delivery techniques/technologies (A), and the various MIGS (AQH shunts)
available to remove excess AQH from the ANC of the eye to reduce IOP (B,C).

FIGURE 13 | IOP reduction over 3 years in OHT/POAG patients after implantation of the PRESERFLO
®
microshunt into the ANC to permit AQH egress to lower IOP

is depicted.
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and Bochot, 2006; Khatib and Martin, 2017) medicines (and
potential future drugs) have been discovered, characterized and
introduced into medical treatment of diseases of the eye.

From an anti-glaucoma drug discovery perspective, the most
important task for the investigator(s) is the identification of a
suitable target to pursue that addresses an unmet medical need as
described or defined by key opinion leaders, clinicians and
patients of the OHT/POAG field. The target concept profile
(TCP) or target product profile (TPP) then needs to be
defined based on clear, objective, achieveable and desired
attributes of the final drug candidate. Some of this
information may exist in the literature or may be entirely
proprietary. However, the knowledge of the target protein and
disease mechanism and/or pathway is important in order to
render the target into a compound screening funnel. In order
to ensure that the target mRNA/protein is located in the normal
and diseased target cells/tissues needs to be ascertained using RT-
PCR (Sharif and Senchyna, 2006), or in situ hybridization (Ma
et al., 1996), or receptor autoradiography (Sharif et al., 1999;
Sharif et al., 2001; Davis and Sharif, 1999) and/or
immunohistochemical (Sharif et al., 2014a; Sharif et al., 2014b)
techniques. This is often followed by establishing suitable in vitro
ligand-protein and/or protein-protein interaction assays to
determine the relative affinity of test agents for the target
protein (receptor/enzyme; e.g., Sharif and Xu, 1999; Sharif and
Xu, 2004). Since it is important to determine whether the test
compounds achieve appropriate engagement of the target
receptor/enzyme, functional cell/tissue-based assays need to be

employed. Human and/or non-human primate ocular cells and
tissues, or cells expressing human cloned receptors or enzymes,
should be used whenever possible, to have appropriate linkage to
the human disease (Sharif N. A. 2018; Sharif, 2020a; Sharif,
2020b). Ideally, isolated and well characterized human CM
(Sharif et al., 2003a), TM (Sharif et al., 2003b; Sharif et al.,
2006) and NPCE (Crider and Sharif, 2001) cells, or bovine
TM cells (Mao et al., 2012), or strips of human/animal ocular
tissues (Wiederholt et al., 2000; Rosenthal et al., 2005; Ohia et al.,
2018; Njie-Mbye et al., 2018) or ex-vivomodels (e.g., Sharif et al.,
2009; Sharif et al., 2014b) should be used for testing and
characterizing ocular hypotensive compounds. If this is not
possible, then suitable higher order species-derived cells and
tissues may suffice including those from bovine, porcine and
non-human primate sources. Such functional assays yield the
relative potency and intrinsic activity of the test compounds in
order to permit rank ordering of the agonist compounds.
Obviously, if antagonists are being sought then a positive
control, natural agonist ligand for the target would be
employed to stimulate a response against which the potential
antagonist/inhibitor compounds are screened. In order for the
test compounds to pass the first series of stage-gate criteria, such
testing funnel in vitro assays should require compounds to meet
or exceed stringent affinity/potency/intrinsic activity, parameters
defined at the onset of the screening campaign (Figures 15A,B).
The initial hits should then be subjected to further scrutiny using
additional in vitro primary and secondary assays (on-target and
off-target), including testing in receptor subtype-based/enzyme

FIGURE 14 | A comparison between various AQH microshunts on their ability to lower IOP in OHT/POAG patients (A), and the need for number of ocular
hypotensive medications needed to maintain the lowered IOP pre and post-MIG implantation (B) is shown.
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isoform-based assays in order to determine relative selectivity of
the compounds for the desired target protein (sub-type or
isoform). Thus for example, for 5-hydroxy tryptamine-2 (5-
HT2; serotonin-2) receptor agonist IOP-lowering compounds,
not only was the affinity, agonist potency and intrinsic activity
required at each of 5-HT2 receptor sub-types (5-HT2A, 5-HT2B,
and 5-HT2C) but also at each of the 6 other major 5-HT receptor
classes (i.e., 5-HT1 - 5-HT-7), and if possible at their subtypes
(May et al., 2003; Sharif and Senchyna, 2006). A similar situation
prevailed for various functionally and pharmacologically defined
prostaglandin receptors and their sub-types which required
establishment and validation of (Sharif et al., 2003). Minimal
in vitro compound safety/toxicity and stability information, in a
prototypic formulation, can also be gathered for the initial lead
compounds in order to help select compounds for the next phase
of screening. Functional read-outs from cultured cells in multi-
well plates used to determine such quantifiable activity are second
messengers (e.g., cAMP (Crider et al., 1998; Crider et al., 2000)/
cGMP (Dismuke et al., 2009; Katoli et al., 2010)); inositol
phosphates accumulation (Sharif and Xu, 1999; Griffin et al.,
1997; Griffin et al., 1998; Sharif et al., 1998)/intracellular Ca2+

([Ca2+]i) mobilization (Griffin et al., 1997; Griffin et al., 1998;
Kelly et al., 2003) (Figure 16A), or enzyme release and activation
(Sharif et al., 2003; Sharif et al., 2014a; Sharif et al., 2016), or cell
contraction/relaxation by in-gel assays (Ramachandran et al.,
2011) or by electrical resistance measurements (Park et al.,
2015; Vollmer et al., 2020), or cell volume change (Patil et al.,
2016; Dismuke et al., 2009; Dismuke et al., 2010). Tissue samples
mounted in organ-baths (e.g., iris sphincter muscle; Sharif et al.,
2008), rat uterus strips (Sharif, 2008) or bovine ciliary muscle/
arteries (Njie-Mbye et al., 2018; Ohia et al., 2018) or human TM
strips (Wiederholt et al., 2000) can provide functional read-outs
of contraction or relaxation which can be quantified and test
compounds rank ordered according to their relative potencies
and intrinsic activities/maximal efficacies. For example,
travoprost acid (TA) most potently contracted cat iris strips
compared to all the other FP-receptor PG agonists tested, and
TA was also a full agonist relative to the other compounds tested
which clearly behaved as partial agonists in this assay system
(Sharif et al., 2008). However, it is important to use multiple assay
systems (if possible, in parallel to save time) and cross-correlate
the findings to human ocular cells where possible in order to add
value and to confirm the findings across species and test
platforms. If the compound(s) meet the desired Go-criteria at
this stage-gate, they can then be progressed to ex-vivo and in vivo
testing paradigms. It is worth remembering that the afore-
mentioned testing funnel-derived data are shared with the
medicinal chemists on a regular basis such that the structure-
activity information can be utilized to improve the next series of
compounds that are designed and synthesized.

Ex-Vivo Screening Models to Evaluate
Potential Intraocular Pressure-Lowering
Agents
Next, compounds satisfying the selection criteria from in vitro
assays need to be evaluated for their ocular hypotensive activity.

They can be first tested in bench-based ex vivo models using
perfused ANC segments of eyes of suitable animals or
postmortem human eyes. Since the CB and TM are retained
and are functional, data obtained from such studies can yield
valuable information about the ability of test perfused
compounds to influence the outflow facility. Other
mechanistic aspects such as the potential involvement of
released substances/proteins (e.g., MMPs) can also be
ascertained by sampling the effluent from these perfused
segments. Such data has been reported using partially intact
ex-vivo ANC eye segments of numerous different species
(Llobet et al., 1999; Crosson et al., 2005; Webb et al., 2006;
Keller et al., 2017; Mao et al., 2012; Boussommier-Calleja et al.,
2012; Ren et al., 2016; Snider et al., 2021), and also using a whole
perfused eye models (Shahidulla et al., 2005; Zhou et al., 2017).
Figure 16B depicts example data obtained for two IOP-lowering
agents, cabergoline and FR-190997, which enhanced outflow of
perfused media in a time-dependent manner from such ex-vivo
models.

In Vivo Animal Models of Ocular
Hypertension/Glaucoma Used for
Screening Compounds
Testing of compounds for ocular safety and efficacy requires
different stage-gates within the screening funnel. It is important
to first ensure that the t. o. dosed test compounds dissolved or
suspended in a comfortable formulation do not cause
unacceptable ocular irritation, pain or other damage to the
ocular surface. Typically, rodents, guinea pigs and rabbits are
utilized for such ocular comfort studies using either a single high
t. o. dose or repeated dosing at an intermediate concentration of
the test drug. Preferably such tests should be performed in one of
the eyes, and ideally, the test substances should not cause
excessive eye redness (hyperemia), excessive blinking, tearing
and conjunctival discharge, swelling of the eye lids, and
vocalization in single or multi-dose topical ocular studies. The
vehicle alone should be used as a control in the contralateral eye.
When compounds pass the acute/chronic ocular safety process,
and general systemic/central nervous system (CNS) safety (e.g.,
lack of effect on respiration, heart rate, CNS-related behaviors,
etc), they can then be tested for their ability to lower IOP. If test
agents are suspected of having a topical ocular anesthetic effect,
they can be tested for such activity, and/or irritability potential,
using electrophysiological recordings of corneal nerves but often
these tests are performed after reproducible IOP-lowering effects
have been determined (e.g., Sharif et al., 2014b).

Following successful passing through the ocular irritation
stage-gate, compounds can now be tested for their ability to
lower IOP. The test agents are again prepared in the selected
formulation and are dosed t. o. at a single or multiple
concentrations/doses to determine their relative efficacies to
reduce IOP. Since the non-human primates are the most
precious, costly and more labor-intensive to train and utilize
for ocular investigations, rodents, guinea pigs and rabbits are
preferred in early-stage efficacy studies. Testing for ocular
hypotensive activity is usually performed in normal eyes with
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normal physiological IOPs. However, in order to mimic the
human OHT/glaucoma condition, animals with experimentally
or genetically induced (Harada et al., 2019) OHT are utilized.

Thus, mice, rats, rabbits, monkeys, dogs, cats, pigs, guinea pigs,
sheep, and cattle have been used to determine the relative IOP-
lowering efficacy of topical ocularly administered test agents

FIGURE 15 | Examples of testing funnels for screening potential ocular hypotensive drug candidates are shown (A,B). In (A), the overall “hits” discovery and
characterization is depicted, whereas in (B), the types of stage-gates and the Go/No Go criteria to progress for selected in vitro and in vivo studies are shown. Potency/
efficacy/safety parameters are listed as examples.

FIGURE 16 | Examples of in vitro cell-based functional data for selected prostaglandins for their concentration-dependent mobilization of intracellular Ca2+ via the
human cloned FP-receptor is shown (A). Ex-vivo data for two different classes of compounds enhancing outflow facility in porcine eye ANC segments over a period of
time is displayed (B).

Frontiers in Pharmacology | www.frontiersin.org September 2021 | Volume 12 | Article 72924927

Sharif Glaucoma and Neuroprotection Therapeutics

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


(Johnson and Tomarev, 2010; Stewart et al., 2011; Bouhenni et al.,
2012; Iglesias et al., 2015; Ishikawa et al., 2015; Agarwal and
Agarwal, 2017; Biswas and Wan, 2019; Shah et al., 2019). Ideally,
naturally occurring animal models of human OHT/glaucoma
should be used but unfortunately only limited and costly versions
of such animals exist which include, for example DBA/2J mice
(pigmentary glaucoma; Williams et al., 2013), beagle dog
(congenital glaucoma) (Palko et al., 2016) and wild monkeys
(Widdig et al., 2016). However, Dutch-belt rabbits naturally have
high IOPs and are good responders to most drugs, especially
when intravitreally injected (e.g., Sharif et al., 2015). Thus, initial
screening of test compounds for IOP-lowering efficacy can be
conducted in rodents or rabbits using a vehicle control and if
possible a positive control on a frequent basis to verify the fidelity
of the primary screening model(s). Compounds of high interest
can then progress to the secondary (e.g., normotensive monkey
eyes) and tertiary (OHT monkey eyes) animal models and ocular
hypotensive activity determined.

OHT eyes of rodents and rabbits can be created using a variety
of techniques using hypertonic saline injection into the episcleral
veins (Morrison et al.), photocoagulation of these veins (Shareef
et al., 1995), injection of microbeads (latex (Sappington et al.,
2010; Yang et al., 2011) or magnetic (Samsel et al., 2011; Ito et al.,
2016)), or by other techniques including intermittent IOP
elevation (Gramlich et al., 2016), or by injecting a viscoelastic

material (Cone et al., 2010) into the ANC of the eye. Monkey eyes
can be rendered OHT by lasering of a large portion of their TM
which leads to a fairly reproducible elevated IOP within a range of
30–40 mmHg. To reduce injury to the eye, a mild anesthetic
(proparacaine) is used to partially numb the ocular surface to
permit the measurement of the IOPs using various
pneumotonometer devices (TonoLab; Tono-Pen, Goldman
pneumotonometer; Pease et al., 2000; Millar et al., 2015) to
monitor and ensure stable IOP-elevations are achieved
(Hellberg et al., 2002; May et al., 2003; May et al., 2006; Sharif
et al., 2007; Sharif et al., 2014a; Sharif et al., 2014b). The
contralateral eye is not operated on and represents a
normotensive control eye. Even though these non-human
primate models of OHT/glaucoma are stable over many years
and are fairly predictive of efficacy in glaucoma patients, there are
always exceptions and many surprises in terms of the magnitude
of the response and its time-course. Hence, translatability and
extrapolation of ocular hypotensive actions of different classes of
drugs from the monkey model to the human glaucomatous
situation requires a cautious approach. Similarly, confirmation
of the IOP-lowering results in multiple colonies of animals (e.g.,
Sharif et al., 2014a; Sharif et al., 2014b), and if possible at multiple
research facilities (Sharif et al., 2014a; Sharif et al., 2014b), with
the compound testing performed in a fully masked/coded
manner, is highly recommended. Moreover, after suitable

FIGURE 17 | The ability of two different classes of compounds (S- and R-DOI, a 5-HT2 receptor agonist (A) and a non-peptidic bradykinin B2-receptor agonist [FR-
190997] (B)) to lower IOP in conscious ocular hypertensive Cynomolgus monkey eyes is shown.
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washout periods and rest, the monkey eyes in different colonies
should be evaluated with multiple positive control ocular
hypotensive agents to ensure continued responsiveness to
different classes of compounds. Some examples of ocular
hypotensive efficacy of two different compounds (R-DOI (5-
HT2 receptor agonist) and FR-190997 (non-peptidic bradykinin
B2-receptor agonist) in eyes of fully trained conscious and seated
cynomolgus monkeys are displayed in Figures 17A,B.

If a high capacity screening model is desired for testing a large
number of potential IOP-lowering agents then rodents are
probably the best animal model. They are relatively cheap,
easier to handle, cheaper to maintain and breed. The similarity
of the mouse eye structure and genomics to humans are
additional benefits (Stewart et al., 2011; Bouhenni et al., 2012;
Iglesias et al., 2015; Ishikawa et al., 2014; Agarwal and Agarwal,
2017). Furthermore, rodent eyes can be injected with gene-
delivery systems to help express (or genetically delete certain
genes and gene-products) that have been linked to the
development of OHT/POAG (e.g., Shepard et al., 2010). These
engineered mice, along with naturally occurring glaucomatous
mice of the DBA/2J strain (Libby et al., 2005; Howell et al., 2007;
Fernandes et al., 2013; Fernandes et al., 2014) and YBR/EiJ (Nair
et al., 2016) strain, or steroid-induced glaucoma mouse model
(Maddineni et al., 2020) for example, have been valuable in the
study of OHT/GON disorder. Similarly, gene knock-out mice
have been vital in elucidating the involvement of certain receptors
mediating ocular hypotension. For example, FP-receptor agonists
such as travoprost, latanoprost and bimatoprost robustly lowered
IOP in wild-type mice but failed to show any efficacy in the FP-
receptor-knock-out mice (Ota et al., 2005; Ota et al., 2007). Such
studies have confirmed that all these PGs produce their ocular
hypotensive effects by stimulating the same common FP-receptor
(Maxey et al., 2002; Camras et al., 2008), despite claims of
bimatoprost working through an enigmatic “prostamide-
receptor” (Burk and Woodward, 2007).

In order to help differentiate ocular hypotensive compounds,
mechanistic studies have proven useful. The glaucoma monkey
model (e.g., Sharif et al., 2014a) and a mouse model (Millar et al.,
2011) have been utilized to study AQH dynamics to ascertain
whether compounds lower IOP by stimulating AQH outflow via
the TM/SC and/or UVS pathways or by inhibiting AQH
production. Studies conducted on anterior segments of bovine,
porcine, murine and human eyes (Llobet et al., 1999; Crosson
et al., 2005; Webb et al., 2006; Keller et al., 2008; Mao et al., 2011;
Boussommier-Calleja et al., 2012; Ren et al., 2016) have also been
useful to extend observations made in the intact eyes of living
animals (see above). The latter ex-vivomodels lend themselves to
further mechanistic investigations since various enzyme
inhibitors, receptor antagonists or other drugs can be perfused
and their effects studied on the outflow parameters. Some
examples of compounds tested recently in such ex-vivo models
that stimulated outflow include a non-peptide bradykinin-
mimetic (FR-190997), and a mixed dopaminergic and 5HT2

receptor agonist (cabergoline) (Figure 16B). One study
showed that bradykinin caused outflow enhancement in a
bovine anterior segment model by releasing endogenous

MMP-9, and that this effect could be blocked by a B2-receptor
antagonist (Webb et al., 2006).

NEED FOR NEUROPROTECTION IN
GLAUCOMA TREATMENT

Even though NTG patients have IOPs in the normal range
(16–21 mmHg), they continue to experience vision loss. Also,
it is estimated that 30–80% of OHT/glaucoma patients’ disease
continues to progress despite adequate IOP reduction.
Conversely, many humans have abnormally elevated IOPs but
they do not progress to GON and their vision is unaffected by the
raised IOP. These observations strongly suggest that either IOP-
independent events and pathologies underlie the development of
GON in the NTG patients or that their visual system components
are much more sensitive to the IOP levels which are considered
“normal”. The same may apply to other patients with other forms
of glaucoma. Indeed, accumulating evidence indicates that OHT
alone is not the sole contributor to glaucomatous damage and the
resultant visual impairment as discussed earlier. OHT and other
damaging events ongoing simultaneously probably conspire to
cause visual impairment in NTG/POAG/PACG patients. Thus,
IOP-independent mechanisms involving retinal vascular
dysfunctions (Flammer and Orgul, 1998; Broadway and
Drance, 1998; Cull et al., 2015; Pasquale, 2016) and the
accompanying oxidative stress (Tezel, 2006; Nickells et al.,
2012; Peters et al., 2015) and RGC/axonal energy depletion
due to mitochondrial defects (Osborne, 2010; Osborne et al.,
2016; Li et al., 2015; Chaphalkar et al., 2020) appear to be culprits.
As discussed in the earlier section above, local inflammation at
the ONH/LC due to release of injurous cytokines/chemokines/
proteases (Albalawi et al., 2017) and at the RGC dendritic/soma
sites are responsible for destroying the components of the optic
nerve and the RGCs and other retinal interneurons. Excessive
release of cellular ATP from dying cells leads to further damage to
neighboring cells through activation of the purinergic receptors
on RGCs and other retinal neurons through the generation of
inflammasomes (Romano et al., 2020). Furthermore, recent
research has shown that retrograde axonal flow of
mitochondria and neurotrophins (Iwabe et al., 2007) from the
brain to the RGC somas becomes defective with OHT
(Gaasterland et al., 1978; Radius and Anderson, 1981; Pease
et al., 2000; Band et al., 2009; Crish et al., 2013; Ito and Di
Polo, 2017) and these changes negatively impact the overall RGC
and optic nerve health. Additionally, defects in the generation and
maintenance of sufficient levels of intracellular ATP by
mitochondria and/or deficits in nicotinamide adenine
dinucleotide (NAD+) or its congeners, and/or abnormal
mitochondrial metabolism/catabolism within retinal neurons
of patients with NTG/POAG may heavily contribute to their
GON and visual deficits (Thomas et al., 2000; Barron et al., 2004;
Bessero and Clarke, 2010). Hence, direct protection of RGCs,
their axons and the ONH architecture from such IOP-dependent
and IOP-independent insults is necessary in addition to further
reducing the patients’ IOPs.
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Significant progress has been made in the discovery and
characterization of preclinically effective neuroprotectants/
cytoprotectants at least from in vitro assay systems using a
variety of animal and human isolated retinal, LC and ONH
cells subjected to various chemical and mechanical stressors
(see He et al., 2018; Sharif, 2018a; Sharif, 2018b; Sharif, 2020a;
Sharif, 2020b for reviews). Additional supportive data for the
neuroprotective activity of numerous classess of drugs and
treatment modalities have been gathered using various animal
models of GON (Sharif, 2018a; Sharif, 2018b). The burgeoning
list of cyto-/neuro-protective agents include anti-oxidants (Aksar
et al., 2015), B-vitamin supplements and other nutriceuticals
(Luna et al., 2012; Davis et al., 2017; Williams et al., 2017a;
Williams et al., 2017b; Saccà et al., 2019; Cammalleri et al., 2020;
Chou et al., 2020), antagonists of excitotoxic glutamate receptors
(Sharif et al., 2001; Ju et al., 2015; Opere et al., 2018), valproic acid
(Kimura et al., 2015a; Kimura et al., 2015b), Ca2+-channel
blockers, anti-inflammatory agents/glial cell modulators
(Cueva Vargas et al., 2016), ATP-sensitive K+-channel
openers, neurotrophic compounds (Hu et al., 2005; Khatib and
Martin, 2017), neurosteroids (Ishikawa et al., 2014), α2-
adrenoceptor agonists, anti-epileptics, nicotininc receptor
agonist (Iwamoto et al., 2014), mTOR inhibitors, Janus kinase
inhibitors, MAP kinase inhibitors, delta opioid receptor agonists,
endothelin antagonists, sigma-1 receptor agonists (Ellis DZ. et al.,
2017), etc., etc (recently reviewed by He et al., 2018; Sharif, 2018)
which are effective ameliorators of cell death of RGCs/LC cells/
TM cells, and which also possess in vivo efficacy in various animal

models of ischemia/hypoxia/oxidative stress/neurotrophin- and
glucose-deprivation/direct excitotoxicity/optic nerve crush or
transection emulating what may be happening in the human
GON condition in patients with NTG/POAG (see He et al., 2018;
Sharif, 2018 for reviews). Delivery of mitochondrial-targeted anti-
oxidants (Pang et al., 2015), inactivation of the NFkB system in
astroglia (Dvoriantchikova et al., 2009; Dvoriantchikova and
Ivanov, 2014), use of inducible NO synthase inhibitors
(Schnichels and Joachim, 2021), RGC and/or stem cell
transplatation in the retina (Johnson and Martin, 2013; Behtaj
et al., 2020; Liu and Lee, 2021), migroglial removal and
repopulation (Barnett et al., 2021), delivery of a gene-therapy-
based neurotrophin receptor-ligand complex (Khatib et al., 2021),
and direct delivery of Schwann cells to the optic nerve also
represent promising approaches to treat GON (Guo et al.,
2014; Smedowski et al., 2016). Directly addressing
mitochondrial defects/deficiencies using mitofusin activators
(Rocha et al., 2018; Dang et al., 2020) may support
mitochondrail rescue and help in axonal regeneration (Zhou
et al., 2016).

Of the drugs that have been clinically evaluated for
neuroprotective activity and to retard vision loss or
impairment in POAG patients, for example brimonidine and
memantine, none have conclusively proven effective thus far
(Almasieh and Levin, 2017; Levin, 2017). It is worth noting
that a very recent study demonstrated the neuroprotective
activity of brimonidine after retinal ischemia (Conti et al.,
2021). There is some hope and promise that oral vitamin-B3/

FIGURE 18 | Examples of use of remote telemetric monitoring of IOP in conscious monkey eyes (A–C), in human eyes with a contact lens-based device (D,E) and
an intraocular lens-bearing device (F) are shown.
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nicotinamide may offord some degree of functional vision
preservation in POAG patients (Williams et al., 2017c; Hui
et al., 2020). Likewise, the potential utility of senolytic drugs
such as quercetin, nicotinib, imatinib, toclizumab and dasatinib
(El-Nimri et al., 2020) that help remove dead RGCs and
neuroprotect may become commonly used therapeutics to
treat POAG/NTG in addition to using IOP-lowering drugs. As
with many reports of this kind, these results need to tbe
confirmed by other researchers in different parts of the world
in multiple additional clinical trials. Moreover, given the
multiplicity of deleterious factors and conditions that trigger
and sustain neuronal/axonal injury and demise (see above),
and the gross heterogeniety of RGC-types (Sanes and
Masland, 2015; Ou et al., 2016; Della Santina and Ou, 2017;
Tran et al., 2019) with varying degrees of susceptibility to or
resiliency to damage, it is likely that a combinatorial approach to
mitigate and stem the vision damage/loss from GON caused by
different forms of glaucoma would be necessary. This poses
significant hurdles from a regulatory perspective to conduct
suitable clinical trials and to gain approval from health
agencies around the world. Nevertheless, a concerted
collaborative effort by researchers and health autority
personnel could prove productive in order to help save the
eyesight of millions of patients afflicted with GON due to
POAG/PACG/NTG. Hence, successful clinical translation of
the neuroprotection paradigm in the glaucoma patients is
eagerly awaited (Boia et al., 2020), which may also involve the
use of suitable stem cells (Chamling et al., 2016) and/or their
secretome (Harrell et al., 2019), intravitreally injected Schwann
cells and potential optic nerve regeneration (Li et al., 2004; Li
et al., 2017), chimeric perpheral nerve grafts (Cui et al., 2003).

CONCLUSION

The above discourse provides strong evidence for involvement of
defective anterior chamber physiology in the onset of POAG,
PACG and other forms of glaucoma. Specifically, the aging
process leads to energy depletion in mitochondria (Kleesattel
et al., 2015; Eells, 2019) and cellular debris accumulation in the
corneoiridial angle of the ANC. Such TM occlusion coupled with
reduced TM cellularity, phagocytotic activity and flexibility in the
conventional outflow pathway directly contribute to the increased
resistance to AQH outflow causing elevation of IOP. This OHT-
induced mechanical pressure leads to a cascade of detrimental
events, including inflammation (Slater et al., 2013), at the retinal
ONH/LC and optic nerve regions which ultimately causes RGC
axonal damage and RGC death resulting in vision loss, especially
resulting in peripheral vision defects (Tribble et al., 2020). Several
strategies to pharmaceutically and surgically (including use of
implanted microshunts) reduce IOP have been developed to treat
OHT. However, since effective IOP control does not prevent visual
impairment in many patients suffering from glaucoma, especially
those with NTG who have normal IOPs (Jampel, 2007), the notion

that IOP-independent mechanisms cause GON is now well
accepted. Therefore, future treatment modalities for glaucoma
will necessitate the use of neuroprotectants and neuroregenerative
paradigms whilst still controlling the IOP (Goldberg, 2012; Guymer
et al., 2019; Tsai, 2020). Several classes of pharmaceutical agents/
nutriceuticals and regenerative compounds have demonstrated
efficacy in cell-based assays and in a number of in vivo models
of GON as described above (Goldberg, 2012; Guymer et al., 2019; El-
Nimiri et al., 2020). However, translation of such efficacy in
glaucoma patients needs to be demonstrated in multiple clinical
trials on aworldwide basis to help save eyesight formillions of people
around our planet. It is also imperative that high priority be assigned
to early diagnosis of the glaucomatous conditions so that patients
begin their treatments to slwo down their visual impairment. The
development of innovative imaging techniques such as those using
nucleic acid dyes (Tsuda et al., 2016) and DARC (detecting
apoptosizing retinal cells; Cordeiro et al., 2017), adaptive optics
(Bower et al., 2021), angiography-coupled optical coherance
tomography (Kaizu et al., 2017), and of course magnetic
resonance imaging (MRI; Chow and Paley, 2021) should aid in
early diagnosis and quantification of the damage to retinal neurons/
optic nerve with and without neuroprotective treatment modalities.
Likewise, the future appears bright for use of gene therapy and cell-
therapy to potentially correct genetic or disease-induced
abnormalities in TM/SC and retinal cells (Khatib and Martin,
2017; Ratican et al., 2018). Perhaps replacing or adding new
healthy cells to the ANC and retina, and/or operationalizing gain
of function of the latter by normalizing metabolic defects at the
mitochondrial level of these cells with appropriate food
supplementation or direct injection to the vitreous in sustained
delivery vehicles may be possible. Direct repair and/or protection of
RGC bodies and dendrites, and the myelin sheath and other
components of the RGC axons (Fang et al., 2010), regenration of
the optic nerve projecting to the brain (Van de Velde et al., 2015),
also hold great promise. Normalization of intracranial fluid
pressure to help physically support the optic nerve is
potentially another treatment option in the future for
patients whose fluid dynamics at the ANC and
intracranially become defective due to the aging process or
induced by disease mechanisms as discussed above. Ability to
monitor IOP round the clock using appropriate sensors (De
Moraes et al., 2018; e.g., Figure 18) will offer clinicians tools to
diagnose POAG earlier, and perhaps patients to self-evaluate
their eye health and seek treatment early as well. Similarly, the
role of artificial intelligence in drug discovery, dignosis of
POAG, and other aspects of ocular disease treatment
represents a novel platform to increase awareness/diagnosis
of glaucoma (Zheng et al., 2019).
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